首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Gut microbiota is generally recognized to play a crucial role in maintaining host health and metabolism. The correlation among gut microbiota, glycolipid metabolism, and metabolic diseases has been well reviewed in humans. However, the interplay between gut microbiota and host metabolism in swine remains incompletely understood. Given the limitation in conducting human experiments and the high similarity between swine and humans in terms of anatomy, physiology, polyphagy, habits, and metabolism and in terms of the composition of gut microbiota, there is a pressing need to summarize the knowledge gained regarding swine gut microbiota, its interplay with host metabolism, and the underlying mechanisms. This review aimed to outline the bidirectional regulation between gut microbiota and nutrient metabolism in swine and to emphasize the action mechanisms underlying the complex microbiome–host crosstalk via the gut microbiota–gut–brain axis. Moreover, it highlights the new advances in knowledge of the diurnal rhythmicity of gut microbiota. A better understanding of these aspects can not only shed light on healthy and efficient pork production but also promote our knowledge on the associations between gut microbiota and the microbiome–host crosstalk mechanism. More importantly, knowledge on microbiota, host health and metabolism facilitates the development of a precise intervention therapy targeting the gut microbiota.  相似文献   

2.
Colonization and development of the gut microbiome is a crucial consideration for optimizing the health and performance of livestock animals. This is mainly attributed to the fact that dietary and management practices greatly influence the gut microbiota, subsequently leading to changes in nutrient utilization and immune response. A favorable microbiome can be implanted through dietary or management interventions of livestock animals, especially during early life. In this review, we explore all the possible factors (for example gestation, colostrum, and milk feeding, drinking water, starter feed, inoculation from healthy animals, prebiotics/probiotics, weaning time, essential oil and transgenesis), which can influence rumen microbiome colonization and development. We discuss the advantages and disadvantages of potential strategies used to manipulate gut development and microbial colonization to improve the production and health of newborn calves at an early age when they are most susceptible to enteric disease. Moreover, we provide insights into possible interventions and their potential effects on rumen development and microbiota establishment. Prospects of latest techniques like transgenesis and host genetics have also been discussed regarding their potential role in modulation of rumen microbiome and subsequent effects on gut development and performance in neonatal ruminants.  相似文献   

3.
Recent discoveries have underscored the cross-talk between intestinal microbes and their hosts. Notably, intestinal microbiota impacts the development, physiological function and social behavior of hosts. This influence usually revolves around the microbiota-gut-brain axis (MGBA). In this review, we firstly outline the impacts of the host on colonization of intestinal microorganisms, and then highlight the influence of intestinal microbiota on hosts focusing on short-chain fatty acid (SCFA) and tryptophan metabolite-mediated MGBA. We also discuss the intervention of intestinal microbial metabolism by dietary supplements, which may provide new strategies for improving the welfare and production of pigs. Overall, we summarize a state-of-the-art theory that gut microbiome affects brain functions via metabolites from dietary macronutrients.  相似文献   

4.
Metals such as iron, manganese, copper, and zinc are recognized as essential trace elements. These trace metals play critical roles in development, growth, and metabolism, participating in various metabolic processes by acting as cofactors of enzymes or providing structural support to proteins. Deficiency or toxicity of these metals can impact human and animal health, giving rise to a number of metabolic and neurological disorders. Proper breakdown, absorption, and elimination of these trace metals is a tightly regulated process that requires crosstalk between the host and these micronutrients. The gut is a complex system that serves as the interface between these components, but other factors that contribute to this delicate interaction are not well understood. The gut is home to trillions of microorganisms and microbial genes (the gut microbiome) that can regulate the metabolism and transport of micronutrients and contribute to the bioavailability of trace metals through their assimilation from food sources or by competing with the host. Furthermore, deficiency or toxicity of these metals can modulate the gut microenvironment, including microbiota, nutrient availability, stress, and immunity. Thus, understanding the role of the gut microbiota in the metabolism of manganese, iron, copper, and zinc, as well as in heavy metal deficiencies and toxicities, and vice versa, may provide insight into developing improved or alternative therapeutic strategies to address emerging health concerns. This review describes the current understanding of how the gut microbiome and trace metals interact and affect host health, particularly in pigs.  相似文献   

