首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A previous study indicated decreased DNA content of chromosome 4A in the wheat (Triticum aestivum L. cv. Tähti) compared to cvs. Chinese Spring and Rennan. Here we show that the lower 4A DNA content is associated with a specific haplotype in the distal part of 4AL. In 41 cultivars of bread wheat (T. aestivum L.), including cv. Tähti, a common haplotype was identified in the linkage disequilibrium region on the long arm of chromosome 4A (4AL). The haplotype (haplotype A) is characterized by 7 SSR and 5 EST marker alleles, including five zero-alleles. Haplotype A was found in 46 % of the Swedish/Finnish/Estonian spring wheat genotypes, while only one of the modern wheat accessions from Germany carried the same haplotype. Fluorescent cytometry analysis linked haplotype A to diminished DNA content of chromosome 4A. The haplotype was introduced into the Canadian and US breeding programs at the beginning of the twentieth century (cvs. Marquis, Thatcher, Ruby) from the common progenitor, the Polish landrace Fife, and it is still found in modern wheat germplasm in these countries. Zero-alleles characteristic for haplotype A were also detected in several accessions of European spelt (Triticum spelta L.), and in two accessions of tetraploid Triticum timopheevii Zhuk. The presence of haplotype A in European spelt indicates the considerable antiquity of the haplotype, as it must have been inherited from the hexaploid or tetraploid parent of spelt in at least one hybridization event.  相似文献   

2.
Durum wheat, Triticum durum Desf., is reportedly more sensitive to aluminum (Al) toxicity in acid soils than hexaploid wheat, Triticum aestivum L. em. Thell. Aluminum‐tolerant genotypes would permit more widespread use of this species where it is desired, but not grown, because of acid soil constraints. Durum wheat germplasm has not been adequately screened for acid soil (Al) tolerance. Fifteen lines of durum wheat were grown for 28 days in greenhouse pots of acid, Al‐toxic Tatum subsoil at pH 4.5, and non‐toxic soil at pH 6.0. Aluminum‐tolerant Atlas 66 and sensitive Scout 66 hexaploid wheats were also included as standards. Based on relative shoot and root dry weight (wt. at pH 4.5/wt. at pH 6.0 X 100), durum entries differed significantly in tolerance to the acid soil. Relative shoot dry weight alone was an acceptable indicator of acid soil tolerance. Relative dry weights ranged from 55.1 to 15.5% for shoots and from 107 to 15.8% for roots. Durum lines PI 195726 (Ethiopia) and PI 193922 (Brazil) were significantly more tolerant than all other entries, even the Al‐tolerant, hexaploid Atlas 66 standard. Hence, these two lines have potential for direct use on acid soils or as breeding materials for use in developing greater Al tolerance in durum wheat. Unexpectedly, the range of acid soil tolerance available in durum wheat appears comparable to that in the hexaploid species. Hence, additional screening of durum wheat germplasm for acid soil (Al) tolerance appears warranted. Durum lines showing least tolerance to the acid soil included PI 322716 (Mexico), PI 264991 (Greece), PI 478306 (Washington State, USA), and PI 345040 (Yugoslavia). The Al‐sensitive Scout 66 standard was as sensitive as the most sensitive durum lines. Concentrations of Al and phosphorus were significantly higher in shoots of acid soil sensitive than in those of tolerant lines, and these values exceeded those reported to cause Al and phosphorus (P) toxicities in wheat and barley.  相似文献   

3.
Bread wheat (Triticum aestivum L.) landraces held within ex situ collections offer a valuable and largely unexplored genetic resource for wheat improvement programs. To maximise full utilisation of such collections the evaluation of landrace accessions for traits of interest is required. In this study, 250 accessions from 21 countries were screened sequentially for tolerance to aluminium (Al) using haematoxylin staining of root tips and by root regrowth measurement. The staining test indicated tolerance in 35 accessions, with an intermediate response to Al exhibited in a further 21 accessions. Of the 35 accessions classified as tolerant, 33 also exhibited increased root length following exposure to Al. The tolerant genotypes originated from Bulgaria, Croatia, India, Italy, Nepal, Spain, Tunisia, and Turkey. AFLP analysis of the 35 tolerant accessions indicated that these represent diverse genetic backgrounds. These accessions form a valuable set of germplasm for the study of Al tolerance and may be of benefit to breeding programs for expanding the diversity of the gene pool from which tolerant cultivars are developed.  相似文献   

