首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
不同基质去除水中氮、磷的作用机理及效应   总被引:2,自引:1,他引:1  
对粉煤灰、矾土、活性炭、蛭石和火烧石5种基质的元素含量和表面化学性状进行了研究,并比较了这5种基质对P和NH4+-N的吸附性能。结果表明:粉煤灰呈碱性,具有较高的Fe、Ca含量,胶体氧化铁和水溶性Ca含量也最高,矾土呈酸性,Al含量和游离氧化铝含量最高,蛭石和火烧石呈中性,其中蛭石含有21.6%的Mg,活性炭比表面积最大。Langmuir等温吸附曲线方程能够对上述基质的P、NH4+-N吸附过程进行了很好的拟合,其中P理论饱和吸附量由大到小依次为粉煤灰>矾土>火烧石>活性炭>蛭石,NH4+-N饱和吸附量由大到小依次为蛭石>粉煤灰>火烧石>活性炭>矾土。双元素(P和NH4+-N)溶液下,基质对P或NH4+-N的理论饱和吸附量较单元素(P或NH4+-N)溶液下要低。在5种基质中,粉煤灰对P、NH4+-N的综合吸附能力较强,推荐其作为水体N、P污染修复的首选基质。  相似文献   

2.
保水剂在不同铵盐溶液体系中的吸水和吸附铵离子特征   总被引:3,自引:1,他引:2  
为探明保水剂与NH4+的相互作用,选用聚丙烯酸盐型保水剂(PAA)和聚丙烯酰胺型保水剂(P(AA-AM)),研究了保水剂在系列NH4Cl、NH4Cl-KCl、NH4Cl-CaCl2溶液体系中的吸水行为和对铵离子的吸附特征。结果表明:铵离子能显著降低保水剂的吸水倍率,并随铵离子浓度的增加,吸水倍率显著降低,相对吸水倍率与NH4+浓度之间具有显著的幂函数的减函数关系;NH4+、K+、Ca2+单一体系,NH4+-K+、NH4+-Ca2+共存体系对保水剂吸水倍率的影响按NH4+-K+相似文献   

3.
不同土壤对钾的选择吸附特性   总被引:3,自引:0,他引:3  
用K Ca交换平衡法对砖红壤、红壤、土、黑土和水稻土K的选择吸附特性研究结果表明 :KG 和KV 系数随着K Ca平衡体系中吸附相中钾与钙比率的变化而改变 ,其曲线特征说明土壤胶体存在着对K亲和力不同的吸附点位。在低钾饱和度时 ,土壤对K的高选择吸附主要归于粘粒矿物楔形区域电荷点位吸附 ,五种土壤楔形区域相对吸附点位顺序为 :黑土 >土 >水稻土 >红壤 >砖红壤 ,该相对吸附点位顺序与土壤含有风化云母和蛭石有关。在高钾饱和度时 ,五种土壤对K的吸附主要发生于粘粒矿物的晶层表面电荷点位 ,粘粒矿物的晶层表面电荷起源也许起决定作用 ,此时KG 选择系数的大小顺序为 :砖红壤 >红壤 >黑土 >土 >水稻土  相似文献   

4.
采用悬液Wien效应法研究了Na+、K+、NH4+、Ca2+、Zn2+和Cd2+阳离子与红壤黏粒间的相互作用及能量关系。结果表明,在试验条件下,红壤黏粒与阳离子Na+、K+、NH4+、Ca2+、Zn2+和Cd2+的平均结合自由能分别为:4.50、7.35、7.15、9.12、9.84和9.63 kJ mol-1。含Ca2+悬液的电导率随场强增加而递增最快,含Na+和NH4+悬液的电导率随场强增加而增加最慢,而含K+、Zn2+和Cd2+的悬液电导率的增速相近、介于其间。红壤悬液中不同阳离子的解离速率顺序为Ca2+>K+>Zn2+=Cd2+>Na+=NH4+。在低场强(15~80 kV cm-1)下,不同阳离子的平均吸附自由能ΔGad没有差异。在场强100 kV cm-1以上,二价阳离子的ΔGad明显大于单价阳离子,不同阳离子间ΔGad的大小顺序为NH4+≤Na+>K+=NH4+>Ca2+>Zn2+=Cd2+,Na+离子平均解离度的递增速率(场强增加1kV cm-1所引起的解离度增量)最大,为0.000 427 cm kV-1,其次是Ca2+离子,为0.000 221 cm kV-1,其余阳离子为0.000 12~0.000 14 cm kV-1。  相似文献   

