首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 296 毫秒
1.
【目的】对Kozak方程进行修正,采用树木易测因子为预测变量,构建人工樟子松树冠外部轮廓预估模型,为研究树木生理和树木竞争提供依据,为模拟单木树冠表面积和树冠体积奠定基础。【方法】基于黑龙江省14块固定样地70株人工樟子松解析木907个最大枝条数据,以Kozak方程基本形式为基础并对其进行修正,选出构建人工樟子松树冠外部轮廓基础模型的最优模型形式。在最优模型基础上,建立分别考虑样地效应、样木效应及同时考虑样地和样木效应两水平的非线性混合效应模型。利用R软件的nlme软件包求解非线性混合效应模型参数,采用AIC、BIC、-2LL对混合效应模型中不同随机效应参数组合形式、不同随机效应矩阵、方差-协方差矩阵和方差函数进行比较,选出最优模型形式,并对人工樟子松外部轮廓随树木因子的变化规律进行探讨。以林分密度为哑变量,构建不同密度的人工樟子松树冠外部轮廓预估模型。【结果】人工樟子松树冠外部轮廓预估模型因子包含胸径(DBH)、冠长率(CR)和高径比(HD)。与基础模型相比,分别考虑样地效应、样木效应的混合模型能够显著提高模型拟合效果,外部轮廓模型差异主要来源于样木效应。以样木为单水平的混合效应模型中,a2、a6为随机参数,对角矩阵为方差-协方差矩阵形式,ARMA(1,1)为解释组内方差的矩阵,采用幂函数消除异方差的模型形式为最优模型。同时考虑样地和样木效应两水平混合模型的拟合效果较单水平混合模型有所提高。以两水平混合模型的固定效应部分模拟外部轮廓与树木因子之间的关系,在分别固定另外2个变量的情况下,树冠半径随着DBH、CR增大均逐渐增大,树冠上半部分半径随着HD增大而增大,下半部分半径随着HD增大而减小。外部轮廓拐点的变化范围为0.6250~0.9170,拐点平均位置为0.8413,随着林木在林分中被压强度增大,拐点位置向树冠基部移动。密度小于1000株·hm^-2林分中单木的冠形与1000~2000株·hm^-2和大于2000株·hm^-2林分中单木的冠形区别很大。【结论】修正后的Kozak模型满足梢头处半径为0、在整个树冠范围内存在拐点且拐点唯一的特性,能够对人工樟子松树冠外部轮廓进行合理模拟及预测。两水平非线性混合效应模型可显著提高模型拟合效果,能够在树冠外部轮廓模型中应用。  相似文献   

2.
基于混合效应的人工落叶松树冠轮廓模型   总被引:3,自引:0,他引:3  
【目的】以林木易测因子为预测变量,构建黑龙江省人工落叶松树冠最大外部轮廓及内部轮廓(未着叶部分)的预估模型,为进一步估计人工落叶松树冠表面积、树冠体积和树冠生物量提供依据。【方法】基于佳木斯市孟家岗林场49株解析木的枝解析数据,树冠外部轮廓模型采用分段回归技术,构建带有约束条件并满足生物学意义的连续性分段曲线模型,即在梢头处树冠半径为"0",在整个树冠内外部轮廓的拐点的存在是唯一的,且在拐点处树冠半径达到最大值;内部轮廓直接采用线性模型进行模拟。分析模型参数与林木变量之间的相关性,将关系密切的树木变量或变量组合引入到模型中并选出最优模型,以此作为基础模型分别建立单水平的外部轮廓及内部轮廓的混合效应模型,利用混合模型的固定效应部分对外部轮廓及内部轮廓进行模拟。【结果】以林木因子胸径、高径比、冠长及冠长率构建的分段抛物线模型能准确预估树冠的外部轮廓形状,利用胸径、高径比及冠长能有效预测树冠的内部轮廓形状。基于模型的拟合优度及检验指标,采用单水平(样地)混合模型能够显著提高模型的预测精度,外部轮廓混合效应预估模型的决定系数(R~2)、均方误差根(RMSE)和平均偏差(Bias)分别为0.914 2、0.232 7 m和0.001 2 m,内部轮廓混合效应预估模型的R~2、RMSE和Bias分别为0.723 5、0.147 0 m和-0.000 034 m。与基础模型相比,混合模型的R~2都有所提高,RMSE、Bias都有所降低。在其他变量保持不变的条件下,外部轮廓半径分别随着胸径、冠长率的增大而增大,随着高径比、冠长的增大而减小;内部轮廓半径均随着胸径、高径比及冠长的增大而增大。【结论】具有生物学意义的分段抛物线模型和线性模型分别能够有效描述人工落叶松树冠外部轮廓及内部轮廓的形状变化特征,加入混合效应后能够提高模型的拟合精度并改善组内的方差异性特征,基于混合效应模型中的固定效应部分,能够合理地对树冠外部轮廓及内部轮廓进行模拟,分段抛物线模型能够灵活地反映拐点在树冠内的移动规律线,简单的线性模型能够对内部轮廓进行准确预估。  相似文献   

