首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 560 毫秒
1.
干旱条件下葡萄叶片气孔导度和水势与节位变化的关系   总被引:3,自引:0,他引:3  
【目的】研究干旱条件下葡萄叶片气孔导度和水势随叶片节位变化的规律及其机理。【方法】利用3005F01植物水势测定仪和SC-1气孔计测量不同干旱程度下葡萄主梢各节位叶片气孔导度和水势。【结果】浇水良好的条件下,葡萄叶片气孔导度随叶片节位的升高而升高,且两者有很好的线性关系;轻度干旱可导致上部节位叶片气孔导度大幅度下降,而下部节位叶片气孔导度变化不大,叶片水势随着节位上升而提高;和轻度干旱相反,严重干旱时,叶片气孔导度随叶片节位的升高而下降,叶片水势仍然随着叶片节位的升高而上升,两者呈现出明显的线性关系。【结论】浇水良好的条件下,叶片气孔导度和叶片水势没有相关性;不同节位叶片对干旱的响应敏感度存在明显的差异,这种差异和叶片水势的变化及其反馈调节有密切的联系。  相似文献   

2.
山东夏玉米土壤干旱阈值研究与影响评价   总被引:1,自引:0,他引:1  
【目的】 确定山东夏玉米土壤水分的适宜阈值范围与干旱胁迫阈值,定量化评估不同程度干旱对夏玉米生长发育和产量形成的影响,从而为提高农业水资源利用效率,缓解干旱胁迫的不利影响等提供依据。【方法】基于水分控制试验结果,确定夏玉米苗期、穗期与花粒期的土壤水分适宜与不适宜阈值范围;以土壤相对湿度驱动WOFOST作物机理模型,明确无旱、轻旱、中旱与重旱的阈值指标;通过设置不同干旱程度与持续天数,完成定量化的干旱影响评价。【结果】(1)夏玉米苗期、穗期与花粒期的土壤水分适宜阈值范围分别为62%—91%、66%—92%与68%—94%,不适宜阈值范围分别为<62%、<66%及<68%;(2)苗期无旱、轻旱、中旱与重旱阈值指标分别为53%、50%、45%与40%,穗期各程度干旱阈值指标分别为58%、48%、43%与37%,花粒期各程度干旱阈值指标分别为57%、52%、49%与45%;(3)苗期干旱对夏玉米总叶重、总茎重与最大叶面积指数的影响最大,穗期与花粒期干旱对总穗重影响最大,其中穗期重旱将导致不能形成最终产量。【结论】确定了夏玉米不同发育期的土壤水分阈值指标,夏玉米穗期与花粒期干旱对于产量形成的影响更为显著。  相似文献   

3.
【目的】研究深松耕对红壤坡地土层特性和玉米产量的影响,筛选适宜云南红壤坡地土壤深松耕的深度和耕作措施,为红壤坡地合理耕层构建提供依据。【方法】实验设置常规旋耕20 cm(CK),免耕耕深0 cm(S0),深松耕30 cm(S30)和深松耕40 cm(S40)等4个不同的耕深处理,种植方式为直播玉米,冬季休闲,田间管理和施肥方式一致。【结果】实验结果表明,处理S0、处理S30和处理S40第1年对玉米产量无显著影响,生物学产量均显著增加,增产率分别为11.66%、14.69%和5.07%;第2年玉米产量增产率分别为3.22%、22.03%和14.14%,生物学产量增产率为-1.81%、15.61%和5.27%;第3年玉米产量增产率分别为28.71%、22.00%和5.69%,生物学产量增产率为16.86%、14.86%和3.76%。0~20 cm土层处理,S0土壤容重3年平均降幅2.83%,土壤紧实度增加33.20%,土壤含水量降低5.73%;处理S30降低土壤容重和土壤紧实度,降幅分别为3.88%和3.95%,土壤含水量增加5.44%;处理S40土壤容重降低0.52%,土壤紧实度增加7.70%。20~40 cm土层,处理S0土壤容重降低3.41%,土壤紧实度增加7.54%,土壤含水量增加6.21%;处理S30土壤容重降低9.23%,土壤紧实度降低20.27%,土壤含水量增加13.80%;处理S40土壤容重降低8.79%,土壤紧实度降低15.38%,土壤含水量增加7.99%。40~60 cm土层,处理S0土壤容重降低3.17%,土壤紧实度增加35.53%,土壤含水量增加2.86%;处理S30土壤容重降低1.48%,土壤紧实度增加21.93%,土壤含水量增加3.00%;处理S40土壤容重降低4.86%,土壤紧实度降低2.84%,土壤含水量增加7.84%。【结论】深松耕30 cm对山原红壤坡地玉米的产量有促进作用,为较适宜的耕作措施。  相似文献   

