首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Grain deviations and high extractives content are common features of many tropical woods. This study aimed at clarifying their respective impact on vibrational properties, referring to African Padauk (Pterocarpus soyauxii Taub.), a species selected for its interlocked grain, high extractives content and uses in xylophones. Specimens were cut parallel to the trunk axis (L), and local variations in grain angle (GA), microfibril angle (MFA), specific Young’s modulus (E L /ρ, where ρ stands for the density) and damping coefficient (tanδL) were measured. GA dependence was analysed by a mechanical model which allowed to identify the specific Young’s modulus (E3/ρ) and shear modulus (G′/ρ) along the grain (3) as well as their corresponding damping coefficients (tanδ3, tanδG). This analysis was done for native and then for extracted wood. Interlocked grain resulted in 0–25° GA and in variations of a factor 2 in EL/ρ and tanδL. Along the grain, Padauk wood was characterized, when compared to typical hardwoods, by a somewhat lower E3/ρ and elastic anisotropy (E′/G′), due to a wide microfibril angle plus a small weight effect of extracts, and a very low tanδ3 and moderate damping anisotropy (tanδG/tanδ3). Extraction affected mechanical parameters in the order: tanδ3 ≈ tanδG > G′/ρ > > E3/ρ. That is, extractives’ effects were nearly isotropic on damping but clearly anisotropic on storage moduli.  相似文献   

2.
Extractives can affect the vibrational properties tanδ (damping coefficient) and E′/ρ (specific Young’s modulus), but this is highly dependent on species, compounds, and cellular locations. This paper investigates such effects for African Padauk (Pterocarpus soyauxii Taub.), a tropical hardwood with high extractives content and a preferred material for xylophones. Five groups of 26 heartwood specimens with large, yet comparable, ranges in vibrational properties were extracted in different solvents. Changes in vibrational properties were set against yields of extracts and evaluation of their cellular location. Methanol (ME) reached most of the compounds (13%), located about half in lumen and half in cell-wall. Water solubility was extremely low. tanδ and E′/ρ were very strongly related (R 2 ≥ 0.93), but native wood had abnormally low values of tanδ, while extraction shifted this relation towards higher tanδ values. ME extracted heartwood became in agreement with the average of many species, and close to sapwood. Extractions increased tanδ as much as 60%, irrespective of minute moisture changes or initial properties. Apparent E′/ρ was barely changed (+2% to −4%) but, after correcting the mass contribution of extracts, it was in fact slightly reduced (down to −10% for high E′/ρ), and increasingly so for specimens with low initial values of E′/ρ.  相似文献   

3.
The anisotropy of vibrational properties influences the acoustic behaviour of wooden pieces and their dependence on grain angle (GA). As most pieces of wood include some GA, either for technological reasons or due to grain deviations inside trunks, predicting its repercussions would be useful. This paper aims at evaluating the variability in the anisotropy of wood vibrational properties and analysing resulting trends as a function of orientation. GA dependence is described by a model based on transformation formulas applied to complex compliances, and literature data on anisotropic vibrational properties are reviewed. Ranges of variability, as well as representative sets of viscoelastic anisotropic parameters, are defined for mean hardwoods and softwoods and for contrasted wood types. GA-dependence calculations are in close agreement with published experimental results and allow comparing the sensitivity of different woods to GA. Calculated trends in damping coefficient (tanδ) and in specific modulus of elasticity (E′/ρ) allow reconstructing the general tanδ-E′/ρ statistical relationships previously reported. Trends for woods with different mechanical parameters merge into a single curve if anisotropic ratios (both elastic and of damping) are correlated between them, and with axial properties, as is indicated by the collected data. On the other hand, varying damping coefficient independently results in parallel curves, which coincide with observations on chemically modified woods, either “artificially”, or by natural extractives.  相似文献   