3.
根据秃杉人工林标准地调查数据,分析因变量与自变量的相关性,筛选最优因子,分别采用异速生长方程、多元线性回归方程构建秃杉树冠轮廓模型和冠幅模型。研究结果表明,最大冠幅深度与胸径、树高、枝下高、冠幅、冠长均显著相关。通过多元线性逐步回归,以胸径、树高拟合的最大冠幅深度模型较优。树冠轮廓模型以三参数幂函数的异速生长方程拟合效果较好。冠幅呈正态分布,以胸径、树高、优势树高、单位面积胸高断面积为模型最佳变量组合,模型残差上下分布比较均匀,不存在明显偏差,且材积随着冠幅的增大而增大,以二次方程模拟效果最佳。经检验,所构建的模型拟合效果较好,精度较高。  相似文献   

4.
基于混合效应模型的杉木单木冠幅预测模型   总被引:8,自引:0,他引:8  
以湖南省黄丰桥国有林场103块样地共2461株杉木为例,建立单木冠幅模型.由于所调查数据是在不同立地条件下相同样地中重复观察得到,数据间存在明显相关性,为解决此问题,将考虑立地指数和样地对冠幅生长的随机影响,即建立嵌套2水平非线性混合冠幅模型.从12个常用林分模型中选出较好的冠幅直径模型作为构建混合模型的基础模型.除胸高直径外,还考虑其他17个林分或树木因子对冠幅的影响.通过指标AIC(akaike information criterion)和对数似然确定最佳形式参数随机效应组合类型,用指数函数、幂函数以及常数加幂函数3种形式的残差方差模型消除异方差,最后对混合模型和传统回归模型进行比较及评价.结果表明:逻辑斯蒂形式的冠幅直径模型[模型(13)]拟合效果较好,选择为基础模型;胸径、冠底高、树高和样地优势高是影响冠幅的主要因子;幂函数消除异方差效果最好;与立地指数相比,立地指数与样地的嵌套效应对冠幅影响更大;模型(15)的嵌套2水平比总体平均水平和立地指数水平预测精度高,相比于模型(13)有明显改进.本文主要为方法研究,对于其他树种可以用相似方法构建冠幅模型.  相似文献   

5.
以贵州省人工杉木和马尾松地上生物量数据为例,通过利用线性混合模型和哑变量模型方法,建立了适合不同树种和区域(中心区和一般区)的通用性立木生物量方程,为简化生物量建模工作提供了有效途径。结果表明,相同直径林木的地上生物量估计值随树种、区域的不同存在一定程度的差异,带随机参数的线性混合模型和带特定参数的哑变量模型比总体平均模型的精度高;线性混合模型和哑变量模型方法均同等有效,可推广应用于其它通用性模型(如材积方程)的建立。  相似文献   

6.
基于大比例尺航片的针叶树种冠幅的提取   总被引:2,自引:0,他引:2  
基于凉水国家级自然保护区2009年拍摄的1:2000航空像片和同期森林资源二类调查的固定样地数据,采用子像元分类方法分别提取出红松、落叶松和云冷杉的专题影像图。在此基础上,将栅格专题影像图转换为矢量图形,采用目视解译的方法提取上层针叶林的树冠信息。通过将针叶树冠形似为圆形提取出各树种的冠幅,用固定样地实测数据进行对比分析和精度评价,并建立航片上提取冠幅与实测冠幅之间的一元线性回归模型。结果表明:红松、落叶松和云冷杉冠幅的提取精度分别达到83.50%、84.35%和82.26%,其预测精度分别达到83.60%、81.46%和83.57%。  相似文献   

