首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In spring, nitrogen (N) uptake by apple roots begins about 3 weeks after bud break. We used 1-year-old 'Fuji' Malus domestica Borkh on M26 bare-root apple trees to determine whether the onset of N uptake in spring is dependent solely on the growth stage of the plant or is a function of soil temperature. Five times during early season growth, N uptake and total amino acid concentration were measured in trees growing at aboveground day/night temperatures of 23/15 degrees C and belowground temperatures of 8, 12, 16 or 20 degrees C. We used (15NH4)(15NO3) to measure total N uptake and rate of uptake and found that both were significantly influenced by both soil temperature and plant growth stage. Rate of uptake of 15N increased with increasing soil temperature and changed with plant growth stage. Before bud break, 15N was not detected in trees growing in the 8 degrees C soil treatment, whereas 15N uptake increased with increasing soil temperatures between 12 and 20 degrees C. Ten days after bud break, 15N was still not detected in trees growing in the 8 degrees C soil treatment, although total 15N uptake and uptake rate continued to increase with increasing soil temperatures between 12 and 20 degrees C. Twenty-one days after bud break, trees in all temperature treatments were able to acquire 15N from the soil, although the amount of uptake increased with increasing soil temperature. Distribution of 15N in trees changed as plants grew. Most of the 15N absorbed by trees before bud break (approximately 5% of 15N supplied per tree) remained in the roots. Forty-six days after bud break, approximately one-third of the 15N absorbed by the trees in the 12-20 degrees C soil temperature treatments remained in the roots, whereas the shank, stem and new growth contained about two-thirds of the 15N taken up by the roots. Total amino acid concentration and distribution of amino acids in trees changed with plant growth stage, but only the amino acid concentration in new growth and roots was affected by soil temperature. We conclude that a combination of low soil temperature and plant developmental stage influences the ability of apple trees to take up and use N from the soil in the spring. Thus, early fertilizer application in the spring when soil temperatures are low or when the aboveground portion of the tree is not actively growing may be ineffective in promoting N uptake.  相似文献   

2.
Effects of root zone temperature on growth, shoot water relations, and root water flow were studied in 1-year-old aspen (Populus tremuloides Michx.) seedlings. Seedlings were grown in solution culture and exposed to day/night air temperatures of 22/16 degrees C and solution culture temperatures of 5, 10, or 20 degrees C for 28 days after bud flush. Compared with root growth at 20 degrees C, root growth was completely inhibited at 5 degrees C and inhibited by 97% at 10 degrees C. The 5 and 10 degrees C treatments severely reduced shoot growth, leaf size, and total leaf area. Root water flow was inhibited by the 5 and 10 degrees C treatments. However, when seedlings were grown for 28 days at 5 degrees C and root water flow was measured at 20 degrees C, there was an increase in flow rate. This increase in root water flow was similar in magnitude to the decrease in root water flow observed when seedlings were grown for 28 days at 20 degrees C and root water flow was measured at 5 degrees C. Reduced root water flow of seedlings grown at 5 and 10 degrees C resulted in decreased stomatal conductance, net assimilation, and shoot water potentials. Root water flow was positively correlated with leaf size, total leaf area, shoot length, and new root growth. Transferring seedlings from 5 to 20 degrees C for 24 h significantly increased root water flow, shoot water potential, and net photosynthesis, whereas transferring seedlings from 10 to 20 degrees C resulted in only a slightly increased shoot water potential. Transferring seedlings from 20 to 5 degrees C greatly reduced root water flow, stomatal conductance, and net photosynthesis, whereas shoot water potential decreased only slightly.  相似文献   

