首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 350 毫秒
1.
Enzymatic treatments using noncommercial enzymes as a means to the improve the extraction of carotenoids and capsaicinoids from chili fruits are explored in this study. The results show that it is possible to obtain chili fruit powder with a higher concentration of both capsaicinoids and carotenoids than previously reported for similar processes. Furthermore, extraction yields above 96% for carotenoids and 85% for capsaicinoids as separate fractions can be achieved using a sequential and selective two-stage extraction. Evidence is presented demonstrating that the content and extraction yield depend directly on the extent of the enzymatic hydrolysis of chili cell walls, and higher yields are obtained when the sample is completely hydrolyzed. The enzymatic treatment described here is a promising alternative to current industrial practices, and it improves the extraction of carotenoids and capsaicinoids from chili fruits.  相似文献   

2.
Ground paprika (Capsicum annuum L.) was extracted with supercritical carbon dioxide (SC-CO(2)) and subcritical propane at different conditions of pressure and temperature to estimate the yield and variation in carotenoid, tocopherol, and capsaicinoid contents and composition. The yield of paprika extract was found to be affected by the extraction conditions with SC-CO(2) but fairly constant at different conditions with subcritical propane. The maximum yields of oleoresin were 7.9 and 8.1% of ground paprika by SC-CO(2) and subcritical propane, respectively. The quantitative distribution of carotenoids, tocopherols, and capsaicinoids between paprika extract and powder was influenced by extraction conditions. SC-CO(2) was inefficient in the extraction of diesters of xanthophylls even at 400 bar and 55 degrees C, whereas tocopherols and capsaicinoids were easy to extract at these conditions. Under mild conditions subcritical propane was superior to SC-CO(2) in the extraction of carotenoids and tocopherols but less efficient in the extraction of capsaicinoids.  相似文献   

3.
Contact of wheat flour with aqueous ethanol may enrich protein by starch displacement or deplete protein by extraction depending on 1) extraction conditions and 2) the form of the substrate. Extraction at subambient temperatures has not been described for specific gliadins for either dry flour with the protein in native configurations or for wet, developed batter or dough. This limits the ability to interpret technologies such as the cold-ethanol method. Here, we describe specific albumin and gliadin composition of flour extracts by capillary zone electrophoresis CZE in 0–100% (v/v) ethanol from –12 to 22°C. Extraction was reduced for albumin and gliadin protein as the temperature was reduced and the concentration range for extraction narrowed. Extraction dropped precipitously between 0 and –7°C for both albumins and gliadins. Electrophoretically defined gliadins extracted in constant proportion at 22°C and 30–80%(v/v) ethanol, but at lower temperature, the α-gliadins were enriched and β-gliadins depleted in the 30–55% (v/v) range. For extracts from wheat flour batter, depletion of α and β and enrichment of γ relative to the dry flour contact suggested that the electrophoretically slow migrating γ- and ω-proteins are less well incorporated to the dough matrix than electrophoretically fast migrating α and β types.  相似文献   

4.
A method has been developed for the extraction of capsaicinoids from peppers by pressurized liquid extraction (PLE); these compounds are determined by reverse phase high-performance liquid chromatography (HPLC), with detection by fluorescence spectrophotometry and mass spectrometry (MS). The stability of capsaicin and dihydrocapsaicin has been studied at different temperatures (50-200 degrees C), and several extraction variables have been assayed: solvent (methanol, ethanol, and water), different percentages of water in the methanol (0-20%) and in the ethanol (0-20%), and the number of extraction cycles. The study has evaluated the repeatability (RSD < 7%) and the reproducibility (RSD < 7%) of the method. Finally, the PLE method developed has been applied to quantify the capsaicinoids present in three varieties of hot peppers cultivated in Spain, quantifying five capsaicinoids: nordihydrocapsaicin, capsaicin, dihydrocapsaicin, an isomer of dihydrocapsaicin, and homodihydrocapsaicin.  相似文献   

