首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study tested the hypothesis that an increased branch density (i.e., the percentage of alpha-1,6-glucosidic linkage) in water-soluble, starch-related alpha-glucans leads to reduced glucose release by pancreatin and amyloglucosidase. Malto-oligosaccharides and phytoglycogens were structurally analyzed and compared for their susceptibility to the enzymes. Malto-oligosaccharides were prepared by subjecting starch to alpha-amylase and beta-amylase followed by ultrafiltration to enrich alpha-1,6-glucosidic linkages. The branch density of the oligosaccharide products reached up to 17%, determined by (1)H NMR. Phytoglycogens were extracted from six sweet corn lines, and analysis showed similar chain length distributions and a branch density range from 8.8 to 9.5%, as compared with 4.6% for normal corn starch and 5.7% for waxy corn starch. The digestion behavior of these alpha-glucans was correlated to branch density: Highly branched malto-oligosaccharides had much reduced glucose release as compared with starch, whereas the reduction of glucose release from phytoglycogen was relatively low. Particularly, the reduction of glucose release associated with enhanced branch density was caused by reduced hydrolysis by amyloglucosidase.  相似文献   

2.
The in vitro starch digestion rate and estimated glycemic index (GI) of oat flours and oat starches from typical and high β-glucan oat lines were evaluated along with the impact of heating on starch digestion. Flour from oat lines ('Jim', 'Paul', IA95, and N979 containing 4.0, 5.3, 7.4, and 7.7% β-glucan, respectively) was digested by pepsin and porcine pancreatin. To determine the impact of heating on starch digestion, oat slurries were prepared by mixing oat flour and water (1:8 ratio) and heating for 10 min prior to digestion. Viscosity, as measured on a Rapid Visco Analyzer, increased with increases in concentration and molecular weight of β-glucan. The in vitro starch digestion of oat flours and a control, white bread made from wheat flour, increased as the digestion time increased. Starch digestion of oat flour was slower than that of the control (p < 0.05). Heat treatment of oat-flour slurries increased the starch digestion from a range of 31-39% to a range of 52-64% measured after 180 min of in vitro digestion. There were no differences in starch digestibility among oat starches extracted from the different oat lines. The GI, estimated by starch hydrolysis of oat flours, ranged from 61 to 67, which increased to a range of 77-86 after heating. Oat-flour slurries prepared from IA95 and N979 lines with high β-glucan concentrations had lower GI values than did slurries made from Jim and Paul lines. Starch digestion was negatively correlated with β-glucan concentrations in heated oat-flour slurries (R(2) = 0.92). These results illustrate that the oat soluble fiber, β-glucan, slowed the rate of starch digestion. This finding will help to develop new food products with low GI by using oat β-glucan.  相似文献   

3.
Structures and physicochemical properties of six wild rice starches   总被引:2,自引:0,他引:2  
Starches from six wild rice cultivars were studied for their chemical structures and physicochemical properties and compared with a long-grain rice starch. The six wild rice starches were similar in morphological appearance, X-ray diffraction patterns, swelling power, and water solubility index but different in amylose content, beta-amylolysis limit, branch chain length distribution, thermal properties, and pasting properties. The structure of the wild rice amylopectins was close to that of waxy rice amylopectin with more branching and a larger proportion of short branch chains of degree of polymerization 6-12 as compared with that of amylopectin from rice starch with a similar amylose content. The differences in branch chain length distribution of amylopectin and amylose content were assumed to contribute to the differences in physicochemical properties among the six wild rice starches as well as to the differences between the wild rice starches and the rice starch.  相似文献   

4.
The effects of environmental temperature on gelatinization properties and amylopectin structures of wheat endosperm starch were examined by isolating starches from four wheat cultivars matured in growth chambers at daytime temperatures of 15, 20, 25, or 30°C. Kernel weight and starch content per kernel were reduced by high maturation temperature. Amylose content showed no significant change at high maturation temperature in some cultivars; in other cultivars, there was a slight increase. Principal component analysis of data on relative peak areas of debranched amylopectin showed that amylopectin from wheat grown at a lower temperature had a greater proportion of shorter chains. Amylopectin branch chains were classified into three groups based on the correlation coefficients between the data of branch chain length distribution and principal component scores, degree of polymerization (DP) of 6–12, DP 13–34, and DP ≥ 35. The gelatinization temperature of starches increased markedly at a higher maturation temperature, with increases exceeding 10°C at high maturation temperatures. Gelatinization properties correlated significantly with amylopectin chain length distribution.  相似文献   

