首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary This study examined the response of rice (Oryza sativa L.) plants at the pretransplant/nursery stage to inoculation with vesicular-arbuscular mycorrhizal (VAM) fungi and fluorescent Pseudomonas spp., singly or in combination. The VAM fungi and fluorescent Pseudomonas spp. were isolated from the rhizosphere of rice plants. In the plants grown in soil inoculated with fluorescent Pseudomonas spp. alone, I found increases in shoot growth, and in root length and fine roots, and decreases in root growth, and P and N concentrations. In contrast, in the plants colonized by VAM fungi alone, the results were the reverse of those of the pseudomonad treatment. Dual inoculation of soil with VAM fungi and fluorescent Pseudomonas spp. yielded plants with the highest biomass and nutrient acquisition. In contrast, the plants of the control treatment had the lowest biomass and nutrient levels. The dual-inoculated plants had intermediate root and specific root lengths. The precentages of mycorrhizal colonization and colonized root lengths were significantly lower in the dual-inoculated treatment than the VAM fungal treatment. Inoculation of plants with fluorescent Pseudomonas spp. suppressed VAM fungal colonization and apparently reduced photosynthate loss to the mycorrhizal associates, which led to greater biomass and nutrient levels in dual-inoculated plants compared with plants inoculated with VAM fungi alone. Dual inoculation of seedlings with fluorescent Pseudomonas spp. and VAM fungi may be preferable to inoculation with VAM alone and may contribute to the successful establishment of these plants in the field.  相似文献   

2.
Summary The effects of P, N and Ca+Mg fertilization on biomass production, leaf area, root length, vesiculararbuscular mycorrhizal (VAM) colonization, and shoot and root nutrient concentrations of pretransplant rice (Oryza sativa L.) plants were investigated. Mycorrhizal plants generally had a higher biomass and P, N, K, Ca, Mn, Fe, Cu, Na, B, Zn, Al, Mg, and S shoot-tissue nutrient concentrations than non-mycorrhizal plants. Although mycorrhizal plants always had higher root-tissue nutrient concentrations than non-mycorrhizal plants, they were not significantly different, except for Mn. N fertilization stimulated colonization of the root system (colonized root length), and increased biomass production and nutrient concentrations of mycorrhizal plants. Biomass increases due to N were larger when the plants were not fertilized with additional P. P fertilization reduced the colonized root length and biomass production of mycorrhizal plants. The base treatment (Ca+Mg) did not significantly affect biomass production but increased the colonized root length. These results stress the importance of evaluating the VAM rice symbiosis under various fertilization regimes. The results of this study suggest that pretransplant mycorrhizal rice plants may have a potential for better field establishment than non-mycorrhizal plants.  相似文献   

3.
Maize (Zea mays L.) and sorghum (Sorghum bicolor L.) Moench (local variety called Masakwat) plants were grown in a sterilized low-P soil in the greenhouse for 12 weeks. Each plant species was either mycorrhizal with vesicular-arbuscular mycorrhizal (VAM) fungi, non-mycorrhizal but minimally fertilized with soluble P, or non-mycorrhizal but highly fertilized with soluble P. Drought stress was imposed after 4 weeks at weekly intervals. Under unstressed conditions, leaf area, shoot dry weights, xylem pressure, and soil water potentials were similar for VAM and the two non-mycorrhizal P-fertilized treatments but each of the VAM-infected species had a greater total root length. Total P uptake was similar for the maize treatments but higher for VAM than non-mycorrhizal P-fertilized sorghum treatments. Under drought-stressed conditions, the growth parameters and soil water potential were similar for all maize treatments but they were reduced by mycorrhizal inoculation in sorghum. Greater water extraction occurred in drought-stressed mycorrhizal sorghum. In both plant species, total P uptake and P uptake per unit root length (including unstressed species) were significantly enhanced in non-mycorrhizal P-fertilized treatments compared with the mycorrhizal treatment. Except for the root dry weight of sorghum plants, there were no differences in the growth parameters and P uptake between minimally and highly P-fertilized non-mycorrhizal treatments for either maize or sorghum. The increased total root length in drought-stressed mycorrhizal sorghum plants and the similar infected root lengths in unstressed and drought-stressed sorghum plants may have caused high C partitioning to drought-stressed mycorrhizal roots and therefore caused the reduced growth parameters in mycorrhizal plants compared to the non-mycorrhizal P-fertilized counterparts. The results indicate that P fertilization in addition to mycorrhizal inoculation may improve the drought tolerance of maize and sorghum plants.  相似文献   