4.
Wheat (Triticum spp.) landrace populations in Ethiopia are mostly species mixtures. However, no quantitative data is available with regard to their species components. We studied here 32 wheat landrace populations originating from two regions (Bale and Wello). A total of 2559 individual plants, 45–110 plants representing each population, were classified into their species components. Five tetraploid (2n = 4x = 28) and one hexaploid (2n = 6x = 42) wheat species were found in mixtures of varying proportions. These included the tetraploids Triticum durum Desf., Triticum turgidum L., Triticum aethiopicum Jakubz., Triticum polonicum L., Triticum dicoccon Schrank and the hexaploid Triticum aestivum L. Also found, however in a rare frequency, in two populations from Wollo was T. durum Desf. convar. durocompactoides Flaksb. (Triticum pyramidale Percival), which is a very dense spiked durum. Discriminant analysis using seven qualitative traits revealed 91.5% correct classification of the wheat species, beak awn and awn length with the most significant importance. Single species were found in eight of the populations; six were for T. durum and two for T. aethiopicum. Two to three species-combinations were the most frequent; a maximum of four species was recorded in one population. The highest diversity index (H′) observed was 0.44. T. durum was the most predominant species. The hexaploid T. aestivum was found in nine of the Wollo populations and, in one population, its frequency reached up to 35.5%. On altitudinal basis, no clear trend of clinal variation was observed both from the frequency distributions and H′ estimates. The results confirmed that Ethiopian wheats, despite the morphological overlaps, could be classified into their species components with high degree of certainty. For the future, therefore, genetic diversity estimations should be dissolved into their species components for more expeditious utilization and conservation of this important genetic resource.  相似文献   

5.
Accurate and reliable means for identification are necessary to assess the discrimination between landraces of tetraploid wheat [T.␣turgidum L. subsp. durum (Desf.) Husn.] and hexaploid wheat (T. aestivum L. em. Thell.). In Afghanistan, farmers usually cultivate mixed landraces, and thus distinction between bread and durum is difficult. A set of 18 microsatellites derived from the DuPont EST-database were used to describe genetic diversity in a sample of 82 Afghan wheat landraces. A total of 101 alleles were detected, with allele number per locus ranging from 2 to 13, and a mean allele number of 6.31. The percentage of polymorphic loci was 89%. The EST-SSRs markers showed different level of gene diversity: the highest Polymorphism Information Content value (0.921) was observed with DuPw 221. Our results demonstrated that with a reasonable number of expressed sequences target microsatellites (EST-SSRs) it is possible to discriminate between T. durum and T. aestivum species of wheat germplasm. Our results showed that EST-databases could be a useful source for species-specific markers and have the potential for new genic microsatellites markers that could enhance screening germplasm in gene banks.  相似文献   

6.
Three types of plasmon (A, B and G) are present for genus Triticum. Plasmon B is detected in polyploid species - Triticum turgidum L. and Triticum aestivum L. By now, 21 complete sequences of chloroplast DNA of the genus Triticum is published by different authors. Many inaccuracies can be detected in the sequenced chloroplast DNAs. Therefore, we found it necessary to study of plasmon B evolution to use only those sequences obtained by our method in our laboratory. Complete nucleotide sequences of chloroplast DNA of 11 representatives of Georgian wheat polyploid species were determined. Chloroplast DNA sequencing was performed on an Illumina MiSeq platform. Chloroplast DNA molecules were assembled using the SOAPdenovo computer program. Using T. aestivum L. subsp. macha var. palaeocolchicum as a reference, 5 SNPs were identified in chloroplast DNA of Georgian indigenous polyploid wheats. 38 and 56 bp inversions were observed in paleocolchicum subspecies. The phylogeny tree shows that subspecies macha, durum, carthlicum and palaeocolchicum occupy different positions. According the simplified scheme based on SNP and indel data the ancestral, female parent of all studied polyploid wheats is an unknown X predecesor, from which four lines were formed.  相似文献   