5.
Historically, intermittent fasting (IF) has been considered as an effective strategy for controlling the weight of athletes before competition. Along with excellent insight into its application in various spaces by numerous studies, increasing IF-mediated positive effects have been reported, including anti-aging, neuroprotection, especially obesity control. Recently, the gut microbiota has been considered as an essential manipulator for host energy metabolism and its structure has been reported to be sensitive to dietary structure and habits, indicating that there is a potential and strong association between IF and gut microbiota. In this paper, we focus on the crosstalk between these symbionts and energy metabolism during IF which hold the promise to optimize host energy metabolism at various physical positions, including adipose tissue, liver and intestines, and further improve milieu internal homeostasis. Moreover, this paper also discusses the positive function of a potential recommendatory strain (Akkermansia muciniphila) based on the observational data for IF-mediated alternated pattern of gut microbiota and a hopefully regulatory pathway (circadian rhythm) for gut microbiota in IF-involved improvement on host energy metabolism. Finally, this review addresses the limitation and perspective originating from these studies, such as the association with tissue-specific bio-clock and single strain research, which may continuously reveal novel viewpoints and mechanisms to understand the energy metabolism and develop new strategies for treating obesity, diabetes, and metabolic disorders.  相似文献   

6.
《动物营养(英文)》2021,7(4):1283-1295
Historically, intermittent fasting (IF) has been considered as an effective strategy for controlling the weight of athletes before competition. Along with excellent insight into its application in various spaces by numerous studies, increasing IF-mediated positive effects have been reported, including anti-aging, neuroprotection, especially obesity control. Recently, the gut microbiota has been considered as an essential manipulator for host energy metabolism and its structure has been reported to be sensitive to dietary structure and habits, indicating that there is a potential and strong association between IF and gut microbiota. In this paper, we focus on the crosstalk between these symbionts and energy metabolism during IF which hold the promise to optimize host energy metabolism at various physical positions, including adipose tissue, liver and intestines, and further improve milieu internal homeostasis. Moreover, this paper also discusses the positive function of a potential recommendatory strain (Akkermansia muciniphila) based on the observational data for IF-mediated alternated pattern of gut microbiota and a hopefully regulatory pathway (circadian rhythm) for gut microbiota in IF-involved improvement on host energy metabolism. Finally, this review addresses the limitation and perspective originating from these studies, such as the association with tissue-specific bio-clock and single strain research, which may continuously reveal novel viewpoints and mechanisms to understand the energy metabolism and develop new strategies for treating obesity, diabetes, and metabolic disorders.  相似文献   

7.
The gut microbiota is comprised of a diverse array of microorganisms that interact with immune system and exert crucial roles for the health. Changes in the gut microbiota composition and functionality are associated with multiple diseases. As such, mobilizing a rapid and appropriate antimicrobial response depending on the nature of each stimulus is crucial for maintaining the balance between homeostasis and inflammation in the gut. Major players in this scenario are antimicrobial peptides (AMP), which belong to an ancient defense system found in all organisms and participate in a preservative co-evolution with a complex microbiome. Particularly increasing interactions between AMP and microbiota have been found in the gut. Here, we focus on the mechanisms by which AMP help to maintain a balanced microbiota and advancing our understanding of the circumstances of such balanced interactions between gut microbiota and host AMP. This review aims to provide a comprehensive overview on the interplay of diverse antimicrobial responses with enteric pathogens and the gut microbiota, which should have therapeutic implications for different intestinal disorders.  相似文献   

8.
哺乳动物的肠道内栖息着庞大复杂的微生物群体,其微生物群体与宿主的消化吸收、物质的营养代谢和免疫功能密切相关,是影响机体健康的重要因素之一。随着分子生物学技术在肠道微生物领域的应用,特别是新一代测序技术的快速发展,使得人们对复杂的肠道微生物的研究更加深入。基于宏基因组学技术不仅能够研究肠道微生物组的多样性、揭示消化道微生物对宿主生理代谢的影响,还能进一步深入挖掘新的功能基因,并揭示宿主基因与微生物组间的互作关系和共同进化。作者综述了宏基因组学技术在哺乳动物肠道微生物中的主要应用和存在的不足,并展望了其在肠道微生物研究中的广阔应用前景,从而加深人们对肠道微生物影响宿主肠道健康作用的认识。  相似文献   