5.
In the dry‐grind process, starch in ground corn (flour) is converted to ethanol, and the remaining corn components (protein, fat, fiber, and ash) form a coproduct called distillers dried grains with solubles (DDGS). Fiber separation from corn flour would produce fiber as an additional coproduct that could be used as combustion fuel, cattle feed, and as feedstock for producing valuable products such as “cellulosic” ethanol, corn fiber gum, oligosaccharides, phytosterols, and polyols. Fiber is not fermented in the dry‐grind corn process. Its separation before fermentation would increase ethanol productivity in the fermenter. Recently, we showed that the elusieve process, a combination of sieving and elutriation (air flow), was effective in fiber separation from DDGS. In this study, we evaluated the elusieve process for separating pericarp fiber from corn flour. Corn flour remaining after fiber separation was termed “enhanced corn flour”. Of the total weight of corn flour, 3.8% was obtained as fiber and 96.2% was obtained as enhanced corn flour. Neutral detergent fiber (NDF) of corn flour, fiber, and enhanced corn flour (dry basis) were 9.0, 61.5, and 5.7%, respectively. Starch content of corn flour, fiber, and enhanced corn flour (dry basis) were 68.8, 23.5, and 71.3%, respectively. Final ethanol concentration from enhanced corn flour (14.12% v/v) was marginally higher than corn flour (13.72% v/v). No difference in ethanol yields from corn flour and enhanced corn flour was observed. The combination of sieving and air classification can be used to separate pericarp fiber from corn flour. The economics of fiber separation from corn flour using the elusieve process would be governed by the production of valuable products from fiber and the revenues generated from the valuable products.  相似文献   

6.
Due to the growing interest in the role of carotenoids in human health, their qualitative and quantitative analysis in foods is becoming more and more important. High-performance liquid chromatography has become the method of choice for the determination of these phytochemicals. A crucial step prior to the chromatographic separation is the quantitative extraction from the food matrix which was proven to be impeded in durum wheat. To optimize the extraction procedure, several factors with influence on extractability of carotenoids were investigated. Finally, it was shown that soaking of samples in water for 5 min prior to extraction with organic solvents had the strongest impact on extraction yield and led to the most rapid and gentle method. Contents of carotenoids in the extracts of several durum wheat and corn samples were doubled by soaking in water before extracting with methanol/tetrahydrofuran (1/1, v/v). In light of these findings, literature data on contents of carotenoids in cereal grains have to be viewed critically regarding the extraction procedures employed.  相似文献   

7.
In a conventional dry‐grind corn process, starch is converted into dextrins using liquefaction enzymes at high temperatures (90–120°C) during a liquefaction step. Dextrins are hydrolyzed into sugars using saccharification enzymes during a simultaneous saccharification and fermentation (SSF) step. Recently, a raw starch hydrolyzing enzyme (RSH), Stargen 001, was developed that converts starch into dextrins at low temperatures (<48°C) and hydrolyzes dextrins into sugars during SSF. In this study, a dry‐grind corn process using RSH enzyme was compared with two combinations (DG1 and DG2) of commercial liquefaction and saccharification enzymes. Dry‐grind corn processes for all enzyme treatments were performed at the same process conditions except for the liquefaction step. For RSH and DG1 and DG2 treatments, ethanol concentrations at 72 hr of fermentation were 14.1–14.2% (v/v). All three enzyme treatments resulted in comparable ethanol conversion efficiencies, ethanol yields, and DDGS yields. Sugar profiles for the RSH treatment were different from DG1 and DG2 treatments, especially for glucose. During SSF, the highest glucose concentration for RSH treatment was 7% (w/v), whereas for DG1 and DG2 treatments, glucose concentrations had maximum of 19% (w/v). Glycerol concentrations were 0.5% (w/v) for RSH treatment and 0.8% (w/v) for DG1 and DG2 treatments.  相似文献   

8.
The application of the cold‐ethanol laboratory fractionation method to the bulk separation of wheat starch and gluten is accompanied by incidental dissolution, removal, or redeposition of a small part of the functional gliadin protein. The new distribution resulting from process incidental redeposition of soluble components or by purposeful add‐back of soluble and leached components can lead to differences in functionality and more difficult recovery of native properties. To assess this issue, we exposed several wheat flour types to ethanol and water (50–90% v/v) solutions, water, and absolute ethanol at 22°C and –12°C. The exposure was mass conserving (leached components returned to substrate by evaporation of the solvent without separation of phases) or mass depleting (leached components not returned to substrate). The result of the mass‐conserving contact would be flour with altered protein distributions and intermolecular interactions. The result of the mass‐depleting contact would also include altered protein content. Furthermore, the mass‐conserving contact would model an industrial outcome for a cold‐ethanol process in which leached components would be added back from an alcohol solution. The leaching result was monitored by mixography of the flour, nitrogen analysis, and capillary zone electrophoresis of extracts. Although dough rheology was generally like that of the source flour, there were notable differences. The primary change for mass‐conserving contact was an increase in the time to peak resistance and a decrease in the rate of loss of dough resistance following peak resistance. These changes were in direct proportion to the amount of protein mobilized by the solvent. Leaching at 22°C, prevented dough formation for most aqueous ethanol concentrations and greatly reduced gliadin protein content. Minimal changes were noted for solvent contact at –12°C regardless of the ethanol concentration. The data suggested that 1) the conditions applied in cold‐ethanol enrichment of protein from wheat will generally preserve vital wheat gluten functionality, 2) functionality losses can be recovered by returning the solubilized fractions, and 3) the flour to which the gluten is added may require more mixing.  相似文献   