3.
通过对寒富苹果幼树限根栽培,研究了根系及枝条生长发育对不同根域空间处理的响应。结果表明,根系总量随根域空间减小而减少,而细根比例及根系密度增加;根域空间越小新梢停长越早,盆栽植株新梢只有1次生长高峰,而槽栽植株新梢有2次生长高峰;随着根域空间减小,干周、枝条数量、长枝比例减小,树冠受到明显的抑制,但短枝比例、成花枝比例、花芽数均增加。根域限制改变了寒富苹果幼树树体建造过程,使之有利于向生殖发育方向转变。  相似文献   

4.
Coarse and fine root respiration rates of aspen (Populus tremuloides Michx.) were measured at 5, 15 and 25 degrees C. Coarse roots ranged from 0.65 to 4.45 cm in diameter, whereas fine roots were less than 5 mm in diameter. To discriminate between maintenance and growth respiration, root respiration rates were measured during aboveground growing periods and dormant periods. An additional measurement of coarse root respiration was made during spring leaf flush, to evaluate the effect of mobilization of resources for leaf expansion on root respiration. Fine roots respired at much higher rates than coarse roots, with a mean rate at 15 degrees C of 1290 micromol CO2 m-3 s-1 during the growing period, and 660 micromol CO2 m-3 s-1 during the dormant period. The temperature response of fine root respiration rate was nonlinear: mean Q10 was 3.90 for measurements made at 5-15 degrees C and 2.19 for measurements made at 15-25 degrees C. Coarse root respiration rates measured at 15 degrees C in late fall (dormant season) were higher (370 micromol CO2 m-3 s-1) than rates from roots collected at leaf flush and early summer (200 micromol CO2 m-3 s-1). The higher respiration rates in late fall, which were accompanied by decreased total nonstructural carbohydrate (TNC) concentrations, suggest that respiration rates in late fall included growth expenditures, reflecting recent radial growth. Neither bud flush nor shoot growth of the trees caused an increase in coarse root respiration or a decrease in TNC concentrations, suggesting a limited role of coarse roots as reserve storage organs for spring shoot growth, and a lack of synchronization between above- and belowground growth. Pooling the data from the coarse and fine roots showed a positive correlation between nitrogen concentration and respiration rate.  相似文献   

5.
The effects of root zone temperature (RZT) and flooding on physiology and growth of Annona glabra L. (pond apple) and A. muricata L. (soursop) were investigated. Trees planted in containers were exposed to RZTs of 5, 10, 20, 25 or 35 degrees C in controlled root temperature chambers. Trees at each RZT were either non-flooded (control) or continuously flooded. There were four replications over time for each treatment combination. Pond apple was more flood-tolerant than soursop. A combination of flooding and RZTs of 5 and 10 degrees C resulted in tree mortality of both species by Week 4. Only trees that appeared to develop morphological adaptations survived continuous flooding. In both species, net CO2 assimilation (A) decreased to nearly zero within 1 week following exposure to RZTs of 5 or 10 degrees C and became consistently negative over the remaining experimental period. Flooding reduced leaf chlorophyll index (measured with a SPAD meter), A and plant growth, and increased root electrolyte leakage from soursop. Optimum growth occurred at RZTs of 25 to 35 degrees C for non-flooded pond apple trees and at 20 to 25 degrees C for flooded trees. Soursop exhibited maximum growth at RZTs of 35 degrees C under non-flooded conditions and at 25 degrees C under flooded conditions.  相似文献   