9.
Background: Understanding the composition of the microbial community and its functional capacity during weaning is important for pig production as bacteria play important roles in the pig's health and growth performance. However,limited information is available regarding the composition and function of the gut microbiome of piglets in early-life.Therefore, we performed 16 S rRNA gene and whole metagenome shotgun sequencing of DNA from fecal samples from healthy piglets during weaning to measure microbiome shifts, and to identify the potential contribution of the early-life microbiota in shaping piglet health with a focus on microbial stress responses, carbohydrate and amino acid metabolism.Results: The analysis of 16 S rR NA genes and whole metagenome shotgun sequencing revealed significant compositional and functional differences between the fecal microbiome in nursing and weaned piglets. The fecal microbiome of the nursing piglets showed higher relative abundance of bacteria in the genus Bacteroides with abundant gene families related to the utilization of lactose and galactose. Prevotel a and Lactobacil us were enriched in weaned piglets with an enrichment for the gene families associated with carbohydrate and amino acid metabolism. In addition, an analysis of the functional capacity of the fecal microbiome showed higher abundances of genes associated with heat shock and oxidative stress in the metagenome of weaned piglets compared to nursing piglets.Conclusions: Overal, our data show that microbial shifts and changes in functional capacities of the piglet fecal microbiome resulted in potential reductions in the effects of stress, including dietary changes that occur during weaning.These results provide us with new insights into the piglet gut microbiome that contributes to the growth of the animal.  相似文献   

10.
In biological responses, fatty acids (FA) are absorbed and metabolized in the form of substrates for energy production. The molecular structures (number of double bonds and chain length) and composition of dietary FA impact digestion, absorption and metabolism, and the biological roles of FA. Recently, increasing evidence indicates that FA are essentially utilized as an energy source and are signaling molecules that exert physiological activity of gut microbiota and immune responses. In addition, FA could serve as natural ligands for orphan G protein-coupled receptors (GPCR), also called free fatty acid receptors (FFAR), which intertwine metabolic and immune systems via multiple mechanisms. The present review explores the recent findings on FA absorption and its impact on gut health, particularly addressing the mechanism by which dietary FA potentially influences intestinal microbiota and epithelial functions. Also, this work attempts to uncover research ideas for devising future strategies for manipulating the composition of dietary FA to regulate gut health and support a normal immune system for metabolic and immune disorders.  相似文献   

11.
The gut microbiome has long been known to play fundamentally important roles in the animal health and the well-being of its host. As such, the establishment and maintenance of a beneficial gut microbiota early in life is crucial in pigs, since early gut colonizers are pivotal in the establishment of permanent microbial community structures affecting the health and growth performance of pigs later in life. Emphasizing this importance of early gut colonizers, it is critical to understand the factors impacting the establishment of the piglet gut microbiome at weaning. Factors include, among others, diet, in-feed antibiotics, probiotics and prebiotic administration. The impact of these factors on establishment of the gut microbiome of piglets at weaning includes effects on piglet gut microbial diversity, structure, and succession. In this review, we thoroughly reviewed the most recent findings on the piglet gut microbiome shifts as influenced by weaning, and how these microbiome changes brought about by various factors that have been shown to affect the development of microbiota in piglets. This review will provide a general overview of recent studies that can help to facilitate the design of new strategies to modulate the gut microbiome in order to enhance gastrointestinal health, growth performance and well-being of piglets.  相似文献   

12.
油脂作为机体三大主要营养素之一,除了为机体供给和储存能量外,也参与机体代谢调节。饮食油脂及其代谢物与肠道微生物群的关系对宿主的生理和代谢具有重要意义。脂肪酸的组成和含量会影响肠道内微生物的平衡,肠道微生物也会影响后肠短链脂肪酸的含量,从而影响机体能量供应和健康状态。本文综述了机体中肠道微生物与脂肪酸的相互作用及其机制,以期为饮食中脂肪酸种类的选择以及配比提供理论依据。  相似文献   

13.
The last few decades have been marked by a rapid genetic improvement in chicken growth rates. The modern-day chicken is more efficient in converting feed into muscle mass than their predecessors. This enhanced efficiency emanates from better nutrient digestion, absorption, and metabolism. The gut has therefore become a research focus especially after the ban on the use of antibiotics as growth promoters (AGP) in poultry. In pursuance of better gut health in the post-AGP era, many different strategies are being continuously sought and tested. The gut is inhabited by more than 900 bacterial species along with fungi and archaea, and they play an important role to maintain a conducive milieu for the host. A beneficial shift in the microbial ecosystem of the chicken can be promoted by many dietary and non-dietary interventions, however, diet is ranked as one of the most important and potent regulators of gut microbiota composition. Therefore, the constituents of the diet warrant special attention in the modulation of the gut ecosystem. Among dietary constituents, fiber possesses a significant ability to modulate the microbiota. In this review, we will highlight the importance of fiber in poultry nutrition and will also discuss the effects of fiber on gut microbiota and its resultant ramifications on the liver and brain.  相似文献   