5.
Structures and properties of starches isolated from different botanical sources were investigated. Apparent and absolute amylose contents of starches were determined by measuring the iodine affinity of defatted whole starch and of fractionated and purified amylopectin. Branch chain-length distributions of amylopectins were analyzed quantitatively using a high-performance anion-exchange chromatography system equipped with a postcolumn enzyme reactor and a pulsed amperometric detector. Thermal and pasting properties were measured using differential scanning calorimetry and a rapid viscoanalyzer, respectively. Absolute amylose contents of most of the starches studied were lower than their apparent amylose contents. This difference correlated with the number of very long branch chains of amylopectin. Studies of amylopectin structures showed that each starch had a distinct branch chain-length distribution profile. Average degrees of polymerization (dp) of amylopectin branch chain length ranged from 18.8 for waxy rice to 30.7 for high-amylose maize VII. Compared with X-ray A-type starches, B-type starches had longer chains. A shoulder of dp 18–21 (chain length of 6.3–7.4 nm) was found in many starches; the chain length of 6.3–7.4 nm was in the proximity of the length of the amylopectin crystalline region. Starches with short average amylopectin branch chain lengths (e.g., waxy rice and sweet rice starch), with large proportions of short branch chains (dp 11–16) relative to the shoulder of dp 18–21 (e.g., wheat and barley starch), and with high starch phosphate monoester content (e.g., potato starch) displayed low gelatinization temperatures. Amylose contents and amylopectin branch chain-length distributions predominantly affected the pasting properties of starch.  相似文献   

6.
The degradation rates of rice and corn starches with different contents of amylose treated in methanol containing 0.36% HCl at 25 degrees C for 1-15 days were evaluated by monitoring the weight average degree of polymerization of starch. A two-stage degradation pattern during acid-methanol treatment was found for the starches studied, which were the slow (first) and the rapid (second) degradation stages. Waxy starches showed a shorter time period of the first stage than that of nonwaxy starch. Rice starch showed a shorter time period of the first stage and a higher degradation rate of the second stage than the counterpart corn starch with similar amylose content. Despite the botanic source and amylose content of starch, the degradation rate of starch in the second stage significantly (p < 0.05) correlated to the S/L ratio (r = -0.886) and polydispersity (r = 0.859) of amylopectin branch chains of native starch.  相似文献   

7.
《Cereal Chemistry》2017,94(4):770-779
Rice, maize, and potato starches were incubated under acidic (2), neutral (7) or alkaline (11) pH conditions, and combined with annealing (ANN) or heat–moisture treatment (HMT), with the aim to evaluate their changes of physicochemical, digestion, and molecular characteristics. The applied treatments produced changes in all starches, showing void zones in the granules, which were more evident in ANN samples. The HMT starches promoted the formation of granular conglomerates that still showed birefringence. Overall, the evaluated conditions promoted changes in granule architecture (revealed by differences in gelatinization enthalpy) and crystallinity, for which an extensive degradation of their characteristics diffraction patterns occurred. These changes were more evident when incubation under acidic conditions was employed. Through principal component analysis, we found that the structural changes in starch granules have a direct influence on slowly digestible starch, resistant starch, and predicted glycemic index values, and this is the result of a higher proportion of organized crystallites, obtained from the acid hydrolysis process.  相似文献   