9.
Extraction of pigments (chlorophylls and carotenoids) from marjoram (Origanum majorana L.) with supercritical carbon dioxide was investigated. The aim of this study was to map the effects of extraction pressure and temperature on the yield of coloring materials by applying a 3(2) full factorial design with three repeated tests in the center of the design. For comparison, laboratory and pilot plant Soxhlet extractions were carried out using ethanol and n-hexane solvents. The compositions of pigments in marjoram extracts were determined by HPLC. Similar amounts of carotenoids, in addition to 40% of chlorophylls and their derivatives, were recovered from the supercritical fluid extraction, in comparison to the ethanol Soxhlet extraction.  相似文献   

10.
Dynamic extraction of carotenoids from a marine strain of Synechococcus sp. (Cyanophyceae) with supercritical CO2 (SC-CO2) was investigated with regard to operation pressure and temperature effects on extraction efficiency. Extraction yield (milligrams of pigment per gram of dry weight) for SC-CO2) was compared with the extraction yield for dimethylformamide (DMF). Carotenoids extracted with SC-CO2 were beta-carotene (Ct), zeaxanthin (Z), beta-cryptoxanthin (Cr), and equinenone; chlorophyll a was poorly extracted, whereas myxoxanthophyll, another major carotenoid, was not extracted under any experimental condition. The highest relative yield, which is defined here as y(r) = [(mg of pigment(SC-CO2)/mg of pigment(DMF))] x 100, was 76.1 +/- 8.6% for Ct, but it rose to 87.0 +/- 3.4% when 15% ethanol was used as cosolvent. The pressure effect on y(r) was found to be significant (p < 0.05) for both Cr and Z, along with total carotenoids, whereas the effect of square T (TT) was significant for only Ct. From empirical correlations, pairwise pressure (bar) and temperature (degrees C), respectively, for optimal extraction were determined to be (358, 50) for Ct, (454, 59) for Cr, and (500, 60) for Z. Cell disruption by sonication or detergent treatment of the biomass did not improve the extraction efficiency. Matrix structure together with material state could explain the low carotenoid extraction yield obtained with SC-CO2 as compared to DMF in Synechococcus sp. However, the process can be applied to selective extraction of different carotenoids.  相似文献   

11.
This study was conducted to improve yields and qualities of corn protein co‐products produced by the sequential extraction process (SEP), a process using ethanol to fractionate corn in producing fuel ethanol. A two‐stage extraction protocol was evaluated to recover zein and subsequently recover a glutelin‐rich fraction (GRF). After the simultaneous oil‐extraction and ethanol‐drying step of SEP, zein was extracted from the anhydrous‐ethanol‐defatted, flaked corn by using 70% (v/v) ethanol at 60°C for 1.5 hr in a shaking water bath. Zein was recovered by ultrafiltering and then drying in a vacuum‐oven. Zein yield was 65% of the available zein in the flaked corn. SDS‐PAGE band patterns of the recovered zein closely resembled that of commercial zein. After zein extraction, the GRF was extracted using 45% ethanol and 55% 0.1M NaOH at 55°C for 2 hr. The extract was concentrated by ultrafiltration and then freeze‐dried. GRF yield was ≈65% of the available protein. Freeze‐dried GRF contained 90% crude protein (db), which classified the protein as a protein isolate. As with the protein concentrate from the original SEP, the GRF isolate was highly soluble in water at pH ≥ 7, had good emulsifying and foaming properties, formed stable emulsions, and was heat‐stable.  相似文献   

12.
Marigold flowers are the most important source of carotenoids for application in the food industry. However, the extraction gives almost 50% losses of the carotenoids depending on conditions for silaging, drying, and solvent extraction. In the past decades, macerating enzymes have been successfully applied to improve the extraction yield of valued compounds from natural products. In this work, an alternative extraction process for carotenoids is proposed, consisting of a simultaneous enzymatic treatment and solvent extraction. The proposed process employs milled fresh flowers directly as raw material, eliminating the inefficient silage and drying operations as well as the generation of hard to deal with aqueous effluents present in traditional processes. The process developed was tested at the 80 L scale, where under optimal conditions a carotenoid recovery yield of 97% was obtained.  相似文献   