7.
[目的 ]基于无人机激光雷达(LiDAR)点云数据提取杉木树冠上部结构参数(树冠顶点、树高、冠幅和上部冠长),并进行树冠上部外轮廓模拟与可视化,为树种识别提供树木冠形特征。[方法 ]利用LASTools开源工具从激光雷达点云数据生成无孔洞的冠层高度模型,使用LiDAR360软件,采用局部最大值法检测树冠顶点,基于CHM种子点对点云进行单木分割,并在ArcGIS下手动选取杉木单株点云样本,用Python编程对"欠分割"样本进行单木纯化(之后全部编程方式自动化处理);提取纯化后单株样本的树冠上部结构参数(树冠顶点、树高、冠幅和上部冠长),再对单木点云按照一定高度间隔进行分层切片,使用宽度百分位数法提取单木树冠上部的相对着枝深度、枝条长度作为模型变量,以相对着枝深度分层分别建模与验证样本按照3倍标准差法剔除异常外轮廓点,选取二次多项式、幂函数和指数函数3个基础模型进行模型拟合与验证,最后采用最优拟合模型进行样地尺度的三维可视化。[结果 ]无人机激光雷达综合单木检测率为79.63%,结合实测参数与提取结果进行相关分析,树高线性回归R2为0.890 5,冠幅线性回归R2为0.845 6;二次抛物线、幂函数和对数函数拟合R2分别为0.807 0、0.817 0、0.806 0,幂函数对杉木树冠上部外轮廓的拟合效果更优。[结论 ]在高林分密度条件下,单木点云的有效提取纯化对客观描绘树冠形状非常重要;基于无人机激光雷达拟合的杉木树冠上部外轮廓反映了杉木的树冠上部形态,可为杉木的树种识别提供参考。  相似文献   

8.
基于湖南省平江县芦头林场的12块青冈栎次生林固定样地数据,采用固定半径法、树冠重叠法以及单木影响圈分析样地内青冈栎树种的竞争状况,同时依据对象木与竞争木的树高比值对Hegyi竞争指数进行改进。结果表明:青冈栎树种的竞争影响范围随着直径的增加而增大,说明林木直径越大,竞争越激烈;青冈栎自由树冠幅模型为:CW=0.1773+0.2799×D,直径与冠幅大小呈正相关;三类竞争指标的相关性大小比较为Hegyi改进模型Bella竞争指数Hegyi竞争指数,说明综合考虑树木胸径比值、树高比值以及树木距离的竞争指标能更加准确地反映青冈栎次生林的竞争状况。  相似文献   

9.
《林业资源管理》2017,(4):82-88
树冠是树木获取光能并进行能量转换的主要场所,在监测树木长势,估算树木生物量等方面具有重要作用。及时准确获取树冠参数信息有助于研究树木生长状况和森林变化动态,有效改善森林经营管理。无人机遥感具有快速机动、云下飞行、影像分辨率高、成本低等优势,非常适合于亚高山针叶林树冠遥感影像的获取。论文以贡嘎山雅家埂局部范围亚高山针叶林为研究对象,采用固定翼无人机获取可见光遥感影像,基于面向对象方法自动提取了亚高山针叶林的东西冠幅、南北冠幅、单元面积树木数和郁闭度等参数。以目视解译结果作为参考数据进行验证,东西冠幅和南北冠幅的提取精度分别是0.765 1和0.855 6,单元面积树木数和郁闭度的提取精度分别是0.99和0.92。研究结果表明,基于无人机遥感影像的树冠参数信息自动提取方法高效可靠,能够满足亚高山针叶林生长状况快速评价与动态遥感监测的需求。  相似文献   

10.
为提高森林单木材积估测精度和效率,选取贵州省织金县城郊典型马尾松林为研究对象,基于机载激光雷达点云和样地调查数据,以提取的树高、冠幅、树冠投影面积和树冠体积等单木结构参数为变量,构建基于机载激光雷达点云数据的马尾松单木材积估测模型。结果表明:1)基于点云数据提取的马尾松单木树高和冠幅因子与实际调查数据之间存在良好的相关性,决定系数R2在0.7以上,精度相对较高,可用于构建马尾松单木材积模型。2)在经典非线性CAR模型基础上,利用枚举法对树高、冠幅、树冠投影面积、树冠体积等4个变量组合构建的11个模型中,包含树高、冠幅及树冠体积三个林分因子的模型表现最佳,R2为0.774 1。3)树高、冠幅及树冠体积被确定为马尾松单木材积估测的关键因子,其中,树高的贡献最大且与单木材积呈极显著正相关关系(P<0.001)。利用机载激光雷达点云数据提取单木结构参数,并基于非线性CAR模型构建单木材积模型估测马尾松单木材积的方法是可行的,该方法不仅能满足森林资源调查的精度要求,且能有效提高调查效率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号