5.
通过模拟林冠受损实验,对23次降水过程的林外降雨、穿透雨和树干流水化学进行测定,分析林冠受损对南岭常绿阔叶林生长季节的树干流和穿透雨水质及其冠层淋溶规律的影响。结果表明:(1)在研究区域的生长季节,雨水pH平均为6.521,含盐量、NO-3、NH+4、Cl-、Na+、Ca2+、Mg2+、K+、SO2-4浓度分别为22.000,1.045,0.684,0.456,1.256,7.908,0.113,0.419,2.329mg/L。(2)林冠受损之后,与对照林地相比,穿透雨中绝大多数的离子浓度发生了明显的变化,冠层化学淋溶作用显著减弱;受损林分穿透雨的含盐量、NO-3、NH+4、Cl-、Na+、Ca2+、Mg2+、K+、SO2-4的含量分别是未受损穿透雨各离子含量的0.947,2.587,1.022,1.388,0.501,0.925,0.796,0.528,0.754倍;受损林分穿透雨中各离子浓度增幅按大小排列为K+NO-3Cl-SO2-4Ca2+Na+Mg2+NH+4,而对照林地为K+SO2-4Na+Ca2+Mg2+Cl-NH+4NO-3。表明林冠受损之后,穿透雨中除K+之外,其余离子增幅顺序均有所变化。(3)林冠受损后,树干流中各阳离子浓度与未受损林分相比呈现明显增加趋势,说明林冠受损增强了雨水对树干的冲刷和阳离子淋洗能力,有利于林木对此类养分的吸收;与未受损林分相比,受损林分树干流中各离子浓度的增幅按大小排列为:K+Ca2+Na+SO2-4Mg2+NH+4NO-3Cl-。(4)从养分的冠层淋溶系数来看,无论是受损林分还是未受损林分,K+、Mg2+是最易淋溶的离子,而NO-3在未受损林分中出现负淋溶,这进一步证实了前人的研究结论;而林冠受损对及其冠层淋溶的长期影响尚需进一步监测。  相似文献   

6.
日光温室栽培土壤供钾状况及K-Ca吸附交换特性研究   总被引:2,自引:0,他引:2  
研究了陕西关中地区不同日光温室栽培土壤钾素供应状况及土壤K+、Ca2+离子吸附交换特性。结果表明,日光温室栽培的土壤钾素Q/I曲线及参数与大田栽培土壤明显不同。温室栽培(土娄)土和潮土钾素活度比(AR0)较相应大田土壤分别提高了14.8和6.9倍,土壤对外源钾的缓冲能力下降;从K+和Ca2++Mg2+的交换自由能看,温室栽培土壤存在钾素过多,K+和Ca2++Mg2+离子比例失调问题。不同K+/Ca2+摩尔比下,随着K+、Ca2+总浓度的提高,大田及温室栽培土壤对K+、Ca2+的吸附量均呈线性增加趋势,温室栽培土壤K+吸附率及两种土壤Ca2+吸附率均呈对数增加趋势。K+/Ca2+为2:1时,K+吸附量远大于K+/Ca2+为1:2.5时的吸附量;K+/Ca2+为2:1时,温室栽培土壤Ca2+均呈解吸状态。土壤对K+、Ca2+离子吸附的相对选择性随K+/Ca2+比例及溶液离子总浓度的变化而变化。K+/Ca2+为2:1时,土壤对K+的相对吸附选择性大,K+/Ca2+为1:2.5时,温室栽培土壤对Ca2+的相对吸附选择性显著增加。加入土壤K+的比例和数量过高,非但未提高K+离子的活度,还造成胶体上Ca2+离子的大量解吸,由此可能带来的日光温室土壤胶体稳定性降低及养分不平衡的问题值得关注。  相似文献   