4.
Vibrational properties of wood are affected by several parameters, of which extractives can be one of the most important ones. Wood for European musical instruments has been often studied, but traditional Middle Eastern ones had been left unnoticed. In this study white mulberry (Morus alba L.), the main material for long-necked lutes in Iran, was extracted by five solvents of various polarities (water included). Free-free bar forced vibrations were used to measure longitudinal (L) loss tangent (tanδ), storage (elastic) modulus (E′) and specific modulus (E′/γ) in the acoustic range. Their anisotropy between the 3 axes of orthotropy was determined by dynamic mechanical analysis. Native wood had a quite low E L′/γ but its tanδ was smaller than expected, and the anisotropy of tanδ and E′/γ was very low. Removal of extractives caused tanδ to increase and moduli to decrease. Acetone, the most effective solvent on damping despite a moderate extraction yield, increased tanδ L by at least 20% but did not modify E′/γ as much. When used successively, its effects masked those of solvents used afterwards. Anisotropy of E′/γ was nearly unchanged after extraction in methanol or hot water, while tanδ was much more increased in R than in T direction. Results suggest that in white mulberry, damping is governed more by nature and localization of extractives rather than by their crud abundance.  相似文献   

5.
–  • Vène wood (Pterocarpus erinaceus Poir.) is currently the favorite wood for manufacture of xylophone in Mali. A dynamic analysis method with free boundary conditions, known as BING, was used to determine the main acoustic properties: specific dynamic modulus (E L /ρ), damping coefficient or internal friction (tan δ), sound radiation coefficient (SRC) and peak response (PR).  相似文献   

6.
To analyze the effects of lignin on the destabilization of wood due to quenching, we examined the dielectric properties of untreated and delignified wood before and after quenching at 20°C from 50 Hz to 100 MHz. For untreated wood, the inflection points of log ε′ and log σ vs log f and the peak of log(tan δ) vs log f were attributed to interfacial polarization before quenching, and the location of the inflection point shifted to a higher frequency with increasing moisture content because of changes in the water cluster. After quenching, the inflection points of log ε′ and log σ and the peak of log(tan δ ) shifted to higher frequency; however, the values of log ε′, log σ recovered to those before quenching with the passage of time. For delignified wood, dielectric relaxation was observed at a higher frequency than for untreated wood irrespective of quenching. It was inferred that the mobility of water molecules was influenced by the cluster surroundings because of increased number of adsorption sites in hemicellulose. Moreover, after quenching, the recovery process did not change greatly over time; it was shown that the matrix structure was affected more by quenching with the loss of lignin.  相似文献   

7.
 Spruce wood specimens were acetylated with acetic anhydride (AA) solutions of glucose pentaacetate (GPA), and their viscoelastic properties along the radial direction were compared to those of the untreated and the normally acetylated specimens at various relative humidities and temperatures. Higher concentrations of the GPA/AA solution resulted in more swelling of wood when GPA was introducted into the wood cell wall. At room temperature the dynamic Young's modulus (E′) of the acetylated wood was enhanced by 10% with the introduction of GPA, whereas its mechanical loss tangent (tan δ) remained almost unchanged. These changes were interpreted to be an antiplasticizing effect of the bulky GPA molecules in the wood cell wall. On heating in the absence of moisture, the GPA-acetylated wood exhibited a marked drop in E′ and a clear tan δ peak above 150°C, whereas the E′ and tan δ of the untreated wood were relatively stable up to 200°C. The tan δ peak of the GPA-acetylated wood shifted to lower temperatures with increasing GPA content, and there was no tan δ peak due to the melting of GPA itself. Thus the marked thermal softening of the GPA-acetylated wood was attributed to the softening of wood components plasticized with GPA. Received: March 29, 2002 / Accepted: May 21, 2002 Correspondence to:E. Obataya  相似文献   