8.
Starch structures from an extrusion process were stored at different temperatures to allow for molecular rearrangement (retrogradation); their thermal characteristics (DSC) and resistance to amylase digestion were measured and compared. The structure of four native and processed starches containing different amylose/amylopectin compositions (3.5, 30.8, 32, and 80% amylose content, respectively) before and after digestion was studied with small-angle X-ray scattering (SAXS) and X-ray diffraction (XRD). Rearrangement of the amylose molecules was observed for each storage condition as measured by the DSC endotherm at around 145 degrees C. The crystalline organization of the starches after processing and storage was qualitatively different to that of the native starches. However, there was no direct correlation between the initial crystallinity and the amount of enzyme-resistant starch (ERS) measured after in vitro digestion, and only in the case of high-amylose starch did the postprocess conditioning used lead to a small increase in the amount of starch remaining after the enzymatic treatment. From the results obtained, it can be concluded that retrograded amylose is not directly correlated with ERS and alternative mechanisms must be responsible for ERS formation.  相似文献   

9.
High-amylose cereal starch has a great benefit on human health through its resistant starch content. In this paper, starches were isolated from mature grains of high-amylose transgenic rice line (TRS) and its wild-type rice cultivar Te-qing (TQ) and digested in vitro and in vivo. The structural changes of digestive starch residues were characterized using DSC, XRD, (13)C CP/MAS NMR, and ATR-FTIR. TQ starch was very susceptible to digestion; its residues following in vitro and in vivo digestion showed similar structural characteristics with TQ control starch, which suggested that both amorphous and crystalline structures were simultaneously digested. Both amorphous and the long-range order structures were also simultaneously hydrolyzed in TRS starch, but the short-range order (double helix) structure in the external region of TRS starch granule increased with increasing digestion time. The A-type polymorph of TRS C-type starch was hydrolyzed more rapidly than the B-type polymorph. These results suggested that B-type crystallinity and short-range order structure in the external region of starch granule made TRS starch resistant to digestion.  相似文献   

10.
Differences in glycemic and insulinemic responses to dietary starch are directly related to the rate of starch digestion. Chemical modification of starch may allow for the production of a slowly digested starch that could be used for the treatment of certain medical modalities. An in vitro method was utilized to evaluate the effects of chemical modification on the rate and extent of raw and cooked starch digestion. The extent of starch digestion was significantly reduced by dextrinization, etherification, and oxidation. However, the rate of starch digestion was not significantly affected by chemical modification. For most modified starches, as the degree of modification increased, the extent of digestion decreased, suggesting an increase in the amount of resistant starch. The results of this study suggest that chemically modified starch has a metabolizable energy value of <16.7 kJ/g. Chemically modified starch ingredients may serve as a good source of resistant starch in human and animal diets.  相似文献   

11.
To determine the rapidly digestible starch (RDS), slowly digestible starch (SDS), and resistant starch (RS) contents in a starch sample, the addition of amyloglucosidase is often used to convert hydrolyzates from α-amylase digestion to glucose. The objectives of this study were to investigate the exact role of amyloglucosidase in determining the digestibility of starch and to understand the mechanism of enzymatic actions on starch granules. Four maize starches differing in amylose content were examined: waxy maize (0.5% amylose), normal maize (≈27% amylose), and two high-amylose starches (≈57 and ≈71% amylose). Notably, without amyloglucosidase addition, the RS content increased from 4.3 to 74.3% for waxy maize starch, 29.7 to 76.5% for normal maize starch, 65.8 to 88.0% for starch with 57% amylose, and 68.2 to 90.4% for the starch with 71% amylose. In the method without α-amylase addition, less RS was produced than without added amyloglucosidase, except in maize at 71% amylose content. Scanning electron microscopy (SEM) revealed the digestive patterns of pinholes with α-amylase and burrowing with amyloglucosidase as well as the degree of digestion between samples. To understand the roles of amyloglucosidase and α-amylase in the in vitro test, multiple analytical techniques including gel permeation chromatography, SEM, synchrotron wide-angle X-ray diffraction, and small-angle X-ray scattering were used to determine the molecular and crystalline structure before and after digestion. Amyloglucosidase has a significant impact on the SDS and RS contents of granular maize starches.  相似文献   