4.
花铃期干旱胁迫对不同棉花品种光合作用影响   总被引:1,自引:0,他引:1  
【目的】研究干旱胁迫条件及对照下不同棉花品种之间光合性状差异,明确干旱胁迫对棉花光合性状的影响,筛选抗旱能力强的品种,为抗旱育种提供理论支持。【方法】以16N2、16N3、16N4、16N5、源棉6号共5个自育品种系为试验材料,在干旱胁迫与正常灌水两个环境下对棉花花铃期净光合速率、蒸腾速率、气孔导度、光合水分利用率等光合性状指标进行测量,研究其差异性及相关性。【结果】与正常灌水条件下相比,5份材料在干旱胁迫下除光合水分利用率,其它光合生理指标均呈下降趋势,不同品种抗旱系数存在不同差异,其中16N2光合速率、气孔导度、蒸腾速率、水分利用率抗旱系数均较高,16N2具有较强耐旱性。【结论】干旱胁迫处理会降低蒸腾速率、气孔导度及光合速率等光合生理指标,但可以提高光合水分利用率。16N2花铃期光合性状抗旱系数最高,抗旱能力较强,可以作为抗旱育种的中间材料,为抗旱聚合育种奠定基础。  相似文献   

5.
【目的】随着气候的不断变化,高温、干旱及其复合胁迫等极端天气事件频发,对玉米生产提出了严峻的挑战。本文旨在探讨高温、干旱及其复合胁迫对夏玉米茎秆显微结构和产量的影响。【方法】以登海605(DH605)为试验材料,在开花期设置高温(T)、干旱(D)、高温干旱复合胁迫(T+D),以自然温度和正常水分管理为对照(CK),处理持续6 d,研究高温、干旱以及高温干旱复合胁迫对夏玉米茎秆显微结构、干物质积累与分配、光合特性、花粉活力以及产量的影响。【结果】高温干旱复合胁迫后夏玉米皮层厚度、硬皮组织厚度、维管束总数和小维管束数目显著降低,较CK分别下降8.8%、14.1%、9.4%、13.7%。此外,高温干旱后夏玉米花粉活力、光合特性和成熟期总干重显著降低,T、D、T+D各处理花粉活力和净光合速率较CK降低23.1%、8.3%、30.7%和23.7%、16.6%、37.5%,成熟期干物质总积累量较CK降低19.7%、5.1%、26.6%,进而导致产量显著下降,T、D和T+D各处理的产量较CK分别下降63.2%、13.2%和71.7%。【结论】高温、干旱、高温干旱复合胁迫导致夏玉米茎秆发育异常,光合性能下降,干物质积累量减少,产量显著降低,且高温干旱复合胁迫对夏玉米产量和茎秆显微结构的影响大于高温或干旱单一胁迫。  相似文献   