4.
Summary The effect of inoculation with a selected isolate of Glomus etunicatum Becker and Gerdemann and one of G. intraradices Schenck and Smith on the growth and nutrient content of Macroptilium atropurpureum Urb. cv. Siratro and Aeschynomene americana L., at applied P levels of 10, 30, 60, and 120 kg ha-1, was studied under field conditions. At all P levels and for all harvests, the shoot dry mass of Siratro and A. americana were greater for the plants inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungi than the control plants. Differences between the VAM fungus-inoculated and the control plants were most marked between 30 and 90 kg ha-1 of applied P and diminished at 120 kg ha-1. At the first harvest of Siratro, the plants inoculated with G. etunicatum had a greater shoot dry mass than those inoculated with G. intraradices, for all levels of applied P. However, for subsequent harvest of Siratro and for the one harvest of A. americana the response of shoot dry mass to the two VAM fungi was equivocal. Fungal inoculation gave at least a 30% saving in the amount of P fertilizer required (40 kg ha-1) for the maximum yield. The plants inoculated with VAM fungi had a greater tissue concentration and total content of P and N than the control plants at low and intermediate levels of applied P. The percentage of root colonized by VAM fungi for the inoculated plants of the two legumes increased linearly with P additions up to 60 kg ha-1. The conclusion is that under amended (limed and fertilized) soil conditions, inoculation with selected VAM fungi can improve the establishement and growth of forage legumes in fields that contain ineffective populations of native VAM fungi.  相似文献   

5.
The effect of dual inoculation on three local cultivars (Miss Kelly, Portland Red, Round Red) of red kidney beans (Phaseolus vulgaris, L.) with four strains of Rhizobium leguminosarum bv. phaseoli and three species of vesicular-arbuscular mycorrhizal (VAM) fungi was examined in a clay loam soil. Rhizobial strains B 17 and B 36, each paired with Glomus pallidum or G. aggregatum, were the most effective pairings for cv. Miss Kelly. Inoculation of Miss Kelly with any of these pairings significantly (P=0.05) increased growth, number of nodules, nodule dry weight, mycorrhizal colonization, and shoot N and P content than other pairings. The growth response by cv. Portland Red was significantly improved by pairings of B 36 or B 17 with any of the three VAM fungi. For both cultivars (Miss Kelly and Portland Red), CIAT 652 or T 2 paired with VAM fungi did not give a positive growth response. In contrast, for cv Round Red the T 2 rhizobial strain in combination with any of the three VAM fungi showed a significant (P=0.05) growth improvement in all parameters. Our results suggest that while dual inoculation of VAM fungi and rhizobia significantly improves the growth response by red kidney beans, the best pairings of VAM fungus and rhizobia for each cultivar need to be carefully selected.  相似文献   

6.
Summary Five selected vesicular-arbuscular mycorrhizal (VAM) fungi and the native population of a cambisol were tested in sterilized soil conditions, with Trifolium pratense as host plant. Indigenous fungi were the most effective in enhancing plant growth and P uptake, which were correlated with a higher root colonization. Selected fungi did not spread further in the root after 4 months from sowing, occupying less than 10% at the end of the experiment; inoculation with Glomus fasciculatum E3 yielded a higher dry-matter production than any other VAM species, but did not significantly increase shoot P concentration above that of the non-mycorrhizal control. Interactions between indigenous and introduced VAM fungi were studied in unsterilized soil. Results from fresh and dry weights of shoots and the percentage of fungal infection showed that the native endophytes competed more efficiently in colonizing the root. Inoculation with selected VAM species did not improve plant growth. Sterilization altered the inorganic P fractions of the soil, particularly those extracted with NH4F and NaOH. Sterilized soil contained less inorganic P than unsterilized soil, but more soluble P. By the end of the experiment in sterilized soil, P extracted with NH4Cl, NH4F and NaOH and total inorganic P were significantly different among inoculation treatments, suggesting that VAM fungi may differ in their ability to take up P.  相似文献   