7.
刘艳丽 《土壤》2008,40(4):575-579
以长期施 K 肥的水稻土为研究对象,以不施肥处理为对照,应用Langmuir 等温吸附方程对比研究两种处理水稻土对铵离子(NH4 )的吸附特征及影响因素.结果表明:本研究中水稻土对NH4 的吸附属于受浓度梯度扩散控制的物理吸附.土壤对NH4 的吸附量随吸附溶液NH4 浓度的增大而增加,但增加的幅度随吸附溶液NH4 浓度的增加而减小.不同大小团聚体对NH4 的吸附能力存在差异.土壤对NH4 的吸附特征通过拟合Langmuir方程发现,和不施肥处理相比,长期施用K肥提高了土壤对NH4 的最大吸附量,表明K肥的施用提高了土壤对NH4 的吸附潜力,可能的原因在于长期施K肥土壤伊利石含量和pH值的增加,固定态NH4 含量的降低.  相似文献   

8.
选择富含有机质的黄棕壤型水稻土,提取小于2μm的黏粒,将其中1/2黏粒去除有机质,分别制成为不同阳离子(Na+、K+、NH4+、Ca2+、Cd2+和La3+)饱和的土样,用Wien效应法研究土壤有机质对阳离子与土壤黏粒相互作用的影响。研究结果表明:原土悬液的起始电导率大于去有机质土者;除含Na+悬液外,去有机质土悬液的电导率随场强而增加的速率在50~100 kV cm-1以上,明显大于原土。有机质会使Na+以外的阳离子的平均结合自由能增大,Ca2+的结合能增加最大(增量为0.57 kJ mol-1),而Cd2+的结合能增加最小(增量为0.03 kJ mol-1)。对于供试土壤悬液,不同阳离子的结合能顺序均为Na+相似文献   

9.
天然沸石负载氧化镁对氮磷吸附解吸特性的影响   总被引:2,自引:0,他引:2  
采用平衡震荡法研究天然沸石负载氧化镁对溶液NH4+、H2PO4-的等温吸附-解吸行为,并运用Langmuir方程对其进行拟合分析,通过自由能的变化分析了吸附过程和吸附结合能.结果表明,天然沸石负载氧化镁与单一天然沸石相比,NH4+的最大吸附量降低了4.49 mg·g-1,H2PO4-提高了36倍;两种吸附材料对NH4+吸附机制主要以表面吸附为主,天然沸石负载氧化镁对H2PO4-的吸附机制主要以化学吸附(沉淀)为主,天然沸石主要以表面吸附和专性吸附为主;两种吸附材料对NH4+、H2PO4-的吸附均能自发进行,负载氧化镁后降低了天然沸石对NH4+的吸附能力,而显著提高了对H2PO4-的吸附能力.  相似文献   

10.
几种铵盐对土壤吸附Cd2+和Zn2+的影响   总被引:1,自引:0,他引:1  
采用平衡吸附法,研究了不同铵盐对潮褐土、红壤吸附Cd2+、Zn2+的影响。结果表明,土壤对Cd2+、Zn2+的吸附量随平衡溶液中Cd2+、Zn2+浓度的增加而增加;潮褐土和红壤对Cd2+、Zn2+的最大吸附量为:Zn2+ Cd2+,且潮褐土红壤;随NH4HCO3浓度的增加,两种土壤对Cd2+、Zn2+的吸附率显著提高,NH4Cl、NH4NO3和(NH4)2SO4抑制红壤对Cd2+、Zn2+的吸附及潮褐土对Cd2+的吸附,对潮褐土Zn2+的吸附率影响不显著;铵盐浓度相同时,红壤对Cd2+吸附率为:NH4HCO3NH4ClNH4NO3≈ (NH4)2SO4,红壤对Zn2+吸附率为:NH4HCO3NH4Cl NH4NO3(NH4)2SO4。  相似文献   