6.
【目的】研究干旱处理对2个抗旱性不同的胡麻品种现蕾期蒸腾速率(Tr)、气孔导度(Gs)、叶绿素荧光参数及产量的影响,以探索合适的抗旱时期,确保胡麻的正常生长和产量。【方法】以抗旱性不同的胡麻品种天亚9号(抗旱性强)和陇亚8号(抗旱性弱)为材料,在大田干旱防雨棚内采用控水的方法模拟干旱处理,设置轻度干旱(LS)、中度干旱(MS)、重度干旱(SS)3个干旱处理和正常灌水处理(CK),于胡麻现蕾期测定不同处理胡麻叶片Gs、Tr及叶绿素荧光参数;在胡麻成熟期进行室内考种,测定不同处理胡麻的农艺性状和产量。【结果】(1)随着干旱胁迫程度的加重,天亚9号和陇亚8号叶片Gs较对照明显降低,蒸腾失水随之降低。(2)在轻度干旱(LS)处理下,天亚9号PSⅡ最大光化学量子效率(Fv/Fm)、PSⅡ实际光化学量子产量(ΦPSⅡ)和光化学淬灭系数(qP)与CK相比差异均不显著,但陇亚8号上述参数均较CK显著降低;随着干旱胁迫程度的加重,天亚9号和陇亚8号Fv/Fm、ΦPSⅡ和qP明显下降,而非光化学淬灭系数(qN)明显上升,且与CK差异均显著。(3)轻度干旱(LS)处理下,天亚9号和陇亚8号的农艺性状及产量与CK差异不显著;但在重度干旱(SS)处理下,天亚9号产量较CK降低78.41%,陇亚8号产量较CK降低87.40%。【结论】干旱条件下胡麻现蕾期Tr、Gs、各叶绿素荧光参数和产量与干旱胁迫程度紧密相关,在栽培管理中遇轻度干旱胁迫(土壤含水量为田间最大持水量(θf)的60%~70%)时可不必补充水分,但中度(土壤含水量为θf的50%~60%)、重度(土壤含水量为θf的35%~45%)干旱之前应适时适量灌水,以确保胡麻正常生长发育及产量的提高。  相似文献   

7.
本研究利用不同胡麻品种、不同干旱程度的大田试验数据,检验、评估3种作物模型干旱胁迫效应算法的精确性,及其在现蕾期、青果期干旱胁迫处理下对胡麻蒸腾速率、气孔导度、叶面积指数及籽粒产量4个指标的模拟预测能力。模拟结果表明,干旱胁迫使胡麻蒸腾速率、气孔导度、叶面积指数和籽粒产量降低。3种作物模型干旱胁迫效应算法可以模拟出胡麻生理生化指标在各干旱处理下的变化趋势,但模拟效果不够理想。3种干旱胁迫效应算法均低估了籽粒产量。综合考虑,WOFOST模型干旱胁迫效应算法对籽粒产量、蒸腾速率的模拟效果最好,APSIM模型干旱胁迫效应算法对气孔导度的模拟效果最好,DSSAT模型干旱胁迫效应算法对叶面积指数的模拟效果最好。  相似文献   

8.
基于远红外热成像的叶温变化与玉米苗期耐旱性的研究   总被引:4,自引:1,他引:3  
 【目的】植物可以通过降低叶片气孔蒸腾来达到控制失水和增强抗旱的目的。蒸腾强度的变化会引起植物叶片温度的变化,利用远红外热成像仪研究遭受干旱胁迫时玉米自交系苗期叶温的变化与生物量耐旱系数间的关系,为筛选鉴定玉米耐旱自交系提供依据。【方法】以83个优良玉米自交系为材料,利用远红外热成像仪检测干旱胁迫条件下苗期叶片温度的变化,叶片的气孔导度、蒸腾强度采用气孔计Li-1600测定,同时测定植株的生物量。【结果】遭受干旱胁迫时,玉米苗期叶片的相对生物量变异幅度为0.271~0.997(生物鲜重)、0.338~0.969(生物干重),叶温变异幅度为 -0.1~+0.5℃,均存在显著变异。耐旱玉米自交系的叶片温度显著上升,而敏感玉米自交系的叶片温度变化不明显。干旱胁迫与正常灌水条件下叶温的差值即叶温差与相对生物鲜重(0.283*,0.288**,n=83)及相对生物干重(0.239*,0.273**,n=83)间存在极显著的相关性。此外,叶温差与叶片气孔导度、蒸腾强度间也存在着显著的相关性。【结论】遭受干旱胁迫时,玉米苗期叶片温度变化可以显著反映玉米苗期的耐旱性,叶温差可以作为玉米苗期耐旱性初步筛选的一个指标,将远红外热成像技术运用于玉米耐旱育种存在可行性。  相似文献   