13.
Two methods, one to determine ascorbic acid and one to determine lycopene and beta-carotene, in vegetables and fruits by liquid chromatography coupled with mass spectrometry (LC-MS) have been established. The chromatographic separation of the studied compounds and their MS parameters were optimized to improve selectivity and sensitivity. In both methods, separation was carried out with two coupled columns, first a C(18) and then a dC(18), using as mobile phase 70% methanol (0.005% acetic acid) and 30% acetic acid 0.05% for ascorbic acid determination and a mixture of methanol, tetrahydrofuran, and acetonitrile (60:30:10 v/v/v) for carotenoid analysis in isocratic mode. The molecular ion was selected for the quantification in selective ion monitoring (SIM) mode. Ascorbic acid was detected with electrospray ionization probe (ESI) in negative mode, while chemical ionization atmospheric pressure (APCI) in positive mode was used for the target carotenoids. The methodology for ascorbic acid analysis is based on an extraction with polytron using methanol and a mixture of methaphosphoric acid and acetic acid. Extraction of the carotenoids was carried out with tetrahydrofuran/methanol (1:1) (v/v). The proposed methods were applied, after their corresponding validations, to the analysis of four varieties of tomatoes, tomato in tin enriched and dried tomato, and to the analysis of mango and kiwi fruits, to compare the content in these compounds. Moreover, the influence of the process of freezing and the effect that the manipulation/preservation has in the content of ascorbic acid in tomato have also been studied.  相似文献   

14.
Effects of phytase addition, germ, and pericarp fiber recovery were evaluated for the E‐Mill dry grind corn process. In the E‐Mill process, corn was soaked in water followed by incubation with starch hydrolyzing enzymes. For each phytase treatment, an additional phytase incubation step was performed before incubation with starch hydrolyzing enzymes. Germ and pericarp fiber were recovered after incubation with starch hydrolyzing enzymes. Preliminary studies on phytase addition resulted in germ with higher oil (40.9%), protein (20.0%), and lower residual starch (12.2%) contents compared to oil (39.1%), protein (19.2%), and starch (18.1%) in germ from the E‐Mill process without phytase addition. Phytase treatment resulted in lower residual starch contents in pericarp fiber (19.9%) compared to pericarp fiber without phytase addition (27.4%). Results obtained led to further investigation of effects of phytase on final ethanol concentrations, germ, pericarp fiber, and DDGS recovery. Final ethanol concentrations were higher in E‐Mill processing with phytase addition (17.4% v/v) than without addition of phytase (16.6% v/v). Incubation with phytases resulted in germ with 4.3% higher oil and 2.5% lower residual starch content compared to control process. Phytase treatment also resulted in lower residual starch and higher protein contents (6.58 and 36.5%, respectively) in DDGS compared to DDGS without phytase incubations (8.14 and 34.2%, respectively). Phytase incubation in E‐Mill processing may assist in increasing coproduct values as well as lead to increased ethanol concentrations.  相似文献   

15.
Optimization of protein extraction and a capillary zone electrophoresis method for water-soluble protein analysis in wheat is described. The optimal separation was obtained with a 50 microm i.d. x 27 cm (20 cm to detector) uncoated capillary filled with 0.1 M phosphoric acid/beta-alanine, pH 2.5, buffer containing urea (1 M), 0.05% (w/v) hydroxypropylmethylcellulose, and 20% (v/v) acetonitrile. Separation was carried out at 15 kV and 35 degrees C for 9 min. Extract stability was also investigated within 2 h from the extraction. Good visual peak parameters and a higher sensitivity can be obtained when 30% ethanol is used as an extraction medium. The method was successfully used to analyze extracts obtained from whole and refined meals of six Triticum spp. Moreover, the described methodology could be applied to the discrimination of species with different ploidy levels and to the detection of durum wheat adulteration, as well as to screen wheat collections for enzymes involved with the quality of wheat derivatives.  相似文献   

16.
A simple and rapid procedure for the separation and determination of inorganic, methyl, and ethyl mercury compounds was described using liquid chromatography (LC) followed by vapor generation inductively coupled plasma-mass spectrometry (VG-ICP-MS). Well resolved chromatograms were obtained within 5 min by reversed-phase liquid chromatography with a C8 column as the stationary phase and a pH 4.7 solution containing 0.5% v/v 2-mercaptoethanol and 5% v/v methanol as the mobile phase. The separated mercury compounds were converted to mercury vapors by an in situ nebulizer/vapor generation system for their introduction into ICP. The concentrations of NaBH4 and HNO3 required for vapor generation were also optimized. The method was applied for the speciation of mercury in reference materials NIST SRM 1568a Rice Flour and NIST SRM 1567a Wheat Flour and also rice flour and wheat flour samples purchased locally. The accuracy of the procedure was verified by analyzing the certified reference material NRCC DOLT-3 Dogfish Liver for methyl mercury. Precision between sample replicates was better than 13% for all the determinations. The detection limits of the mercury compounds studied were in the range 0.003-0.006 ng Hg mL(-1) in the injected solutions, which correspond to 0.02-0.06 ng g(-1) in original flour samples. A microwave-assisted extraction procedure was adopted for the extraction of mercury compounds from rice flour, wheat flour, and fish samples using a mobile phase solution.  相似文献   