11.
Abstract

Fixation of the ammonium ion (NH4 +) by clay minerals is an alternate way of building the nitrogen (N) pool in soil to optimize N crop recovery and minimize losses. Clay minerals (illite, montmorillonite, and vermiculite) and an illitic Portnoeuf soil were used to compare NH4 + fixation abilities. Total N determination and X‐ray diffraction analysis were performed on each of the minerals and the Portnoeuf soil controls, and NH4 + saturated batches were subsequently desorbed by potassium chloride (KCl) after 4096 hours. Total N was determined for each employing either Kjeldahl digestion only, or pretreating with hydrofluoric‐hydrochloric acid (HF‐HCl) before the Kjeldahl digestion. The total N for the soil was 38% more after pretreatment with HF‐HCl. The total N determined after pretreatment with HF‐HCl for the NH4 + saturated and subsequently KCl desorbed minerals was found to be highest in vermiculite. The cation exchange acapacity (CEC) of each of the minerals was determined, and highest CEC was found in montmorillonite [83.07 cmol(+)/kg]. X‐ray diffraction analysis revealed collapse of the vermiculitic clay lattice from an initial d‐spacing of 13.1 angstrom to 10.4 angstrom after desorprion by KCl. This suggested the existence of sequestered NH4 + between the 2: 1 vermiculitic clay interlayer lattice.  相似文献   

12.
To understand the process and the kinetics of potassium release from the clay interlayer in natural and arable soils in more detail, I tested the hypotheses that large, monovalent cations, especially NH4+ and Cs+, can reduce the release rates of K+ which is exchanged by Ca2+, even if these monovalent cations are present in concentrations of only a few μm . Percolation experiments were carried out with different illitic soil materials, some containing vermiculite, with 5 m m CaCl2 at pH 5.8 and 20°C, in some cases for over 7000 h. NH4+ and Cs+ both caused a large decrease in the rate at which K+ was released, Cs+ especially. Suppression began at 5 μm NH4+ Blocking by 20 μm NH4+ was easily reversible: the release rates readily increased when NH4+ was omitted from the exchange solution. Blocking by 2 μm Cs+ was equal to approximately 90% of that at 10 μm Cs+. Larger concentrations of Cs+ than 10 μm did not further reduce release but rather caused a slight increase, probably because of enhanced exchange of K+ by Cs+ without exfoliation of the interlayer space. Blocking by Cs+ was not reversible within > 7000 h of percolation by 5 m m CaCl2. The blocking effect was reproduced in several different soil materials using 10 μm Cs+ but was most pronounced in vermiculite-rich samples. As NH4+ is present in most arable soils, at least in concentrations of a few μm , I conclude that the observed effects are of significance in the K dynamics processes in soils, for example near the roots of plants. Further, very small concentrations of Cs+ in exchange solutions containing a large background of Ca2+ appear to be useful for suppressing K+ release from the interlayer in laboratory studies, probably without significantly altering the exchange at outer mineral surfaces.  相似文献   

13.
The fraction of nonexchangeable ammonium (NH4+) can play an important role in N cycling of soils as a sink (fixation) or a source (release) of NH4+. Recently fixed nonexchangeable NH4+ especially seems to be a significant source for N release. The aim of our study was to determine the effect of residence time on the kinetics of nonexchangeable NH4+ release from illite and vermiculite. Calcium-saturated illite and vermiculite, containing NH4+ that was “fixed” for one and 60 d, were extracted with a H-resin for 0.25 to 384 h. Both clay minerals “fixed” significantly more NH4+ in 60 d than in 1 d, but vermiculite “fixed” more NH4+ than illite. The kinetics of nonexchangeable NH4+ release from illite and vermiculite were well described by the Elovich equation and by a heterogeneous diffusion model. In vermiculite the percentage of nonexchangeable NH4+ release decreased from 84% to 78% when the time of fixation increased from 1 to 60 d. In illite time of residence has not influenced the complete release of newly fixed NH4+.  相似文献   