7.
The genetic diversity of a subset of the Ethiopian genebank collection maintained at the IPK Gatersleben was investigated applying 22 wheat microsatellites (WMS). The material consisted of 135 accessions belonging to the species T. aestivum L. (69 accessions), T. aethiopicum Jacubz. (54 accessions) and T. durum Desf. (12 accessions), obtained from different collection missions. In total 286 alleles were detected, ranging from 4 to 26 per WMS. For the three species T. aestivum, T. aethiopicum and T. durum on average 9.9, 7.9 and 7.9 alleles per locus, respectively, were observed. The average PIC values per locus were highly comparable for the three species analysed. Considering the genomes it was shown that the largest numbers of alleles per locus occurred in the B genome (18.4 alleles per locus) compared to A (10.1 alleles per locus) and D (8.2 alleles per locus) genomes. Genetic dissimilarity values between accessions were used to produce a dendrogram. All accessions could be distinguished, clustering in two large groups. Whereas T. aestivum formed a separate cluster, no clear discrimination between the two tetraploid species T. durum and T. aethiopicum was observed.  相似文献   

8.
Genetic diversity among 19 Triticum aestivum accessions and 73 accessions of closely related species was analyzed using simple sequence repeat (SSR) markers. Forty-four out of 497 SSR markers were polymorphic. In total 274 alleles were detected (mean 6.32 alleles per locus). The polymorphic information content (PIC) of the loci ranged from 0.3589 to 0.8854 (mean 0.7538). The D genome contained the highest mean number of alleles (6.32) followed by the A and B genomes (6.13 and 5.94, respectively). The correlation between PIC and allele number was significant in all genome groups (0.7540, 0.7361 and 0.7482 for A, B and D genomes, respectively). Among the seven homologous chromosome groups, genetic diversity was lowest in group 7 and highest in group 5. In cluster and principal component analyses, all accessions grouped according to their genomes were consistent with their taxonomic classification. Accessions with the A and D genomes were clustered into two distinct groups, and AABB accessions showed abundant genetic diversity and a close relationship. Triticum durum and T. turgidum were clustered together, consistent with their morphological similarity. Cluster analysis indicated emmer is closely related to hexaploid wheat. Compared with common wheat, higher genetic variation was detected in spelt, T. aestivum subsp. yunnanense and subsp. tibetanum. In addition, a close genetic relationship between T. polonicum and T. macha was observed. The results of the clustering and principal component analyses were essentially consistent, but the latter method more explicitly displayed the relationships among wheat and closely related species.  相似文献   

9.
Genetic diversity among some important Syrian wheat cultivars was estimated using Amplified Fragment Length Polymorphism (AFLP) markers. Five Triticum aestivum L. and 10 Triticum turgidum ssp. durum were analyzed with 11 EcoRI–MseI primer pair combinations. Of the approximately 525 detected AFLP markers, only 46.67% were polymorphic. Cluster analysis with the entire AFLP data divided all cultivars into two major groups reflecting their origins. The first one contained T. aestivum L. cultivars, and the T. turgidum ssp. durum cultivars and landraces were grouped in the second. Narrow genetic diversity among all cultivars was detected with an average genetic similarity of 0.884. The lowest similarity index (0.9) was found between Cham5 and Hamary (durum wheat), whereas this value was 0.93 between Salamony and Bouhouth 4 (T. aestivum L.). The narrow genetic diversity level indicates that these genotypes could be originated from the same source. AFLP analysis provides crucial information for studying genetic variation among wheat cultivars and provides important information for plant improvement.  相似文献   