8.
The heartwood of Acacia mangium is vulnerable to heart rot and this is the first study to investigate the role of heartwood extractives in its susceptibility. Acacia auriculiformis was compared with A. mangium because it is rarely associated with heart rot. The heartwood extracts of both species were dominated by three flavonoids (2,3-trans-3,4′,7,8-tetrahydroxyflavanone, teracacidin, and 4′,7,8,-trihydroxyflavanone), which were purified and identified by nuclear magnetic resonance spectroscopy. The latter compound has not been previously reported in A. mangium and evidence for melacacidin is also newly reported. The mass spectrometric (MS) behavior of these compounds is given, for example teracacidin does not form molecular ions by either electrospray ionization or atmospheric-pressure chemical ionization. The nature of Acacia tannins was compared to quebracho tannin (composed of profisetinidins) using oxidative cleavage to enable MS detection but a negative reaction was obtained for both, which suggests the Acacia tannins may also be of the 5-deoxy proanthocyanidin type. The concentration of flavanones was less when A. mangium heartwood was decayed but the amount of proanthocyanidins was only slightly reduced and therefore these compounds may be more resistant to degradation by heart rot fungi. We found that the total phenol content of A. auriculiformis was about fivefold that of A. mangium, and, while preliminary, this provides evidence for a role played by phenolic extractives in heart rot resistance of these Acacia species.  相似文献   

9.
The aim of this study is to characterise the properties of juvenile and mature heartwood of black locust (Robinia pseudoacacia L.). Content, composition and the subcellular distribution of heartwood extractives were studied in 14 old-growth trees from forest sites in Germany and Hungary as well as in 16 younger trees of four clone types. Heartwood extractives (methanol and acetone extraction) were analysed by HPLC-chromatography. UV microspectrophotometry was used to topochemically localise the extractives in the cell walls. The natural durability of the juvenile and mature heartwood was analysed according to the European standard EN 350-1. Growth as well as chemical analyses showed that, based on extractives content, the formation of juvenile wood in black locust is restricted to the first 10–20 years of cambial growth. In mature heartwood, high contents of phenolic compounds and flavonoids were present, localised in high concentrations in the cell walls and cell lumen of axial parenchyma and vessels. In juvenile wood, the content of these extractives is significantly lower. Juvenile wood had a correspondingly lower resistance to decay by Coniophora puteana (brown rot fungus) and Coriolus versicolor (white rot fungus) than mature heartwood.  相似文献   

10.
This study investigated the dynamic modulus of elasticity (DMOE) of wood panels of Fraxinus mandshurica, Pinus koraiensis, and Juglans mandshurica using the natural frequency measurement system of fast Fourier transform (FFT). The results were compared with the static modulus of elasticity (E S) tested by a mechanical test machine. The results show a significant correlation between E S, transverse vibration DMOE (E F), and longitudinal vibration DMOE (E L). For all of these species, the correlation between E S, E F and E L is more significant than the individual species, which indicated that the FFT method is universal. The correlations between E S and sample’s density (ρ) are significant, but the correlation coefficient of E S and ρ is lower than those between E F, E L and E S. The E S of wood is more accurately tested by the analysis based on FFT measurement than by the estimation based on density. __________ Translated from Scientia Silvae Sinicae, 2005, 41(6): 126–131 [译自: 林业科学, 2005, 41(6): 126–131]  相似文献   

11.

• Introduction   

In Cryptomeria japonica, heartwood properties are considered to be affected by specific extractives. It remains unclear whether traits of specific heartwood compounds are under genetic control.  相似文献   

12.
The very decorative heartwood of Brosimum guianense is internationally well known. Snakewood, as it is colloquially known, is represented in wood databases (e.g. the DELTA or InsideWood) as well as in lists of commercial timbers of many timber trading companies. The very decorative heartwood is hardly available and gains prices of up to 25 €/kg in form of half stems. In the present study, the chemical composition and especially the subcellular cell structure was analysed by means of UV microspectrophotometry to explain the high natural durability and some extraordinary physical properties in addition to the anatomical composition. The heartwood consists of approximately 39% lignin, 54% carbohydrates and 0.4% lipophilic compounds of unspecified origin. The fibres are very thick-walled. Numerous sclerotic tyloses and organic deposits are present in the vessel. The extractives in high content are also components of parenchyma cells as well as in tyloses, respectively. These detected phenolic extractives, partly of flavonoid character, are also part of the cell wall. Calcium oxalate crystals are deposited in the upright and square cells of rays and sporadically in axial parenchyma cells. These facts are reasons for the famous natural durability of Snakewood. The sapwood density ranges from 1.1 to 1.4 g/cm3 for heartwood (12% mc). The compression strength (119 N/mm2), the bending strength (241 N/mm2), the modulus of elasticity (23,200 N/mm2) and the hardness (196 N/mm2) indicate exceedingly high elastomechanical properties.  相似文献   