7.
接种丛枝菌根真菌(AMF)能显著促进大豆生长和对磷的吸收,但不同磷效率基因型大豆对AMF接种的响应还少有报道。为探究接种AMF对不同磷效率基因型大豆生长和磷转运基因表达的影响,以磷高效大豆BX10和磷低效大豆BD2为试验材料进行盆栽试验,设置接菌和不接菌处理,对大豆干重、菌根侵染性状、氮磷养分含量、根系性状,以及菌根诱导的磷转运基因表达进行了分析。结果表明, AMF接种显著促进了大豆的磷吸收,并且接菌效果存在显著的基因型差异,接种AMF显著增加了BD2的地上部干重、磷含量以及植株总磷吸收量,但只增加了BX10的地上部磷含量和总磷吸收量,对植株地上部干重没有显著影响。无论接种与否,BD2的地上部磷含量均显著高于BX10,表明磷低效的BD2具有较高的植株体内磷转运能力。不接菌条件下,两个大豆基因型根系性状无显著差异;接种AMF后BX10的根系体积和根系平均直径均显著高于BD2。BD2的菌根生长反应(MGR)和菌根磷反应(MPR)均显著高于BX10,对菌根依赖性更高。此外,在接菌处理的BD2根系,代表菌根途径磷吸收的磷转运基因GmPT8、GmPT9和GmPT10表达均显著高于BX10;相应地,BD2的总磷吸收量也显著高于BX10。以上结果表明,接种AMF对促进磷低效大豆BD2生长和磷吸收的作用更大,这可能主要是由于BD2菌根途径的磷吸收量较高,体内磷转运效率较高。以上结果将为研究AMF接种对磷吸收的贡献提供理论依据。  相似文献   

8.
Summary In a growth chamber study we examined the influence of a plant growth-promoting rhizobacterium, Pseudomonas putida R-20, and an acid-tolerant vesicular-arbuscular mycorrhizal (VAM) fungus, Glomus intraradices 25, on Medicago sativa L. and Lotus corniculatus L. growth and nodule development. Seedlings were planted in an acidic (pH 5.5), P-deficient soil containing re-established native microflora (minus VAM) and appropriate rhizobia, and inoculated with the rhizobacterium, the VAM fungus, or both. The plants were assayed at three intervals for up to 10–11 weeks. The growth-promoting rhizobacteria alone increased alfalfa shoot mass by 23% compared to all other treatments, but only at 8 weeks of growth, apparently by promoting nodulation and N2 fixation (acetylene reduction activity). The presence of VAM, either alone or in combination with the rhizobacteria, generally decreased root length but only at 8 weeks also. As a group, the inoculation treatments increased all nodular measurements by 10 weeks of growth. Few treatment effects were found at 7 and 9 weeks for birdsfoot trefoil; neither plant nor nodular measurements differed among treatments. By 11 weeks, shoot mass was increased by the rhizobacteria alone by 36% compared to the control. As a group, the inoculation treatments all showed increased nodular responses by this time. The rhizobacteria stimulated mycorrhizal development on both plant species, but only at the initial samplings. No synergistic effects between the plant growth-promoting rhizobacterium and VAM inoculation were found. Although these results lend credence to the concept of managing microorganisms in the rhizosphere to improve plant growth, they emphasize the necessity for a more thorough understanding of microbial interactions as plants mature.  相似文献   