10.
The new branched spike form of wheat was synthesized from a cross between a complex wheat line 171ACS {[(T. durum Desf. × Ae. tauschii Coss.) × S. cereale L. ssp. segetale Zhuk.] × T. aestivum L. ‘Chinese Spring’} (2n = 6x = 42, AABBDD) and durum wheat variety T. durum Desf. ‘Bereketli-95’ (2n = 4x = 28, AABB). This branched spike form is distinguished significantly from the other branched spike forms known so far. Later on basis of these plants have been developed the branched spike lines. This study was aimed to generate the segregating populations from reciprocal (F1–F3) and backcross (BC1F1–BC1F3) crosses between one of such lines—166-Schakheli (2n = 4x = 28, AABB) and tetraploid wheat species (T. polonicum L., T. turanicum Jakubz., T. durum Desf.) for revealing the inheritance character of this branching trait and study meiotic behavior in reciprocal (F1, F2) and backcross (BC1F1) progenies. Results showed that this trait is controlled by a single recessive gene despite certain irregularity against Mendelian law in F2 generations and does not depend on gene dosage, i.e., number of chromosomes.  相似文献   

11.
Hexaploid bread wheat (Triticum aestivum L. ssp. aestivum) is assumed to have originated by natural hybridization between cultivated tetraploid Triticum turgidum L. and wild diploid Aegilops tauschii Coss. This scenario is broadly accepted, but very little is known about the ecological aspects of bread wheat evolution. In this study, we examined whether T. turgidum cultivation still is associated with weedy Ae. tauschii in today’s Middle Eastern agroecosystems. We surveyed current distributions of T. turgidum and Ae. tauschii in northern Iran and searched for sites where these two species coexist. Ae. tauschii occurred widely in the study area, whereas cultivated T. turgidum had a narrow distribution range. Traditional durum wheat (T. turgidum ssp. durum (Desf.) Husn.) cultivation associated with weedy Ae. tauschii was observed in the Alamut and Deylaman-Barrehsar districts of the central Alborz Mountain region. The results of our field survey showed that the T. turgidumAe. tauschii association hypothesized in the theory of bread wheat evolution still exists in the area where bread wheat probably evolved.  相似文献   

12.
Triticum militinae Zhuk. et Migusch. belongs to timopheevii [Triticum timopheevii (Zhuk.) Zhuk.] group of wheats with 2n = 4x = 28 chromosomes and genome formula AtAtGG. Triticum militinae Zhuk. et Migusch. is known to carry resistance to fungal diseases including rusts and powdery mildew. Genes from timopheevii wheat can be incorporated into cultivated wheat by either direct hybridization or through development of amphiploids. Three T. militinae derived introgression lines (ILs) Triticum Militinae Derivative (TMD) 6-4, TMD7-5 and TMD11-5 were selected for the current study based on cytological stability. All three ILs showed resistance against wide spectrum of Indian pathotypes of leaf rust. More than 1200 SSR markers were used for genotyping of ILs and parental lines. The ILs showed variable and multiple introgressions in different chromosomes of A, B and D genome of wheat. The introgression points were distributed mostly in the distal regions though significant introgressions were also observed in proximal regions of some chromosomes. The extent of introgression in ILs TMD6-4, TMD7-5 and TMD11-5 was 2.8, 8.3 and 8.6% respectively. The set of ‘informative markers’ in the Molecularly Tagged Chromosome Regions (MTCR) of T. militinae origin can also be used in future for tagging of genes associated with traits of economic importance apart from leaf rust resistance. The transferability of Triticum aestivum L. SSR markers to T. militinae was 96.4% for A genome, 95.8% for B genome and 84.3% for D genome. Transferability of wheat SSR markers to T. militinae can be used in preparing genetic maps in timopheevii group of wheats.  相似文献   

13.
Summary During the winters of 1990/91 and 1991/92, 181 accessions of Triticum dicoccon Schrank from the CIMMYT gene-bank were screened in the field for resistance to Russian wheat aphid, Diuraphis noxia (Kurdjumov). Accessions were sown in hill plots of 10 seeds and artificially infested with D. noxia at the two-leaf growth stage. Hills were visually assessed for damage at tillering, booting and heading. Entries differed significantly in their reaction to D. noxia, and severity of symptoms increased with time. Twenty four of the entries were highly resistant to the aphid. In winter 1991/92, 807 accessions of wild and cultivated wheats (26 species) and synthetic hexaploids were screened similarly for resistance to D. noxia. A large number of A-genome species were resistant, while few D-genome species were identified as resistant. These newly discovered sources of resistance can be used to expand the genetic base of resistance to D. noxia in both bread (T. aestivum L.) and durum wheats (T. turgidum L. convar. durum (Desf.) Mackey).  相似文献   