13.
The methanol extractives from western red cedar mechanical pulps were found to be radically different in composition to the extractives obtained from the heartwood. The major heartwood extractive components, the tropolones and lignans, were not present in the extractives from the pulps. However, the proportion of a brown polymer doubled. The low and high molecular weight methanol extractives components from the pulps were separated using methyl tert-butyl ether. The low molecular fraction contained mostly guaiacyl-based compounds with dihydroquercetin, thujic acid, 3-hydroxy-1-(4′-hydroxy-3′-methoxyphenyl)-2-oxopropane and 4-ethyl-2-methoxy-6-hydroxyphenol being positively identified. The brown polymeric portion had molecular weights ranging from 1,000 to 10,000. Infrared analysis indicated that the polymers were formed from lignans. Examination of the changes in diffuse reflectance UV-visible and infra red spectra of the pulps on extraction with methanol, suggested that the colour resides in insoluble polymers formed from plicatic acid/plicatin during refining. Received 18 December 1998  相似文献   

14.
The purposes of this study were to accumulate fundamental data on wood properties within large Sugi logs and to take applicable variations in wood properties into consideration for sorting logs and sawing patterns. The characteristics of basic density, moisture content, growth ring width, and microfibril angle (MFA) were measured and the relationship with log and lumber quality was examined. It was considered reasonable to estimate the lumber moisture content based on the moisture content of heartwood rather than that of whole logs, especially when producing large-sized lumber. The MFA reached a constant value before the 15th ring, and within a distance of 10 cm or less from the pith. Since the E fr of lumber correlated with that of the log affected by MFA, it would be possible to produce lumber with a higher E fr from the outer position of the log, based on selecting a log above the E fr . Since the MFA would also affect the lumber warp, a sawing pattern avoiding the area around the pith or enlarging the rough sawn size when a large warp was expected could be effective in improving the lumber quality. To improve the lumber quality, not only one but also multiple wood properties must be applied to the sawing pattern.  相似文献   

15.
–  • The vibration damping coefficient (tanδ) of wood is an important property for acoustical uses, including musical instruments. Current difficulties in the availability of some of the preferred species call for diversification, but this comes up against the lack of systematic damping coefficient data.  相似文献   

16.
The transverse shrinkage variation within trees was examined for five sugi cultivars. The within-tree trends of tangential shrinkage (α T) were different by cultivar, whereas radial shrinkage (α R) increased from pith to bark in most cultivars. The tangential/radial shrinkage ratio (α T/α R) decreased from pith to bark in most cultivars, because the radial variation of α R was larger than that of α T. The cultivars showed significant differences among cultivars in α T, α R, and α T/α R, but the difference among cultivars for α T/α R was smaller. The relationships between transverse shrinkage and microfi bril angle (MFA), basic density (BD), tree ring parameters, and modulus of elasticity were examined. The α T and α R showed positive relationships with BD, latewood percentage, latewood density, and modulus of elasticity, and negative relationships with MFA and ring width. The relationships with earlywood density were weak. Sugi exhibited variation in transverse shrinkage within stem and among cultivars, with the variation affected by MFA, density, and tree ring parameters. Part of this article was presented at the 56th Annual Meeting of the Japan Wood Research Society, Akita, Japan, August 2006, and the 57th Annual Meeting of the Japan Wood Research Society, Hiroshima, Japan, August 2007  相似文献   

17.
A discolouration that appeared on the surfaces of a European white birch (Betula pubescens) board during vacuum drying was studied by means of colour measurements (CIEL*a*b*), elemental analysis and the analysis of extractives. The discoloured surface layer of the dried board contained substantially more methanol-soluble extractives than did the light-coloured part (50.7 mg g−1 vs. 26.7 mg g−1 dry wood), and the colour difference (ΔE* ab 20.0) between the two extracts was notable. Characterization by means of GC and 13C NMR spectroscopy showed that the extracts contain sugars (mainly glucose and fructose), low-molecular-weight phenolic compounds, proanthocyanidins, Brauns’ lignin and fatty acid esters. Concentrations of sugars, low-molecular-weight phenols, proanthocyanidins and Brauns’ lignin were higher in the discoloured surface layer than in the light-coloured part. The yellowness of the surface layer was associated with the accumulation of low-molecular-weight phenolic extractives, and the redness with Brauns’ lignin and possibly proanthocyanidins.  相似文献   