9.
Plants can mediate interactions between aboveground herbivores and belowground decomposers as both groups depend on plant-provided organic carbon. Most vascular plants also form symbiosis with arbuscular mycorrhizal fungi (AMF), which compete for plant carbon too. Our aim was to reveal how defoliation (trimming of plant leaves twice to 6 cm above the soil surface) and mycorrhizal infection (inoculation of the fungus Glomus claroideum BEG31), in nutrient poor and fertilized conditions, affect plant growth and resource allocation. We also tested how these effects can influence the abundance of microbial-feeding animals and nitrogen availability in the soil. We established a 12-wk microcosm study of Plantago lanceolata plants growing in autoclaved soil, into which we constructed a simplified microfood-web including saprotrophic bacteria and fungi and their nematode feeders. We found that fertilization, defoliation and inoculation of the mycorrhizal fungus all decreased P. lanceolata root growth and that fertilization increased leaf production. Plant inflorescence growth was decreased by defoliation and increased by fertilization and AMF inoculation. These results suggest a negative influence of the treatments on P. lanceolata belowground biomass allocation. Of the soil organisms, AMF root colonization decreased with fertilization and increased with defoliation. Fertilization decreased numbers of bacterial-feeding nematodes, probably because fertilized plants produced less root mass. On the other hand, bacterial feeders were more abundant when associated with defoliated than non-defoliated plants despite defoliated plants having less root mass. The AMF inoculation per se increased the abundance of fungal feeders, but the reduced and increased root AM colonization rates of fertilized and defoliated plants, respectively, were not reflected in the numbers of fungal feeders. We found no evidence of plant-mediated effects of the AM fungus on bacterial feeders, and against our prediction, soil inorganic nitrogen concentrations were not positively associated with the concomitant abundances of microbial-feeding animals. Altogether, our results suggest that (1) while defoliation, fertilization and AMF inoculation all affect plant resource allocation, (2) they do not greatly interact with each other. Moreover, it appears that (3) while changes in plant resource allocation due to fertilization and defoliation can influence numbers of bacterial feeders in the soil, (4) these effects may not significantly alter mineral N concentrations in the soil.  相似文献   

10.
A study was undertaken to evaluate the yield, fruit size, and vegetative growth of three strawberry cultivars inoculated with three vesicular‐arbuscular mycorrhizal (VAM) species at three phosphorus (P) fertility levels. Vesicular‐arbuscular mycorrhiza inoculation and P fertility had no effect on inflorescence or flower number, total yield, fruit weight, or crown number. Higher levels of P did not increased total dry shoot weight, total fresh shoot, weight leaf area, total dry root weight, and leaf number in the present of VAM. However, the cultivars responded differently to VAM inoculation. Vesicular‐ arbuscular mycorrhiza inoculation in combination with P at all levels increased total dry and fresh shoot weight, leaf area, and leaf number compared to application of P alone. The results indicated that it may be possible to increase strawberry stolon production by inoculating the strawberry plants with VAM, a technique which might be useful in nurseries to produce certified strawberry plants.  相似文献   

11.
Summary Vesicular-arbuscular mycorrhizal (VAM) fungi affect diverse aspects of plant form and function. Since mycorrhiza-mediated changes in host-plant responses to root colonization by different VAM fungi vary widely, it is important to assess each endophyte for each specific effect it can elicit from its host as part of the screening process for effectiveness. Three species of VAM fungi and a mixture of species were compared with non-VAM controls for their effects on soil organic matter contents and on nutrition and morphology in two varieties (native and hybrid) of corn (Zea mays L.) and one of sunflower (Helianthus annuus L.) in P-sufficient and N-deficient soil in pot cultures. Differences in soil organic matter due to the fungal applications were highly significant with all host plants. Native corn responded more to VAM colonization than the hybrid did; differences in treatments were significant in leaf area, plant biomass, and root: shoot ratio in the former, but not in the latter. Responses in the sunflower were similar to those in the native corn. Significant VAM treatment-related differences in shoot N and P contents were not reflected in shoot biomass, which was invariant. Correlations between plant or soil parameters and the intensity of VAM colonization were found only in soil organic matter with the native corn, in specific leaf area in the hybrid corn, and in plant biomass in the sunflower. The presence of the different endophytes and not the intensity of colonization apparently elicited different host responses.  相似文献   

12.
Summary A field study carried out in a sandy, relatively acid Senegalese soil with a low soluble P content (7 ppm) and low vesicular-arbuscular mycorrhizal (VAM) populations showed that soybean responded toGlomus mosseae inoculation when the soluble P level in the soil had been raised by the addition of 22 kg P ha–1. In P-fertilized plots, N2 fixation of soybean, assessed by the A value method, was 109 kg N2 fixed hat when plants were inoculated withRhizobium alone and it reached 139 kg N2 fixed ha–1 when plants were dually inoculated withRhizobium andGlomus mosseae using an alginate bead inoculum. In addition to this N2 fixation increase (+28%),Glomus mosseae inoculation significantly improved grain yield (+13%) and total N content of grains (+16%). This success was attributed mainly to the low infection potential of the native VAM populations in the experimental site. In treatments without solubleP or with rock phosphate, no effect of VAM inoculation was observed.  相似文献   