14.
Abstract

The effect of sesquioxides on the mechanisms of chemical reactions that govern the transformation between exchangeable potassium (Kex) and non‐exchangeable K (Knex) was studied on acid tropical soils from Colombia: Caribia with predominantly 2∶1 clay minerals and High Terrace with predominantly 1∶1 clay minerals and sesquioxides. Illite and vermiculite are the main clay minerals in Caribia followed by kaolinite, gibbsite, and plagioclase, and kaolinite is the major clay mineral in High Terrace followed by hydroxyl‐Al interlayered vermiculite, quartz, and pyrophyllite. The soils have 1.8 and 0.5% of K2O, respectively. They were used either untreated or prepared by adding AlCl3 and NaOH, which produced aluminum hydroxide. The soils were percolated continuously with 10 mM NH4OAc at pH 7.0 and 10 mM CaCl2 at pH 5.8 for 120 h at 6 mL h?1 to examine the release of Kex and Knex. In the untreated soils, NH4 + and Ca2+ released the same amounts of Kex from Caribia, whereas NH4 + released about twice as much Kex as Ca2+ from High Terrace. This study proposes that the small ionic size of NH4 + (0.54 nm) enables it to enter more easily into the K sites at the broken edges of the kaolinite where Ca2+ (0.96 nm) cannot have access. As expected for a soil dominated by 2∶1 clay minerals, Ca2+ caused Knex to be released from Caribia with no release by NH4 +. No Knex was released by either ion from High Terrace. After treatment with aluminum hydroxide, K release from the exchangeable fraction was reduced in Caribia due to the blocking of the exchange sites but release of Knex was not affected. The treatment increased the amount of Kex released from the High Terrace soil and the release of Knex remained negligible although with Ca2+ the distinction between Kex and Knex was unclear. The increase in Kex was attributed to the initially acidic conditions produced by adding AlCl3 which may have dissolved interlayered aluminum hydroxide from the vermiculite present, thus exposing trapped K as exchangeable K. The subsequent precipitation of aluminum hydroxide when NaOH was added did not interfere with the release of this K, and so was probably formed mostly on the surface of the dominant kaolinite. Measurement of availability of K by standard methods using NH4 salts could result in overestimates in High Terrace and this may be a more general shortcoming of the methods in kaolinitic soils.  相似文献   

15.
Potassium (K+) and nitrogen [N, as the form of ammonium (NH4+)] are major nutrients for plant growth. Although there have been a number of studies on the kinetic fixation of potassium and ammonium ions in soils and clays, however, investigations on the kinetics of competitive fixation of these ions have been few, if any, especially by taking into account silt component of the soils. In this study, the kinetics of potassium and ammonium fixation were examined in the silt components of several soil samples. The results revealed that considerable amounts of K+ and in lesser amounts, NH4+ ions were fixed by silt components of the soils. Potassium fixation was strongly preferred over ammonium. To describe the fixation kinetics, seven mathematically models were evaluated. A comparison of the models showed that pseudo-second-order equation properly described the fixation of these ions by the silt components.  相似文献   

16.
Experiments were conducted with two typical paddy soils from China and a vermiculite to study the influence of iron oxides on the fixation and release of ammonium. Removing iron oxides, especially amorphous iron oxides, from the soils favoured the release of non-exchangeable NH4-N and stimulated the fixation of NH4-N in the presence of added (NH4)2SO4. Addition of artificial goethite and hematite to the original soils or to the soils free of iron oxides reduced the fixation of NH4+-ions. This effect was also observed with vermiculite. We conclude that the coating of clay minerals with iron oxides has an impact on the diffusion of NH4+-ions into and out of the interlayers of the clay minerals. The reduction and dissolution of iron oxides induced by low redox potential (Eh) after flooding of paddy soils is assumed to be an important mechanism controlling NH4+-fixation in paddy fields.  相似文献   

17.
The retention of NH4+ and Ca2+ on soil and weathered pumice samples containing constant and/or variable charge components was measured in different NH4CI-CaCl2 solutions. The NH4+/Ca2+ selectivity of each sample was evaluated using a quotient of the partition of NH4+ on the exchange sites and in the solution relative to that of Ca2+. It increased with decreasing pH and increasing NH4Cl-CaCl2 concentration for a given equivalent fraction of NH4+ in the solution. These effects were quantitatively explained in terms of the changes of NH4+ and Ca2+ concentrations in the solution and in the diffuse double-layer of the ion-exchange material as predicted by the law of mass action and the electric double layer theory. The NH4+/Ca2+ selectivity of different exchange materials showed a similar variation among their exchange sites and increased in the order humus, allophane and imogolite (Si/Al ratio 0.5) < allophane (Si/Al ratio 1.0), montmorillonite < vermiculite, illite < halloysite. The origin of negative charge, the steric features around the exchange sites and clay-humus interaction are suggested as being important in determining the NH4+/Ca2+ selectivity.  相似文献   