12.
We enzymatically modified rice starch to produce highly branched amylopectin and amylose and analyzed the resulting structural changes. To prepare the highly branched amylopectin cluster (HBAPC), we first treated waxy rice starch with Thermus scotoductus alpha-glucanotransferase (TSalphaGT), followed by treatment with Bacillus stearothermophilus maltogenic amylase (BSMA). Highly branched amylose (HBA) was prepared by incubating amylose with Bacillus subtilis 168 branching enzyme (BBE) and subsequently treating it with BSMA. The molecular weight of TSalphaGT-treated waxy rice starch was reduced from 8.9 x 10(8) to 1.2 x 10(5) Da, indicating that the alpha-1,4 glucosidic linkage of the segment between amylopectin clusters was hydrolyzed. Analysis of the amylopectin cluster side chains revealed that a rearrangement in the side-chain length distribution occurred. Furthermore, HBAPC and HBA were found to contain significant numbers of branched maltooligosaccharide side chains. In short, amylopectin molecules of waxy rice starch were hydrolyzed into amylopectin clusters by TSalphaGT in the enzymatic modification process, and then further branched by transglycosylation using BSMA. HBAPC and HBA showed higher water solubility and stability against retrogradation than amylopectin clusters or branched amylose. The hydrolysis rates of HBAPC and HBA by glucoamylase and alpha-amylase greatly decreased. The k cat/ K m value of glucoamylase acting on the amylopectin cluster was 45.94 s(-1)(mg/mL)(-1) and that for glucoamylase acting on HBAPC was 11.10 s(-1)(mg/mL)(-1), indicating that HBAPC was 4-fold less susceptible to glucoamylase. The k cat/ K m value for HBA was 15.90 s(-1)(mg/mL)(-1), or about three times less than that for branched amylose. The k cat/ K m values of porcine pancreatic alpha-amylase for HBAPC and HBA were 496 and 588 s(-1)(mg/mL)(-1), respectively, indicating that HBA and HBAPC are less susceptible to hydrolysis by glucoamylase and alpha-amylase. HBAPC and HBA show potential as novel glucan polymers with low digestibility and high water solubility.  相似文献   

13.
The comparably low starch digestibility of cooked sorghum flours was studied with reference to normal maize. Four sorghum cultivars that represent different types of endosperm were used. Starch digestibilities of 4% cooked sorghum flour suspensions, measured as reducing sugars liberated following α-amylase digestion, were 15–25% lower than for cooked maize flour, but there were no differences among the cooked pure starches. After the flours were predigested with pepsin to remove some proteins, the starch digestibility of cooked sorghum flours increased 7–14%, while there was only 2% increase in normal maize; however, there was no effect of pepsin treatment on starch digestibility if the flours were first cooked and then digested. After cooking with reducing agent, 100 mM sodium metabisulfite, starch digestibility of sorghum flours increased significantly while no significant effect was observed for maize. Also, starch solubility of sorghum flours at 85 and 100°C was lower than in maize, and sodium metabisulfite increased solubility much more in sorghum than in maize. Differential scanning calorimetry results of the flour residue after α-amylase digestion did not show any peaks over a temperature range of 20–120°C, indicating that sorghum starches had all undergone gelatinization. These findings indicate that the protein in cooked sorghum flour pastes plays an important role in making a slowly digesting starch.  相似文献   

14.
The physical, molecular, and functional properties of corn, cassava, and yam starches were related to the film properties of these starches. Corn, cassava, and yam starches contained 25%, 19%, and 30% amylose, respectively. Amylose from yam starch showed the smallest molecular weight among the starches and amylopectin from corn starch the smallest molecular weight. Cassava starch presented a higher amylopectin content, and its gels and films were less strong, more transparent, and more flexible than corn and yam films. Plasticized films of the three starches were more flexible, with a higher strain and lower stress at break when the glycerol content increased. Unplasticized films were brittle and had water vapor permeability values ranging from 6.75 x 10(-10) to 8.33 x 10(-10) g m(-1) s(-1) Pa(-1). These values decreased when the glycerol content reached 20 g/100 g of starch because a more compact structure was formed. Then, at a glycerol content of 40 g/100 g of starch, the WVP increased because the film matrixes became less dense.  相似文献   