13.
An experiment was conducted under greenhouse conditions to evaluate the effects of vesicular arbuscular mycorrhizal (VAM) fungi on the external P requirements of barley and soybeans. The plants were grown in pots containing a P-deficient soil. A range of 10 P levels was obtained by adding 0, 20, 30, 40, 50, 60, 70, 110, 160, or 310 mg P kg-1 as NaH2PO4 2H2O. Half of the pots were inoculated with the VAM fungus Glomus intraradices. The P concentration in the soil solution was determined using an adsorption isotherm and plotted against the relative yield. Barley did not respond to mycorrhizal inoculation and we concluded that P nutrition was not the limiting factor on the growth of this lowmycotrophic plant. In contrast, mycorrhizal inoculation stimulated the growth of soybeans. The external P requirements were 0.110 g ml-1 for mycorrhizal and 0.148 g ml-1 for non-mycorrhizal soybeans to obtain 80% of the maximum yield. In terms of P fertilization this corresponds to a saving of 222 kg P2O5 ha-1. The mycorrhizal dependency of the soybean was highly correlated with the P concentration in the soil solution and it is proposed that both values should be displayed together.  相似文献   

14.
Leaf and root (tuber) nutrient uptake patterns of cassava (Manihot esculenta Crantz) alley-cropped with gliricidia (Gliricidia sepium), leucaena (Leucaena leucocephala), and senna [(Senna (syn. Cassia) siamea] as influenced by vesicular-arbuscular mycorrhizal (VAM) inoculation in a degraded Alfisol were investigated in consecutive years. The cassava plants were mulched with fresh prunings of each hedgerow tree species at 2-month intervals in the second and third years of alley cropping. While VAM inoculation significantly influenced the root uptake of nutrients, the leaf uptake was not affected except for the uptake of P. In most cases, there was no difference in the nutrient concentration between inoculated and uninoculated plants, either in the leaf or in the root, indicating that the productivity of cassava was regulated by the amount of nutrients the roots could absorb. In spite of similar total soil N in all inoculated and uninoculated alley-cropped cassava plots and similar exchange-able soil K contents in inoculated and uninoculated alley-cropped cassava plots with leucaena and senna, greater uptake of N, P, and K and greater concentrations of K were observed in roots of inoculated alley-cropped cassava with gliricidia and leucaena than with senna. These results indicated that greater mineralization and availability of nutrients to cassava roots from prunings of nodulating gliricidia and leucaena than from non-nodulating senna may be important, particularly with efficient VAM inoculation, in these alley-cropping systems. Also, for similar nutrients in the inoculated and uninoculated cassava soils alley-cropped with each hedgerow species, VAM inoculation significantly enhanced cassava root dry weights, indicating that an effective VAM fungus can be an agent of greater nutrient uptake in a competitive environment.  相似文献   

15.
Com plants were grown in a non‐sterile soil in a greenhouse or in hydroponic culture in a growth chamber. We studied the influence of chitinolytic, pectinolytic, P‐solubilizing bacterial isolates, and a collection of bacterial strains on the development of native vesicular‐arbuscular mycorrhizal (VAM) populations, colonization of roots by the VAM fungus Glomus fasciculatum and their influence on the phosphorus (P) nutrition and growth of plants. As compared with VAM native control, the most potent stimulants for root colonization of soil‐grown plants by the VAM native population was a strain of Agrobacterium radiobacter and isolate H30. All bacteria used significantly supressed shoot fresh weight of mycorrhizal plants (‐13% up to ‐37%), with the exception of Agrobacterium. Under hydroponic conditions, the P‐solubilizing isolate F27 significantly stimulated the intensity of mycorrhiza, the number of arbuscules in roots, and increased both the P concentration and P content in corn shoots (+30% and +35%), than did the VAM fungus alone. Isolate F27 significantly increased shoot dry weight as compared with the mycorrhizal control. The other bacteria did not influence biomass production of corn.  相似文献   