14.
The tetraploid relatives (subspecies) of commercial durum wheat (Triticum turgidum L. subsp. turgidum conv. durum (Desf.) MacKey) offer a source of economically useful genes for the genetic improvement of durum cultivars. Tetraploid wheat subspecies show a wide diversity in grain protein composition and content, which are major factors determining the pasta-making quality of durum cultivars. In this study, the specific focus was the identification of accessions expressing one or more superior pasta-making traits. In all, 33 accessions were surveyed representing five different subspecies; var. durum (13 accessions), polonicum (7 accessions), persicum (3 accessions), turanicum (6 accessions), and turgidum (4 accessions). These accessions and the durum cultivars Wollaroi and Kamilaroi (in both years) and Yallaroi (in 1998 only) were grown at Tamworth, Australia in 1997 and 1998. Grain, semolina, and spaghetti cooking quality were evaluated using a range of tests. Several accessions were identified with larger grain size and protein content and higher semolina extraction. Although many of the accessions were weaker in dough strength, a few were equal to the commercial cultivars and produced pasta of comparable quality. The main disadvantage with these accessions was the low yellow color. These quality defects can be corrected by conventional breeding.  相似文献   

15.
Carbon isotope discrimination (Δ) has been proposed as physiological criterion to select C3 crops for yield and water use efficiency. The relationships between carbon isotope discrimination (Δ), water use efficiency for grain and biomass production (WUEG and WUEB, respectively) and plant and leaf traits were examined in 20 Iranian wheat genotypes including einkorn wheat (Triticum monococcum L. subsp. monococcum) accessions, durum wheat (T. turgidum L. subsp. durum (Desf.) Husn.) landraces and bread wheat (T. aestivum L. subsp. aestivum) landraces and improved cultivars, grown in pots under well-watered conditions. Carbon isotope discrimination was higher in diploid than in hexaploid and tetraploid wheats and was negatively associated with grain yield across species as well as within bread wheat. It was also positively correlated to stomatal frequency. The highest WUEG and grain yield were noted in bread wheat and the lowest in einkorn wheat. Einkorn and bread wheat had higher WUEB and biomass than durum wheat. WUEG and WUEB were significantly negatively associated to Δ across species as well as within bread and durum wheat. The variation for WUEG was mainly driven by the variation for harvest index across species and by the variation for Δ within species. The quantity of water extracted by the crop, that was closely correlated to root mass, poorly influenced WUEG. Environmental conditions and genetic variation for water use efficiency related traits appear to highly determine the relationships between WUEG and its different components (water consumed, transpiration efficiency and carbon partitioning).  相似文献   

16.
In order to study the salt effect on the wild wheat and durum wheat, three accessions of Aegilops geniculata L. from Ain zana, Zaghouan, and Sbitla and one variety of wheat (Triticum durum L.) have been grown in the INRAT green house and treated with different salt concentrations. The morphological, phenological and yield characters have been measured for each plant and analyzed using SAS software. This study has shown a high degree of variation of these characters mainly related to geographical origin. It was observed also that Sbitla accession was less affected by the imposed salt stress than all the others while Ain zana was the most affected one.  相似文献   