6.
Cheng L  Fuchigami LH 《Tree physiology》2002,22(18):1297-1303
Bench-grafted Fuji/M.26 apple (Malus domestica Borkh.) trees were fertilized with a nutrient solution (fertigation) containing 0, 2.5, 5, 7.5, 10, 15 or 20 mM nitrogen (N) in a modified Hoagland's solution from June 30 to September 1. In mid-October, half of the trees in each N treatment were sprayed twice with 3% urea, 1 week apart. The remaining trees served as controls. All trees were harvested after leaf fall and stored at 2 degrees C over winter. One group of trees from each treatment was destructively sampled before bud break to determine amounts of reserve N and total nonstructural carbohydrates (TNC); the remaining trees were transplanted to N-free medium in the spring. These trees were supplied with Hoagland's solution with or without 10 mM N (from 15N-depleted NH4NO3) for 60 days, starting from bud break. With increasing N supply from fertigation, tree N concentration increased, whereas TNC concentration decreased. Foliar urea applications increased tree N concentration and decreased TNC concentration in each N fertigation treatment. There was a negative linear relationship between tree N concentration and TNC concentration. Irrespective of whether N was provided the following spring, trees with high N reserves but low carbohydrate reserves produced a larger total leaf area at the end of the regrowth period than trees with low N reserves but high carbohydrate reserves. The pooled data on reserve N used for new growth showed that, regardless of the spring N supply, there was a linear relationship between total N accumulated in the tree during the previous season and the amount of reserve N remobilized for new shoot and leaf growth. About 50% of tree N content was remobilized to support new shoot and leaf growth over the range of tree N status examined. We conclude that the initial growth of young apple trees in the spring is determined mainly by reserve N, not reserve carbohydrates. The amount of reserve N remobilized for new growth in spring was proportional to tree N status and was unaffected by current N supply.  相似文献   

7.
The effects of shade and soil temperature on growth of Eucalyptus marginata Donn ex Sm (jarrah) seedlings were studied in greenhouse experiments. Plant dry weight and that of all plant parts declined in response to shade, as did root/shoot ratio. Plant leaf area was less in unshaded plants than in plants grown in shade, and specific leaf area increased with shade. Unshaded seedlings had a higher light-saturated rate of photosynthesis, a higher light compensation point and a higher light saturation point than seedlings grown in 70% shade. The relationship between plant dry weight and leaf dry weight was independent of shading, whereas the relationship between plant dry weight and plant leaf area was dependent on shading. Therefore, leaf dry weight may be a better predictor of biomass production than leaf area in forest stands where shade is likely to affect growth significantly. Soil temperature had a significant effect on the growth of all plant parts except cotyledons. Total plant growth and shoot growth were maximal at a soil temperature of 30 degrees C, but root growth had a slightly lower temperature optimum such that the root/shoot ratio was highest at 20 degrees C. Roots grown at 15 degrees C were about 30% shorter per unit of dry weight than roots grown at 20 to 35 degrees C. We conclude that increases in irradiance and soil temperature as a result of overstory removal in the forest will cause significant increases in growth of E. marginata seedlings, but these increases represent a relatively small component of the growth response to overstory removal.  相似文献   

8.
Soil temperature is proposed to affect the photosynthetic rate and carbon allocation in boreal trees through sink limitation. The aim of this study was to investigate the effect of temperature on CO(2) exchange, biomass partitioning and ectomycorrhizal (ECM) fungi of boreal tree species. We measured carbon allocation, above- and below-ground CO(2) exchange and the species composition of associated ECM fungi in the rhizosphere of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies K.) and silver birch (Betula pendula Roth) seedlings grown in soil maintained at 7-12, 12-15 and 16-22 °C. We found increased root biomass and photosynthetic rate at higher soil temperatures, but simultaneously with photosynthesis rate, higher temperature generally increased soil respiration as well as shoot, and root and rhizosphere respiration. The net CO(2) exchange and seedling biomass did not increase significantly with increasing temperature due to a concomitant increase in carbon assimilation and respiration rates. The 2-month-long growth period in different soil temperatures did not alter the ECM fungi species composition and the below-ground carbon sink strength did not seem to be directly related to ECM biomass and species composition in any of the tree species. Ectomycorrhizal species composition and number of mycorrhiza did not explain the CO(2) exchange results at different temperatures.  相似文献   