9.
【目的】明确花期不同程度干旱胁迫对夏玉米花后干物质运转的影响机制,为夏玉米抗旱栽培提供理论依据。【方法】于2018—2019年在人工控水条件下,以干旱敏感型品种伟科702(WK702)和耐旱型品种郑单958(ZD958)为供试材料,于玉米花期设4个干旱胁迫处理,分别为CK(对照,全生育期正常灌水)、T1(花前干旱胁迫)、T2(花后干旱胁迫)和T3(花期连续干旱胁迫),探究花期不同程度干旱胁迫对玉米植株形态、叶面积指数、花后干物质积累分配及运转和籽粒产量的影响。【结果】花前干旱胁迫能抑制株高、穗位高、茎粗和叶面积的生长,而花后干旱胁迫的影响较小,但生育后期叶面积指数下降幅度较大。花期干旱胁迫不仅显著降低夏玉米花后干物质积累量(P<0.05,下同),还抑制茎叶等营养器官干物质向籽粒的运转,降低干物质运转量、运转率及其对籽粒产量的贡献率,使成熟期干物质在籽粒中的分配比例减少。花前干旱胁迫对夏玉米穗长、穗粗、穗粒数和百粒重等穗部性状的影响大于花后干旱胁迫。花期干旱胁迫导致夏玉米籽粒产量显著下降,其中花期连续干旱胁迫籽粒产量降幅最大,花前干旱胁迫籽粒产量降幅大于花后干旱胁迫;ZD958在T1、T2和T3处理下的籽粒产量分别比对照下降20.1%、15.6%和35.9%,WK702分别比对照降低32.3%、19.3%和51.3%。【结论】花期干旱胁迫在不同程度上影响夏玉米的植株形态、有效光合面积、花后干物质积累与运转等,导致夏玉米产量显著降低,对干旱敏感型品种WK702花后干物质积累与运转的抑制高于耐旱型品种ZD958。  相似文献   

10.
【目的】确定广西赤红壤区玉米种植体系的农田适宜氮肥施用量,为该地区玉米产业的高产高效发展及农业生态环境的保护提供理论参考。【方法】通过春-秋连续2季播种种植玉米进行田间试验,研究不同施氮量(0、180、240、300、360和480 kg/hm~2)对玉米产量、氮肥利用率、0~100 cm土层土壤无机氮残留及氮素平衡的影响。【结果】①随着氮肥用量的增加,春、秋玉米产量均呈现先增加后降低的趋势,而氮肥当季利用率则呈现显著降低趋势。②施用氮肥增加了土壤硝态氮和铵态氮残留,以硝态氮为主,且硝态氮主要残留在0~40 cm土层,铵态氮主要分布在0~20 cm土层。③施用氮肥可显著影响0~100 cm土层土壤的无机氮积累量,施氮量高于360 kg/hm~2时,土壤的无机氮积累量增加显著。土壤氮素盈余量随施氮量增加而显著增加,春玉米生长季氮肥盈余部分绝大多数在土壤中残留,到秋玉米季继续施用高量氮肥,则同时显著增加土壤氮素残留和表观损失,且氮素表观损失量增幅更大。④土壤无机氮残留量与施氮量呈显著的指数增加关系,氮肥当季利用率与施氮量呈幂函数降低关系,春玉米生长季产量、土壤无机氮残留量分别与氮肥利用率交于200和322 kg/hm~2处,秋玉米生长季产量、土壤无机氮残留量分别与氮肥利用率交于211和300 kg/hm~2处。【结论】综合考虑本试验条件下玉米春秋连作体系中的氮肥残留后效作用,兼顾作物产量、环境效应与肥料效应,广西赤红壤玉米种植区的适宜氮肥季用量为N 200~300 kg/hm~2。  相似文献   

11.
我国不同年代主要玉米品种耐旱性鉴定与评价   总被引:2,自引:1,他引:1  
[目的]鉴定评价我国不同年代大面积推广的35个主要玉米品种的耐旱性.[方法]采用裂区设计,不同水分管理为主处理,品种为副处理,重复3次.调查生育期、单株籽粒产量和相关农艺性状,计算耐旱系数和产量耐早性指数,进行耐早性分析评价.[结果]单株籽粒产量耐旱系数与穗长、穗粗、行粒数和百粒重的耐旱系数呈极显著和显著正相关,相关系数分别为0.586、0.522、0.542和0.350,各农艺性状与单株产量的相关程度为:穗长>行粒数>穗粗>百粒重>雄穗长>穗位高>株高;产量耐早性指数表明,不同年代玉米品种耐旱性差异显著,随年代的变化,耐旱性呈逐渐增强趋势,2000年代玉米品种耐旱性显著优于其他年代品种.[结论]采用产量耐早性指数结合主要农艺性状耐早系数可有效评价玉米品种耐早性.参试品种中耐旱性极强的品种为先玉335和沈单16号;耐旱性强的品种为黄417、沈单7号、掖单2号、吉单180、掖单13、农大108、登海9号、鲁单981等.  相似文献   