17.
Aluminum toxicity is a major growth limiting factor for plants in many acid soils of the world. Correcting the problem by conventional liming is not always economically feasible, particularly in subsoils. Aluminum tolerant plants provide an alternative and long‐term supplemental solution to the problem. The genetic approach requires the identification of Al tolerance sources that can be transferred to cultivars already having desirable traits. Thirty‐five cultivars and experimental lines of wheat (Triticum aestivum L. em. Thell) were screened for Al tolerance on acid Tatum soil (clayey, mixed thermic, typic Hapludult) receiving either 0 or 3500 mg CaCO3/kg (pH 4.1 vs. pH 7.1). Entries showed a wide range of tolerance to the acid soil. On unlimed soil at pH 4.3, absolute shoot dry weights differed by 5‐fold, absolute root dry weights by 6.5‐fold, relative shoot weights (wt. at pH 4.3/wt. at pH 7.1 %) by 4.7‐fold and relative root dry weights by 7‐fold. Superior acid soil (Al) tolerance of ‘BH‐1146’ from Brazil and extreme sensitivities of cultivars ‘Redcoat’ (Indiana, USA) and ‘Sonora 63’ (Mexico) were confirmed. Seven experimental (CNT) lines from Brazil showed a range of acid soil tolerance but were generally more tolerant than germplasm from Mexico and the USA. One line, ‘CNT‐1’, was equal to BH‐1146 in tolerance and may be useful in transferring Al tolerance to existing or new cultivars. Five durum cultivars (Triticum, durum, Desf.) were extremely sensitive to the acid Tatum subsoil at pH 4.3 compared with pH 7.1.  相似文献   

18.
Variability in response to salinity was examined in 29 Triticum durum Desf. accessions or cultivars based upon relative root and shoot lengths of 14-day-old seedlings grown in control and 100 mM NaCl solutions. NaCl caused a significant reduction of root and shoot growth for all accessions/cultivars, but the degree of reduction differed between them. Some cultivars had significantly greater relative root and shoot lengths than others, suggesting that there may be potentially useful variability in salinity tolerance within the durum wheats.  相似文献   

19.
Chloroplast microsatellites (SSRs) are conserved within wheat species, yet are sufficiently polymorphic between and within species to be useful for evolutionary studies. This study describes the relationships among a very large set of accessions of Triticum urartu Thum. ex Gandil., T. dicoccoides (Körn. ex Asch. et Graebn.) Schweinf., T. dicoccon Schrank, T. durum Desf., T. spelta L., and T. aestivum L. s. str. based on their cpSSR genotypes. By characterising the chloroplast diversity in each wheat species in the evolutionary series, the impact on diversity of major evolutionary events such as domestication and polyploidyisation was assessed. We detected bottlenecks associated with domestication, polyploidisation and selection, yet these constrictions were partially offset by mutations in the chloroplast SSR loci that generated new alleles. The discrete cpSSR alleles and haplotypes observed in T. urartu and Aegilops tauschii, combined with other species specific polymorphisms, provide very strong evidence that concur with current opinion that neither species was the maternal and thus cytoplasmic donor for polyploid wheats. Synthetic hexaploid wheats possessed the same chloroplast haplotypes as their tetraploid progenitors demonstrating how the novel synthetic wheat lines have captured chloroplast diversity from the maternal parents, the chloroplast is maternally inherited and novel alleles are not created by genomic rearrangements triggered by the polyploidisation event.  相似文献   

20.
Field and controlled environmental tests indicated that the 49 accessions of closely related species and 12 landraces of wheat (Triticum aestivum L. em. Thell.) from the National Gene Bank of China showed different reactions to powdery mildew (Blumeria graminis (DC.) E. O. Speer. f. sp. tritici) and stripe rust (Puccinia striiformis Westend f. sp. tritici) at adult and seedling stages. Unknown Pm genes or alleles were postulated with Triticum baeoticum Boiss. accessions BO 3 and Triticum monococcum L. MO 4 and MO 5 when inoculated with 21 powdery mildew isolates at seedling stage. Fourteen accessions of T. baeoticum, T. monococcum, Triticum durum, and wheat landraces were inoculated with 30 stripe rust isolates at seedling stage. Unknown Yr genes or alleles were postulated with T. baeoticum Boiss. accession BO 5, as well as wheat landraces Xiaobaimai, Laomangmai, and Shaanxibai. Heterogeniety in reaction to powdery mildew isolates and stripe rust races were observed in related species and landraces of wheat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号