9.
Fruit load was altered by flower thinning on three- and four-year-old, field-grown apple trees. Increasing fruit load led to increases in dry matter production per unit leaf area and partitioning to fruit and to decreases in fruit size, percentage fruit dry matter, dry matter partitioning to new shoot growth, thickening of existing woody tissue and root growth. Flower bud production for the following spring was also negatively affected by an increase in fruit load. Leaf photosynthesis was increased in cropping trees in July and August at the time of maximum fruit dry weight increase. Calculated light interception was linearly related to leaf area. The efficiency of conversion of intercepted photosynthetic active radiation to dry matter energy equivalents was 3.3% in heavily cropping trees and 1.8% in non-cropping trees. Total dry matter production was linearly related to both leaf area and light interception, but the variance accounted for by the regression was more than doubled if fruit dry matter or fruit number was included in the regression.  相似文献   

10.
Teskey RO  Will RE 《Tree physiology》1999,19(8):519-525
To determine the extent to which loblolly pine seedlings (Pinus taeda L.) acclimate to high temperatures, seedlings from three provenances-southeastern Texas (mean annual temperature 20.3 degrees C), southwestern Arkansas (mean annual temperature 16.2 degrees C) and Chesapeake, Maryland (mean annual temperature 12.8 degrees C)-were grown at constant temperatures of 25, 30, 35 or 40 degrees C in growth chambers. After two months, only 14% of the seedlings in the 40 degrees C treatment survived, so the treatment was dropped from the experiment. Provenance and family differences were not significant for most measured variables. Total biomass was similar in the 25 and 30 degrees C treatments, and less in the 35 degrees C treatment. Foliage biomass was higher, and root biomass lower, in the 30 degrees C treatment compared with the 25 degrees C treatment. Net photosynthesis and dark respiration of all seedlings were measured at 25, 30 and 35 degrees C. Both net photosynthesis and dark respiration exhibited acclimation to the temperature at which the seedlings were grown. For each temperature treatment, the highest rate of net photosynthesis was measured at the growth temperature. Dark respiration rates increased with increasing measurement temperature, but the basal rate of respiration, measured at 25 degrees C, decreased from 0.617 &mgr;mol m(-2) s(-1) in the 25 degrees C treatment to 0.348 &mgr;mol m(-2) s(-1) in the 35 degrees C treatment, resulting in less carbon loss in the higher temperature treatments than if the seedlings had not acclimated to the growth conditions. Temperature acclimation, particularly of dark respiration, may explain why total biomass of seedlings grown at 30 degrees C was similar to that of seedlings grown at 25 degrees C.  相似文献   

11.
Elstar apple trees (Malus domestica Borkh.) on M.9 rootstock received either 5 or 35 g N tree(-1) year(-1) during the first two growing seasons after planting, applied as Ca(NO(3))(2) on a daily basis for nine weeks through a drip irrigation system. During the third growing season (1994), all trees were treated with 20 g N tree(-1) year(-1) as (15)NH(4) (15)NO(3) with applications starting on April 22 and continuing for 10 weeks. Soil solution nitrate-N and ammonium-N were monitored weekly with suction lysimeters located 30 cm beneath the drip emitters. Spur and shoot leaves were sampled intensively from full bloom to the end of rapid shoot growth. During the period of nitrogen application, soil solution nitrate-N and ammonium-N were relatively constant, at about 24 and 1.0 mg l(-1) respectively. Growth of the spur leaves was completed by one week after full bloom (May 12), whereas biomass of the shoot leaves increased until mid-June. Nitrogen for growth of the spur leaves was supplied mainly from remobilization, which was dependent on previous N supply. Accumulation of fertilizer N in spur leaves was independent of previous N treatments and continued until the end of the monitoring period (June 24), but contributed only 13% to total spur leaf N. Nitrogen for shoot leaf growth was independent of previous N treatments and was initially supplied primarily by remobilization, but by the end of extension growth, fertilizer N contributed 48% to total shoot leaf N. Linear increases in leaf N uptake throughout the period of rapid shoot growth and the large contribution of fertilizer N to total shoot leaf N were attributed to the constant supply of N available in the root zone through daily N fertilization.  相似文献   