18.
The objective of this study was to verify in which way the ionic composition of the sediment and that of the overlying water column may have an effect on radiocaesium fixation, through possible structural modifications of the frayed edge sites (FES) pools of the sediments. Two experimental protocols have been considered: i) a condition in which sediments were homoionically saturated with either potassium, ammonium, calcium, magnesium or sodium ions. and ii) a mixed potassium-calcium scenario in the liquid phase. Nine freshwater sediments from four different locations were used in this study. For homoionic potassium and ammonium saturated sediments a nearly quantitative radiocaesium desorption (90–100%) was observed, whereas for calcium and magnesium the desorption yields scene about 20%. It appears that the action of strongly hydrated ions (Na+, Mg2+, Ca2+) leads to a pronounced enhancement of radiocaesium fixation in the solid phase, whereas poorly hydrated ions (K+, NH4 +) have the opposite effect and promote sorption reversibility. Another issue considered in this study concerns the effect of temperature and sediment drying on the radiocaesium fixation. Drying die sediments at 110°C leads to a significant increase in radiocaesium fixation levels, while drying the sediments at room temperature (25°C) has a very limited effect on radiocaesium fixation and appears to put a brake on the aging effects.  相似文献   

19.
The exchange reaction between NH4+ and Mn3+ was studied on a montmorillonite clay at several temperatures and different ionic strengths. Manganese was preferred to ammonium; this preference increased with the temperature and dilution of the dialysate. Comparison with published data concerning exchanges involving NH4+ and the alkaline-earths showed that in the sequence of increasing selectivity: Mg2+ < Ca2+ < Sr2+ < Ba2+, Mn2+ lies between Mg2+ and Ca2+. The enthalpy change was measured calorimetrically and calculated by application of the van't Hoff law to the temperature coefficient of the equilibrium constants. Both values were in good agreement. The excellent recoveries of Mn2+ at the end of the exchange reaction and the constancy of the cation exchange capacity over the whole range of surface composition ruled out the possibility of significant adsorption in the MnOH+ form. The behaviour of manganese was very similar to that of the alkaline-earth cations.  相似文献   

20.
The effectiveness of lime-ammonium-nitrate (LAN) as a nitrogen (N) fertilizer in weathered soils depends on the respective selectivity for ammonium (NH4) and calcium (Ca) by the soils. The study assessed Ca2+/NH4+ exchange selectivity of two benchmark soils from Botswana and examined the soil fertility management implications. Surface horizons (0–20 cm) of Pellustert and Haplustalf were equilibrated with 50 ml stock solution containing variable concentrations of Ca2+ and NH4+. The Ca2+/NH4+ exchange data were fitted into the Vanselow (KV), Gaines and Thomas (KGT), Davies (KD), and the regular solution (KRS) equations. The selectivity coefficients for the Ca2+/NH4+ exchange reactions varied widely with the soil exchanger composition except for the relatively stable KRS. The selectivity coefficients indicated strong preference for NH4+ to Ca2+. The thermodynamic exchange constant, Kex, was 5.75 ± 1.24 in the Pellustert, indicating preferential adsorption of NH4+, but not in the Haplustalf with Kex = 0.92 ± 0.27. The free energy for Ca2+/NH4+ exchange (ΔG°ex) was negative (?4.26 ± 0.59 kJ mol?1) in the Pellustert but slightly positive in the Haplustalf (0.34 ± 0.87 kJ mol?1). In conclusion, the soil-NH4 complex was more stable than soil-Ca complex in the Pellustert, indicating LAN as a N fertilizer would have greater potential effectiveness in the Pellustert than in the Haplustalf.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号