18.
The effect of selective removal of extractives on termite or decay resistance was assessed with matched samples of Thuja plicata Donn ex D. Don and Chamaecyparis nootkatensis (D.Don) Spach heartwood. Samples were extracted using a variety of solvents and then exposed to the subterranean termite Coptotermes formosanus Shiraki in a no-choice feeding test or to the brown-rot fungus Postia placenta (Fr.) M. Larsen & Lombard in a soil bottle test. At the same time, the effect of naturally occurring variations in heartwood extractives on termite or decay resistance was evaluated by testing samples from the inner and outer heartwood of five trees of each species against C. formosanus and P. placenta and analyzing matched wood samples for their extractive content. The results suggest that the methanol-soluble extractives in T. plicata and C. nootkatensis play an important role in heartwood resistance to attack by C. formosanus and P. placenta. Total methanol-soluble extractive content of the heartwood was positively correlated with both termite and decay resistance; however, there was much unexplained variation and levels of individual extractive components were only weakly correlated with one another. Further studies are under way to develop a better understanding of the relationships between individual extractive levels and performance.  相似文献   

19.
Phenolic extractives in the trunk of Toxicodendron vernicifluum (syn. Rhus verniciflua) were investigated. Seventeen compounds, gallic acid, protocatechuic acid, (?)-fisetinidol-4β-ol, (?)-fisetinidol-4α-ol, 2-benzyl-2,6,3′,4′-tetrahydroxycoumaran-3-one, (?)-fustin, 1,2,3,6-Tetra-O-galloyl-β-d-glucose, (?)-epifustin, (+)-taxifolin, 1,2,3,4,6-penta-O-galloyl-β-d-glucose, (?)-garbanzol, (?)-fustin-3-O-gallate, (?)-epifustin-3-O-gallate, fisetin, sulfuretin, quercetin and butein, were identified from the heartwood extractives. It was found that only (+)-taxifolin which had 5,7-dihydroxy A-ring possessed a 3R configuration although other flavonoids which had 7-hydroxy A-ring possessed a 3S configuration. Quantitative analysis revealed that the total phenolic contents were much higher in the heartwood (5–7 wt%) than in the sapwood and bark (1–2 wt%), and (?)-fustin was the most abundant extractive in the heartwood (1.4–2.4 wt%). For the radial distribution of phenolic extractives, it was generally found that their content was lowest in the sapwood, increased to the highest in the outer heartwood, and then decreased in the inner heartwood.  相似文献   

20.
The pulping wood quality of Acacia melanoxylon was evaluated in relation to the presence of heartwood. The sapwood and heartwood from 20 trees from four sites in Portugal were evaluated separately at 5% stem height level in terms of chemical composition and kraft pulping aptitude. Heartwood had more extractives than sapwood ranging from 7.4% to 9.5% and from 4.0% to 4.2%, respectively, and with a heartwood-to-sapwood ratio for extractives ranging from 1.9 to 2.3. The major component of heartwood extractives was made up of ethanol-soluble compounds (70% of total extractives). Lignin content was similar in sapwood and heartwood (21.5% and 20.7%, respectively) as well as the sugar composition. Site did not influence the chemical composition. Pulping heartwood differed from sapwood in chemical and optical terms: lower values of pulp yield (53% vs 56% respectively), higher kappa number (11 vs. 7), and lower brightness (28% vs 49%). Acacia melanoxylon wood showed an overall good pulping aptitude, but the presence of heartwood should be taken into account because it decreases the raw-material quality for pulping. Heartwood content should therefore be considered as a quality variable when using A. melanoxylon wood in pulp industries  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号