12.
The specific rate of CO(2) efflux (respiration) from roots of intact fruiting calamodin plants (Citrus madurensis Lour.) showed no diel trend, and did not respond significantly to short-term (2 day) changes in shoot irradiance. Mean root respiration rate was about 8.4 nmol CO(2) g(-1) s(-1) at 20 degrees C, and increased with temperature with a Q(10) of about 2. In calamodin plants, the proportion of total root length that was white averaged 6.0 mm m(-1). Respiration of roots of apple plants (Malus domestica Borkh.), planted in spring as rootstocks and grown at high irradiance and N supply, declined from about 5.3 to 2.8 nmol CO(2) g(-1) s(-1) between 46 and 138 days after bud burst. At 50% irradiance, root respiration was reduced more than 25% at 46 and 92 days after bud burst, but was not significantly affected later in the season. Reducing shoot irradiance reduced the proportion of total root length that was white, e.g., from 217 to 146 mm m(-1) at 46 days after bud burst. For plants previously grown at low irradiance, increasing shoot irradiance for 6 days increased the rate of root respiration by 5 to 10%. For plants previously grown at high irradiance, reducing shoot irradiance for 6 days reduced root respiration by about 20% early in the season, but had no significant effect later in the season. For plants grown with low-N supply (5% of the high-N), root respiration was reduced early in the season, but was not significantly affected later. Reducing the N supply increased slightly the proportion of total root length that was white. For plants previously grown with low-N, increasing the N supply for 6 days reduced further the rate of root respiration. For plants previously grown with high-N, reducing the N supply for 6 days did not significantly affect the rate of root respiration. Specific respiration rates of root systems excised from mature trees growing outdoors peaked in June, at about 2.4 nmol CO(2) g(-1) s(-1), and then declined for the remainder of the growing season.  相似文献   

13.
Larch (Larix decidua Mill.) seedlings of a low altitude (600 m) Austrian provenance were raised outdoors and acclimated in chambers for 14 to 24 days during August and September at either 8 degrees C and an atmospheric saturation vapor pressure deficit (DeltaW) of 2.5 Pa kPa(-1), or 24 degrees C and a DeltaW of 6.2 Pa kPa(-1). Subsequently, their rates of photosynthesis, dark respiration and transpiration were measured at temperatures between 5 and 30 degrees C with DeltaW either maintained below 10 Pa kPa(-1) or allowed to increase with temperature up to 38 Pa kPa(-1). Below 15 degrees C the photosynthetic rate of cold-acclimated plants was higher, but above 15 degrees C it was lower, than that of warm-acclimated plants. Temperature acclimation caused a greater shift in the temperature optimum for photosynthesis when DeltaW was kept small than when it was allowed to increase with temperature. When DeltaW was kept small, leaf conductance of cold-acclimated plants, unlike that of warm-acclimated plants, did not increase with temperature above 15 degrees C. When DeltaW increased with temperature, leaf conductance of cold-acclimated plants decreased more rapidly with temperature than that of warm-acclimated plants. Low temperature acclimation increased the rate of photosynthesis below 15 degrees C without affecting leaf conductance, which indicates that there was an adaptation in leaf internal processes. Further evidence of a metabolic adaptation to acclimation temperature is that dark respiration of cold-acclimated plants was twice that of warm-acclimated plants at all temperatures.  相似文献   