14.
The existence of genetic control over the abundance of particular taxa and the link of these to energy balance and growth has been documented in model organisms and humans as well as several livestock species. Preliminary evidence of the same mechanisms is currently under investigation in pigs. Future research should expand these results and elicit the extent of genetic control of the gut microbiome population in swine and its relationship with growth efficiency. The quest for a more efficient pig at the interface between the host and its metagenome rests on the central hypothesis that the gut microbiome is an essential component of the variability of growth in all living organisms. Swine do not escape this general rule, and the identification of the significance of the interaction between host and its gut microbiota in the growth process could be a game-changer in the achievement of sustainable and efficient lean meat production. Standard sampling protocols, sequencing techniques, bioinformatic pipelines and methods of analysis will be paramount for the portability of results across experiments and populations. Likewise, characterizing and accounting for temporal and spatial variability will be a necessary step if microbiome is to be utilized routinely as an aid to selection.  相似文献   

15.
Background: Aquaculture must continue to reduce dependence on fishmeal(FM) and fishoil in feeds to ensure sustainable sector growth. Therefore, the use of novel aquaculture feed ingredients is growing. In this regard,insects can represent a new world of sustainable and protein-rich ingredients for farmed fish feeds. Accordingly, we investigated the effects of full replacement of FM with Tenebrio molitor(TM) larvae meal in the diet of rainbow trout(Oncorhynchus mykiss) on fish gut and skin microbiota.Methods: A feeding trial was conducted with 126 trout of about 80 g mean initial weight that were fed for 22 weeks with two isonitrogenous, isolipidic, and isoenergetic extruded experimental diets. Partially defatted TM meal was included in one of the diets to replace 100%(TM 100) of FM, whereas the other diet(TM 0) was without TM.To analyse the microbial communities, the Illumina MiSeq platform for sequencing of 16 S r RNA gene and Qiime pipeline were used to identify bacteria in the gut and skin mucosa, and in the diets.Results: The data showed no major effects of full FM substitution with TM meal on bacterial species richness and diversity in both, gut mucosa-and skin mucus-associated microbiome. Skin microbiome was dominated by phylum Proteobacteria and especially by Gammaproteobacteria class that constituted approximately half of the bacterial taxa found. The two dietary fish groups did not display distinctive features, except for a decrease in the relative abundance of Deefgea genus(family Neisseriaceae) in trout fed with insect meal. The metagenomic analysis of the gut mucosa indicated that Tenericutes was the most abundant phylum, regardless of the diet. Specifically, within this phylum, the Mollicutes, mainly represented by Mycoplasmataceae family, were the dominant class. However,we observed only a weak dietary modulation of intestinal bacterial communities. The only changes due to full FM replacement with TM meal were a decreased number of Proteobacteria and a reduced number of taxa assigned to Ruminococcaceae and Neisseriaceae families.Conclusions: The data demonstrated that TM larvae meal is a valid alternative animal protein to replace FM in the aquafeeds. Only slight gut and skin microbiota changes occurred in rainbow trout after total FM replacement with insect meal. The mapping of the trout skin microbiota represents a novel contribution of the present study. Indeed,in contrast to the increasing knowledge on gut microbiota, the skin microbiota of major farmed fish species remains largely unmapped but it deserves thorough consideration.  相似文献   

16.
Gastrointestinal microbiota play a crucial role in nutrient digestion, maintaining animal health and welfare. Various factors may affect microbial balance often leading to disturbances that may result in debilitating conditions such as colic and laminitis. The invention of next-generation sequencing technologies and bioinformatics has provided valuable information on the effects of factors influencing equine gut microbiota. Among those factors are nutrition and management (e.g., diet, supplements, exercise), medical substances (e.g., antimicrobials, anthelmintics, anesthetics), animal-related factors (breed and age), various pathological conditions (colitis, diarrhea, colic, laminitis, equine gastric ulcer syndrome), as well as stress-related factors (transportation and weaning). The aim of this review is to assimilate current knowledge on equine microbiome studies, focusing on the effect of factors influencing equine gastrointestinal microbiota. Decrease in microbial diversity and richness leading to decrease in stability; decrease in Lachnospiraceae and Ruminococcaceae family members, which contribute to gut homeostasis; increase in Lactobacillus and Streptococcus; decrease in lactic acid utilizing bacteria; decrease in butyrate-producing bacteria that have anti-inflammatory properties may all be considered as a negative change in equine gut microbiota. Shifts in Firmicutes and Bacteroidetes have often been observed in the literature in response to certain treatments or when describing healthy and unhealthy animals; however, these shifts are inconsistent. It is time to move forward and use the knowledge now acquired to start manipulating the microbiota of horses.  相似文献   