12.
26份自交系田间抗旱性鉴定与评价   总被引:1,自引:1,他引:0  
目的】分析26份玉米自交系的主要农艺性状、籽粒产量、耐旱指数、耐旱系数等性状相关性,进行耐旱性综合性评价。【方法】采用玉米种质耐旱指数法。【结果】玉米开花期,遭遇大气高温和土壤缺水会导致玉米花粉活力下降,受精结实不良,减产严重。各主要性状与籽粒产量的相关系数大小为耐旱指数>穗位>穗长>ASI>行粒数>秃尖长>穗行数。其中耐旱指数、穗位、穗长、株高、ASI值、行粒数等籽粒产量正相关;秃尖长等与籽粒产量负相关。【结论】26份自交系中耐旱强的自交系共11份(42.31%),耐旱性中等的7份(26.92%);耐旱性较弱的材料8份(30.77%)。  相似文献   

13.
【目的】光系统II的非光化学叶绿素荧光淬灭是高等植物响应环境变化最快速的光保护机制,玉米具备叶肉和维管束鞘2种叶绿体结构,本研究通过比较2个玉米品种的光合耐旱能力,探究维管束鞘叶绿体的非光化学淬灭对玉米耐旱性的意义。【方法】以成单30和仲玉3号2个玉米品种为研究材料,设置土壤相对含水量为70%—80%田间持水量(FWC)(充足浇水,对照)、50%—60% FWC(中度干旱胁迫)和35%—45% FWC(重度干旱胁迫)3个土壤水分梯度处理。测定玉米叶片的水分状况、叶绿素含量、活性氧积累、质膜透性和气体交换等参数;应用叶绿素荧光动力学显微成像观测,比较玉米叶肉和维管束鞘叶绿体的叶绿素荧光参数Fv/Fm和NPQ;通过免疫印迹法,分析玉米叶肉和维管束鞘细胞光系统II亚基S(PsbS)稳态水平的变化差异;采用蓝-绿胶温和电泳分离,检测玉米光系统II蛋白复合体的水平。【结果】干旱胁迫导致叶片气孔导度和蒸腾速率下降,2个玉米品种间没有明显差异。但成单30在重度干旱下表现出更好的水分状况、更低的活性氧损伤以及更高的光合速率。玉米叶肉和维管束鞘叶绿体的NPQ水平及PsbS蛋白含量受干旱诱导明显上升,维管束鞘中的上升更显著,成单30表现尤为突出。不同于仲玉3号光系统II蛋白复合体水平的下降,重度干旱胁迫后,成单30的捕光蛋白三聚体水平在叶肉和维管束鞘细胞中均有所升高。【结论】2个玉米品种的光合机构对干旱胁迫的气孔响应能力相当,但相较仲玉3号,成单30的维管束鞘叶绿体具备更优越的非光化学淬灭能力,这对其更强的非气孔限制的光合耐旱性具有积极意义。  相似文献   

14.
花期干旱胁迫对籼稻近等基因系水分和光合生理的影响   总被引:1,自引:0,他引:1  
【Objective】An indica near-isogenic rice lines were treated with drought stress at flowering stage to study water and photosynthetic physiology changes of flag leaf. By analyzing the relationships among agronomic phenotype characters, water and photosynthetic physiology changes and fertility of rice, the authors try to accumulate data for drought tolerance evaluation of rice.【Method】The rice materials were suffered with drought stress begin from heading of main shoot for 15 days, water and photosynthetic physiology parameters were measured after treatment.【Result】The results showed that the indica near-isogenic rice represented various drought tolerance, and there was no correlation between drought tolerance and agronomic phenotype characters, neither with physiological activities of rice under well watered condition. However, under drought stress at flowering stage, the correlation coefficient between drought resistance indexes and changes of water content of flag leaf, water potential of flag leaf, stomatal conductance of flag leaf were 0.614**, 0.514** and 0.541**, respectively. This indicates that rice drought tolerance has a correlation with changes of water content, water potential and stomatal conductance. In addition, except the correlation coefficient between drought resistance indexes and changes of Fv/Fm of flag leaf (0.470*), there was no correlation between rice drought tolerance and photosynthetic physiology.【Conclusion】In summery, the changes of water physiology parameters could be used as indicators for screening rice with drought tolerance.  相似文献   