16.
For efficient use of mycorrhizal inoculum the effectiveness of the isolate used and the rate of application required for maximum colonization must be known. The objectives of this research were to (1) define the lower limit of inoculum density required for maximum colonization of Uniola paniculata in a commercial nursery and (2) evaluate the performance of a selected native dune vesicular-arbuscular mycorrhizal (VAM) isolate versus a commercially available non-dune VAM (foreign) isolate on three diverse Florida beaches. An inoculum-dilution study was conducted in a commercial nursery with cutroot inoculum of a Glomus sp. that had been isolated from a Florida dune. Maximum colonization was achieved with approximately 1 propagule ml-1 of growth medium. In a separate nursery study, 10 inoculation treatments (combinations of inoculum source and level) were established in the commercial nursery. Treatments included cut-root and sheared-root inoculum of the native dune isolate, and Nutri-Link, a commercial inoculum of G. intraradices. Colonized plants from selected treatments were transplanted to beach sites around Florida. At Miami Beach, after one growing season, the shoot mass of plants inoculated with the native isolate was approximately twice that of plants inoculated with the foreign isolate. At Katherine Abbey Hanna Park and Eglin Air Force Base there were no significant inoculum source effects on shoot mass or root length after one growing season. However, the native isolate produced a greater colonized root length than the foreign isolate in all plantings. The soil hyphal density was measured at Eglin Air Force Base, and the results showed that plants inoculated with the native isolate had more soil hyphae (4.33 mg-1) than plants inoculated with the foreign isolate (3.65 mg-1) or the non-inoculated plants (2.12 mg-1). Even where there were no obvious shoot growth responses, mycorrhizal inoculation may have an important effect on dune stabilization, as soil hyphae are known to bind sand grains and improve dune stability.Publishedas Florida Agriculture Experiment Station Journal SeriesPublishedas Florida Agriculture Experiment Station Journal Series  相似文献   

17.
The effects of three commonly used fungicides on the colonization and sporulation by a mixture of three arbuscular mycorrhizal (AM) fungi consisting of Glomus etunicatum (Becker & Gerd.), Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe, and Gigaspora rosea (Nicol. & Schenck) in symbiosis with pea plants and the resulting response of the host-plant were examined. Benomyl, PCNB, and captan were applied as soil drenches at a rate of 20 mg active ingredient kg-1 soil 2 weeks after transplanting pea seedlings in a silty clay-loam soil containing the mixed inocula of AM fungi (AM plants). Effects of fungicides were compared to untreated plants that were inoculated with fungi (AM control). The effect of mycorrhizal inoculation on plant growth was also examined by including nonmycorrhizal, non-fungicide-treated plants (non-AM control). Fungicides or inoculation with AM fungi had only a small effect on the final shoot weights of pea plants, but had greater effects on root length and seed yield. AM control plants had higher seed yields and lower root lengths than the corresponding non-AM plants, and the fungicide-treated AM plants had intermediate yields and root lengths. Seed N and P contents were likewise highest in AM control plants, lowest in non-AM plants, and intermediate in fungicide-treated AM plants. All three fungicides depressed the proportion (%) of root length colonized by AM fungi, but these differences did not translate to reductions in the total root length that was colonized, since roots were longer in the fungicide-treated AM plants. Pea plants apparently compensated for the reduction in AM-fungal metabolism due to fungicides by increasing root growth. Fungicides affected the population of the three fungi as determined by sporulation at the final harvest. Captan significantly reduced the number, relative abundance, and relative volume of G. rosea spores in the final population relative to the controls. The relative volume of G. etunicatum spores was greater in all the fungicide-treated soils, while G. mosseae relative volumes were only greater in the captan-treated soil. These findings show that fungicides can alter the species composition of an AM-fungal community. The results also show that AM fungi can increase seed yield without enhancing the vegetative shoot growth of host plants.  相似文献   