15.
Starches from normal, waxy, and sugary‐2 (su2) corn kernels were isolated, and their structures and properties determined. The total lipid contents of normal, waxy, and su2 corn starches were 0.84, 0.00, and 1.61%, respectively. Scanning electron micrographs showed that normal and waxy corn starch granules were spherical or angular in shape with smooth surfaces. The su2 starch granules consisted of lobes that resembled starch mutants deficient in soluble starch synthases. Normal and waxy corn starches displayed A‐type X‐ray patterns. The su2 starch showed a weak A‐type pattern. The chain‐length distributions of normal, waxy, and su2 debranched amylopectins showed the first peak chain length at DP (degree of polymerization) 13, 14, and 13, respectively; second peak chain length at DP 45, 49, and 49, respectively; and highest detectable DP of 80, 72, and 76, respectively. The su2 amylopectin showed a higher percentage of chains with DP 6–12 (22.2%) than normal (15.0%) and waxy (14.6%) amylopectins. The absolute amylose content of normal, waxy, and su2 starches was 18.8, 0.0, and 27.3%, respectively. Gel‐permeation profiles of su2 corn starch displayed a considerable amount of intermediate components. The su2 corn starch displayed lower gelatinization temperature, enthalpy change, and viscosity; a significantly higher enthalpy change for melting of amylose‐lipid complex; and lower melting temperature and enthalpy change for retrograded starch than did normal and waxy corn starches. The initial rate of hydrolysis (3 hr) of the corn starches followed the order su2 > waxy > normal corn. Waxy and su2 starches were hydrolyzed to the same extent, which was higher than normal starch after a 72‐hr hydrolysis period.  相似文献   

16.
A series of cross‐linked hydroxypropylated corn starches were extruded with a Leistritz micro‐18 co‐rotating extruder. Extrusion process variables including moisture (30, 35, and 40%), barrel temperature (60, 80, and 100°C), and screw design (low, medium, and high shear) were investigated. Scanning electron microscopy (SEM) of extruded starches showed a gel phase with distorted granules and granule fragments after extrusion at 60°C. After extrusion at 100°C only a gel phase was observed with no granular structures remaining. High performance size exclusion chromatography (HPSEC) equipped with multiangle laser light‐scattering (MALLS) and refractive index (RI) detectors showed extruded starches degraded to different extents, depending on extrusion conditions. The average molecular weight of the amylopectin of unextruded native corn starch was 7.7 × 108. Extrusion at 30% moisture, 100°C, and high shear reduced the molecular weight of amylopectin to 1.0 × 108. Hydroxypropylated normal corn starch extruded at identical conditions showed greater decreases in amylopectin molecular weight. With the addition of cross‐linking, the amylopectin fractions of the extruded starches were less degraded than those of their native and hydroxypropylated corn starch counterparts. Similarly, increasing moisture content during extrusion lowered amylopectin degradation in the extruded starches. Increasing temperature during extrusion of cross‐linked hydroxypropylated starches at high moisture content (e.g., 40%) lowered amylopectin molecular weights of the extruded starches, whereas increasing extrusion temperature at low moisture content (30%) resulted in less degraded molecules. This difference was attributed to the higher glass transition temperatures of the cross‐linked starches.  相似文献   

17.
The alpha-amylolysis of potato, corn, waxy corn, and amaranthus starches with porcine pancreatic alpha-amylase upon illumination with visible polarized and nonpolarized light was studied. Samples were illuminated for 1 h either directly after blending the enzyme with starch or the enzyme solutions were illuminated for 1 h prior to the admixture of starch. Independently of the mode of illumination, no significant change in the hydrolysis kinetics was noted for corn, waxy corn, and amaranthus starches. The illumination of potato starch in the presence of alpha-amylase with polarized and nonpolarized light significantly accelerated the hydrolysis. In the first 5-h step the hydrolysis rate increased from 12.0 to 60.0 g x kg(-)(1) h(-)(1). Preillumination of enzyme in solution resulted in an increase in the rate of hydrolysis to 151.6 and 131.4 g x kg(-)(1) h(-)(1) after illumination with polarized and nonpolarized light, respectively. Circular dichroism spectra of alpha-amylase solutions stored in the dark and illuminated with visible polarized and nonpolarized light provided evaluation of the protein conformation, whereas exposure of enzyme solutions to the nonpolarized did not change the secondary structure of the protein. The illumination of the alpha-amylase solutions with polarized light significantly changed the amounts of alpha-helix and beta-form vs unilluminated samples: 42.3% and 25.5% vs 36.6% and 30.2%, respectively.  相似文献   