15.
【目的】研究玉米受旱前后的籽粒性状变化及其与产量和抗旱性的关系,为玉米抗旱育种和节水栽培提供理论依据。【方法】以大田充分灌水量为100%,设置80%、60%、40%、20%和0%共5个欠量灌水比例,在此6种水分梯度水平上,测定10份玉米杂交种的10个籽粒构型相关性状指标,研究籽粒性状随灌水比例的变化趋势,以及与抗旱性的关系。【结果】随着灌水比例减少和旱情加重,玉米单株粒重、百粒重、粒长、粒宽、矩形性、粒色R和粒色G逐渐降低,而籽粒的粒厚、圆形性和粒色B则逐渐增加;单株粒重、百粒重、粒长、粒宽、粒厚、圆形性、矩形性、粒色R、粒色G在不同灌水比例间差异达到显著以上水平。【结论】玉米杂交种籽粒性状对干旱胁迫有明显的响应。单株粒重、百粒重、粒长、粒宽、粒厚、圆形性、矩形性、粒色R、粒色G可作为玉米抗旱鉴定和抗旱育种的参考指标。  相似文献   

16.
【目的】探索高原环境下青稞花后干旱胁迫响应模型及青稞受旱程度的快速、有效的检测方法,为青稞节水高产栽培提供理论依据和技术参考。【方法】利用干旱棚进行青稞盆栽模拟花后干旱,设轻度(对照灌水量的75%,LD)、中度(对照灌水量的50%,MD)和重度(对照灌水量的25%,HD)干旱胁迫处理,采用WP4C水势仪、LI-6400XT和OS5P便携式脉冲调制叶绿素荧光仪,分别测定叶水势(LWP)、叶蒸发冷却值(ΔT)、光合气体交换参数和叶绿素荧光变量;成熟后获取产量数据;利用数字图像法对籽粒表型进行定量分析,并依粒二维面积大小将籽粒划分大、中、小3个粒级。【结果】干旱水平与叶水势呈线性正相关,而与叶蒸发冷却值(ΔT)呈线性显著负相关(P0.05),两者均能灵敏反映青稞受旱程度。LD、MD和HD处理与CK相比,干旱胁迫导致旗叶净光合速率(P_n)、气孔导度(gs)、胞间CO_2浓度(C_i)、蒸腾速率(T_r)、最大荧光(F_m)、PS II的最大量子效率(F_v/F_m)、PS II的实际光量子产量(ΦPSII)、光化学淬灭(qP)、光合电子传递的相对速率(ETR)呈降低趋势,而气孔限制(L_s)、初始荧光(F_o)、非光化学淬灭(NPQ)呈上升趋势,且MD和HD处理较CK对以上参数差异明显。随着干旱胁迫的加重,青稞千粒重、籽粒产量、单株粒重、干物质积累量和经济系数降低趋势愈明显。相关分析表明,干旱胁迫诱导gs降低,直接导致?T上升,间接引起FWP下降,使得Fo、NPQ上升,F_m、F_v/F_m、ΦPSII、ETR、qP和P_n降低,进而引起粒二维面积、粒周长、粒长和粒宽减小,而粒圆度值增大;小粒占比明显增加,而大粒占比明显下降。【结论】LWP和?T对青稞花后干旱胁迫反映灵敏,可作为评价其受旱的指标。随着干旱胁迫加重,青稞旗叶光合和叶绿素荧光参数的变化加大,并造成5个籽粒表型性状值及粒级逐渐减小,最终导致千粒重、单穗粒重、籽粒产量、干物质积累量和经济系数下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号