17.
Freshly milled wheat flour has a pale yellow color due to its carotenoids content. Benzoyl peroxide is a bleaching agent typically used to give such flour a better appearance. This free-radical initiator promotes carotenoids oxidation, thereby producing less colored compounds, and benzoic acid is a main final product. Samples of wheat flour were treated with 150 ppm of benzoyl peroxide to begin a bleaching process, and then subjected to ethyl ether extraction at different intervals of time. Benzoyl peroxide and benzoic acid levels in these extracts were monitored by means of HPLC in individual experiences. The resulting concentration of benzoyl peroxide after 9 days of contact with the bleaching agent was 11 ppm, dropping afterward to nondetectable levels. A maximum value for benzoic acid of 16 ppm was found after 12 h of bleaching. Subsequently this level decreased continuously until reaching a residual value of 6 ppm after 3 months.  相似文献   

18.
Methods to remove dioxins and polychlorinated biphenyls (PCBs) from fishmeal were investigated and compared. The tested methods include (i) lowering the fat content and simultaneously the level of toxic contaminants using either organic solvents or (ii) lowering the fat content using protease and (iii) removal of dioxins and PCBs using either oil extraction or (iv) breakdown of dioxin and PCBs using oxidoreductase. The results showed that the organic solvents tested (ethanol, isopropanol, and isohexane) were efficiently lowering the oil content of the fishmeal by 80%. However, the treated fishmeal has a low fat content and may contain traces of solvent. The protease alcalase was not as efficient as the solvent extraction and only removed approximately 30% of the oil but presented the advantage of being a mild process. Other proteases, alone or in combination with other enzymes, might give better yield if the reaction conditions are optimized. In contrast, extraction of dioxin and PCBs using olive oil or fish oil was very effective and resulted in 60-75% extraction of dioxin and PCBs, respectively, after a single extraction step. No preference for the oil type was observed. This method is very simple and quick and does not require an important investment for the fishmeal producer. It is expected that with optimization this method could be implemented at an industrial scale without too many difficulties. In contrast, the oxidoreductases tested did not result in a major degradation of dioxins and PCBs with only 10-15% degradation achieved. However, with the recent advancement in biotechnology, it is possible that future research will result in the development of enzymes that effectively degrade recalcitrant contaminants.  相似文献   

19.
An isocratic reversed-phase high-performance liquid chromatography method was developed for routine analysis of the main carotenoids related to the color of orange juice, using a more selective wavelength (486 nm) in which the absorption in the red-orange region of the visible spectra is maximum. Separation was carried out using as the mobile phase the mixture methanol:acetonitrile:methylene chloride:water (50:30:15:5, v/v/v/v), to which small amounts of butylated hydroxytoluene and triethylamine were added (0.1%). Identification was made by comparison either with standards obtained by thin-layer chromatography or with spectral data previously reported. The reproducibility of the method was remarkable; coefficients of variation for the most polar xanthophylls were under 1 and 4% for retention times and areas, respectively. Its application to Valencia late ultrafrozen orange juices has shown that major carotenoids are lutein + zeaxanthin (36%), lutein 5,6-epoxide (16%), antheraxanthin (14%), and beta-cryptoxanthin (12%).  相似文献   

20.
Field peas (Pisum sativum) were evaluated as a potential feedstock for ethanol production. Ground peas were dry‐milled and separated into starch, protein, and fibrous fractions by air classification. Starch‐enriched fractions prepared from whole peas and dehulled peas contained 73.7% wt and 77.8% wt starch, respectively, a nearly two‐fold enrichment compared with whole peas. The fractions were liquefied and saccharified using industrial α‐amylase and glucoamylase at recommended enzyme loadings. A final ethanol concentration of 11.0% (w/v) was obtained in 48–52 hr, with yields of 0.43–0.48 g of ethanol/g of glucose. Starch present in whole ground peas was also saccharified and fermented, with 97% of the starch fermented when an autoclaving step was included in the liquefaction stage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号