18.
The objective of this study was to compare the structure and properties of flours and starches from whole, broken, and yellowed rice kernels that were broken or discolored in the laboratory. Physicochemical properties including pasting, gelling, thermal properties, and X‐ray diffraction patterns were determined. Structure was elucidated using high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography with pulsed amperometric detection (HPAEC‐PAD). The yellowed rice kernels contained a slightly higher protein content and produced a significantly lower starch yield than did the whole or broken rice kernels. Flour from the yellowed rice kernels had a significantly higher pasting temperature, higher Brabender viscosities, increased damaged starch content, reduced amylose content, and increased gelatinization temperature and enthalpy compared with flours from the whole or the broken rice kernels. However, all starches showed similar pasting, gelling, thermal properties, and X‐ray diffraction patterns, and no structural differences could be detected among different starches by HPSEC and HPAEC‐PAD. α‐Amylase may be responsible for the decreased amylopectin fraction, decreased apparent amylose content, and increased amounts of low molecular weight saccharides in the yellowed rice flour. The increased amount of reducing sugars from starch hydrolysis promoted the interaction between starch and protein. The alkaline‐soluble fraction during starch isolation is presumed to contribute to the difference in pasting, gelling, and thermal properties among whole, broken, and yellowed rice flours.  相似文献   

19.
《Cereal Chemistry》2017,94(2):262-269
The molecular size distribution of maize starch nanoparticles (SNP) prepared by acid hydrolysis (3.16M H2SO4) and their amylase‐resistant counterparts, before and after debranching, was investigated. The weight average molecular weight (Mw) and linear chain length distribution were determined by high‐performance size‐exclusion chromatography (HPSEC) and high‐performance anion‐exchange chromatography (HPAEC), respectively. The objective was to understand the role of amylose involvement in the formation of SNP showing different crystalline structures (A‐ and B‐types). The HPSEC profiles of SNP before debranching from waxy, normal, and high‐amylose maize starches showed broad monomodal peaks. Debranched SNP from waxy maize eluted in a single narrow peak, whereas those from nonwaxy starches showed a multimodal distribution. Similar trends were also observed for the chain length distribution patterns, for which the longest detectable chains (degree of polymerization [DP] 31) in waxy maize were significantly lower than those of nonwaxy maize starches (DP 55–59). This indicated the potential amylose involvement in the SNP structure of normal and high‐amylose starches. Further evidence of amylose involvement was ascribed to the resistance of SNP toward amylolysis (Hylon VII > Hylon V > normal > waxy). The amylase‐resistant residues of SNP from high‐amylose maize starches were composed of both low Mw linear and branched chains.  相似文献   

20.
Preparation of indigestible pyrodextrins from different starch sources   总被引:4,自引:0,他引:4  
Starch-modifying processes, such as pyrodextrinization, are potential ways to alter the nutritional features of this polysaccharide. A widely used method for pyrodextrinizing maize starch was also applied to lentil, sorghum, cocoyam, sagu, and cassava starches, and the in vitro digestibility of the products was evaluated. Pyrodextrins were produced by heating starch at 140 degrees C for 3 h, with catalytic amounts of HCl. The enzymatically available starch content of all preparations decreased by 55-65% after modification. Thus, pyrodextrinization seems to be an effective way to produce indigestible glucans from different starches. Pyrodextrins obtained were complex mixtures of starch derivatives with a wide range of molecular weight as estimated by gel filtration chromatography. Both their molecular weight profiles and contents of indigestible fractions varied with starch source. Experiments with lentil and cassava starches showed that changing dextrinization conditions also affects the susceptibility to enzymatic hydrolysis of the product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号