18.
随着全球范围内磷矿资源短缺问题的日益严重,间作或菌根技术强化作物对土壤磷(P)的利用及增产增收的效应受到越来越多的关注。通过三室隔网盆栽模拟试验研究了分室磷处理[不添加磷(P0)、添加有机磷(OP50)、添加无机磷(IOP50)]和根室不接种(NM)、根室接种丛枝菌根真菌Glomus mosseae(GM)对与大豆间作的玉米的生长及磷素利用的影响。研究结果表明:所有复合处理中,以间作?GM?IOP50组合处理下的玉米根系最短和地上部生物量最高;OP50处理下,间作玉米的菌根侵染率显著高于单作处理。间作条件下,无论分室磷添加与否,接种GM处理的玉米地上部生物量明显高于NM处理;接种GM处理的玉米根系生物量和株高均显著高于NM处理,且根系生物量以间作?GM?OP50组合处理下最高。接种GM条件下,P0、IOP50、OP50处理下的间作植株生物量较单作处理分别提高45.98%、111.33%、33.56%。单作条件下,无论分室磷添加与否,接种GM处理的玉米地上部磷含量均显著高于NM处理;无论何种种植模式及分室磷添加与否,接种GM处理的植物根系磷含量均显著高于NM处理。无论磷添加与否,间作?GM组合条件下的玉米地上部磷吸收量均显著较高,其中IOP50处理下的地上部磷吸收量显著高于OP50处理。间作?GM组合条件下,IOP50处理玉米根系的磷吸收效率均显著高于OP50处理。可见,接种GM、分室磷添加和间作各自在一定程度上促进了玉米的生长。综合菌根侵染、生物量及磷含量与吸收量、磷吸收效率等指标,所有复合处理中以间作?GM?IOP50组合对玉米地上部的促生作用最好,玉米磷素吸收最多,可望有效强化滇池流域红壤坡耕地磷素的利用。  相似文献   

19.
Summary Cucumber was grown in a partially sterilized sand-soil mixture with the vesicular-arbuscular mycorrhizal (VAM) fungus Glomus fasciculatum or left uninoculated. Fresh soil extract was places in polyvinyl chloride tubes without propagules of mycorrhizal fungi. Root tips and root segments with adhering soil, bulk soil, and soil from unplanted tubes were sampled after 4 weeks. Samples were labelled with [3H]-thymidine and bacteria in different size classes were measured after staining by acridine orange. The presence of VAM decreased the rate of bacterial DNA synthesis, decreased the bacterial biomass, and changed the spatial pattern of bacterial growth compared to non-mycorrhizal cucumbers. The [3H]-thymidine incorporation was significantly higher on root tips in the top of tubes, and on root segments and bulk soil in the center of tubes on non-mycorrhizal plants compared to mycorrhizal plants. At the bottom of the tubes, the [3H]-thymidine incorporation was significantly higher on root tips of mycorrhizal plants. Correspondingly, the bacterial biovolumes of rods with dimension 0.28–0.40×1.1–1.6 m, from the bulk soil in the center of tubes and from root segments in the center and top of tubes, and of cocci with a diameter of 0.55–0.78 m in the bulk soil in the center of tubes, were significantly reduced by VAM fungi. The extremely high bacterial biomass (1–7 mg C g-1 dry weight soil) was significant reduced by mycorrhizal colonization on root segments and in bulk soil. The incorporation of [3H]-thymidine was around one order of magnitude lower compared to other rhizosphere measurements, probably because pseudomonads that did not incorporate [3H]-thymidine dominated the bacterial population. The VAM probably decreased the amount of plant root-derived organic matter available for bacterial growth, and increased bacterial spatial variability by competition. Thus VAM plants seem to be better adapted to compete with the saprophytic soil microflora for common nutrients, e.g., N and P, compared to non-mycorrhizal plants.  相似文献   

20.
A field experiment was conducted to study and compare the effectiveness of two arbuscular mycorrhizal fungi (AMF), Glomus macrocarpum (GM) and Glomus fasciculatum (GF) on three accessions of Artemisia annua. The AM inoculation significantly increased the production of herbage, dry weight of shoot, nutrient status (P, Zn and Fe) of shoot, concentration of essential oil and artemisinin in leaves as compared to non-inoculated plants. The extent of growth, nutrient concentration and production of secondary plant metabolites varied with the fungus–plant accession combination. The mycorrhizal dependency of the three accessions was related to the shoot: root ratio. Comparing the two fungal inoculants in regard to increase in essential oil concentration in shoot, the effectiveness of GF was more than that of GM. While in two accessions, GM was more effective in enhancing artemisinin concentration than GF. Increase in concentration of essential oil was found to be positively correlated to P-status of the plant. Conversely, no correlation was found between shoot-P and artemisinin concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号