17.
Compared with lean humans, the gut microbiota is altered in the obese. Whether these changes are due to an obesogenic diet, and whether the microbiota contributes to adiposity is currently discussed. In the cat population, where obesity is also prevalent, gut microbiome changes associated with obesity have not been studied. Consequently, the aim of this study was to compare the gut microbiota of lean cats, with that of overweight and obese cats. Seventy‐seven rescue‐shelter cats housed for ≥3 consecutive days were included in the study. Faecal samples were obtained by rectal swab and, when available, by a paired litter box sample. Body condition was assessed using a 9‐point scoring system. DNA was extracted, and the 16S rRNA gene was amplified with a high‐throughput quantitative real‐time PCR chip. Overweight and obese cats had a significantly different gut microbiota compared to lean cats (p < 0.05), but this finding could not be linked to differences in specific bacterial groups. The rectal samples obtained higher DNA concentration than litter box samples (p < 0.0001). In conclusion, overweight and obese cats seem to have an altered gut microbiome as compared to lean cats.  相似文献   

18.
It has been well recognized that interactions between the gut microbiota and host-metabolism have a proven effect on health. The gut lumen is known for harboring different bacterial communities. Microbial by-products and structural components, which are derived through the gut microbiota, generate a signaling response to maintain homeostasis. Gut microbiota is not only involved in metabolic disorders, but also participates in the regulation of reproductive hormonal function. Bacterial phyla, which are localized in the gut, allow for the metabolization of steroid hormones through the stimulation of different enzymes. Reproductive hormones such as progesterone, estrogen and testosterone play a pivotal role in the successful completion of reproductive events. Disruption in this mechanism may lead to reproductive disorders. Environmental bacteria can affect the metabolism, and degrade steroid hormones and their relevant compounds. This behavior of the bacteria can safely be implemented to eliminate steroidal compounds from a polluted environment. In this review, we summarize the metabolism of steroid hormones on the regulation of gut microbiota and vice-versa, and also examined the significant influence this process has on various events of reproductive function. Altogether, the evidence suggests that steroid hormones and gut microbiota exert a central role in the modification of host bacterial action and impact the reproductive efficiency of animals and humans.  相似文献   

19.
In recent years, many studies have shown that the intestinal microflora has various effects that are linked to the critical physiological functions and pathological systems of the host. The intestinal microbial community is widely involved in the metabolism of food components such as protein, which is one of the essential nutrients in diets. Additionally, dietary protein/amino acids have been shown to have had a profound impact on profile and operation of gut microbiota. This review summarizes the current literature on the mutual interaction between intestinal microbiota and protein/amino acid metabolism for host mucosal immunity and health.  相似文献   

20.
Cancer is a substantial global health problem both in humans and animals with a consistent increase in mortality and incidence rate. The commensal microbiota has been involved in the regulation of several physiological and pathological processes, both within the gastrointestinal system and at distant tissue locations. Cancer is not an exception, and different aspects of the microbiome have been described to have anti- or pro-tumour effects. Using new techniques, for example high-throughput DNA sequencing, microbial populations of the human body have been largely described and, in the last years, studies more focused on companions' animals have emerged. In general, the recent investigations of faecal microbial phylogeny and functional capacity of the canine and feline gut have shown similarities with human gut. In this translational study we will review and summarize the relation between the microbiota and cancer, in humans and companion animals, and compare their resemblance in the type of neoplasms already studied in veterinary medicine: multicentric and intestinal lymphoma, colorectal tumours, nasal neoplasia and mast cell tumours. In the context of One Health, microbiota and microbiome integrative studies may contribute to the understanding of the tumourigenesis process, besides offering an opportunity to develop new diagnostics and therapeutic biomarkers both for veterinary and human oncology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号