14.
Soil temperature is a main factor limiting root growth in the boreal forest. To simulate the possible soil-warming effect of future climate change, 5-year-old Norway spruce (Picea abies (L.) Karst.) seedlings were subjected to three simulated growing seasons in controlled environment rooms. The seedlings were acclimated to a soil temperature of 16 degrees C during the first (GS I) and third growing seasons (GS III), but were assigned to random soil-temperature treatments of 9, 13, 18 and 21 degrees C during the second growing season (GS II). In GS II, shoot diameter growth was lowest in the 21 degrees C treatment and root growth was lowest in the 9 degrees C treatment. In GS III, shoot height and root length growth improved in seedlings that had been kept at 9 degrees C during GS II, indicating compensatory growth in response to increased soil temperature. The temporary decrease in soil temperature had no long-lasting significant effect on seedling biomass or total nutrient uptake. At the end of GS III, fine roots of seedlings exposed to a soil temperature of 21 degrees C in GS II were distributed more evenly between the organic and mineral soil layers than roots of seedlings in the other treatments. During GS II and GS III, root growth started earlier than shoot growth, decreased during the rapid shoot elongation phase and increased again as shoot growth decreased.  相似文献   

15.
Understory red spruce (Picea rubens Sarg.) trees, between 20 and 50 cm in height and 12 years or more in age, were collected from mid- and high-elevation stands in north-central Vermont and placed in a closed-cuvette system to measure photosynthetic and transpirational responses to photosynthetic photon flux density (PPFD) and temperature. Photosynthesis, dark respiration, transpiration and water-use efficiency of trees from both stands responded to changes in PPFD and temperature in similar ways. Trees from both stands exhibited maximum rates of net photosynthesis at temperatures between 15 and 20 degrees C, and exposure to higher temperatures resulted in reduced rates of photosynthesis and increased rates of respiration. Net photosynthetic rates generally increased with increasing light intensity but began to level off at 250 micro mol m(-2) s(-1). Water-use efficiency was maximal when temperature and PPFD were at 15 degrees C and above 400 micro mol m(-2) s(-1), respectively.  相似文献   

16.
Effects of elevated temperature and atmospheric CO2 concentration ([CO2]) on spring phenology of mature field-grown Norway spruce (Picea abies (L.) Karst.) trees were followed for three years. Twelve whole-tree chambers (WTC) were installed around individual trees and used to expose the trees to a predicted future climate. The predicted climate scenario for the site, in the year 2100, was 700 micromol mol-1 [CO2], and an air temperature 3 degrees C higher in summer and 5 degrees C higher in winter, compared with current conditions. Four WTC treatments were imposed using combinations of ambient and elevated [CO2] and temperature. Control trees outside the WTCs were also studied. Bud development and shoot extension were monitored from early spring until the termination of elongation growth. Elevated air temperature hastened both bud development and the initiation and termination of shoot growth by two to three weeks in each study year. Elevated [CO2] had no significant effect on bud development patterns or the length of the shoot growth period. There was a good correlation between temperature sum (day degrees>or=0 degrees C) and shoot elongation, but a precise timing of bud burst could not be derived by using an accumulation of temperature sums.  相似文献   

17.
We studied the influence of temperature and near- and sub- optimal mineral nutrition of black spruce seedlings (Picea mariana [Mill.] B.S.P.) during their second growing period on bud set, bud development, growth, mineral content and cold tolerance. Bud break and growth after bud break were also studied. Seedlings were grown for 106 d in growth chambers under three temperature regimes in combination with three concentrations of a fertilizer. They were then cold hardened for 56 d and dehardened for 66 d.Under these near- and sub-optimal N levels, bud formation occurred during the growing season. Bud formation was accelerated with decreasing fertilization, but was not affected by temperature treatments. Needles from seedlings with 0.64% N (dry mass basis) before hardening did not harden. Those with 0.87% N showed a lesser degree of hardiness than those with 1.28% N. Stem diameter increased at the beginning of the hardening period. During this acclimation period, shoot dry mass decreased with time at a constant rate and at the same rate over time for all treatments whereas root dry mass was more variable. Total number of needle primordia was low and no difference was observed among growing conditions. Bud break was similar in all treatments. Following bud break, shoot height and stem diameter increases were small but their magnitude varied with the nutritional regimes applied during the previous growing period. During hardening, nitrogen concentration of shoot tissues first increased and then decreased; phosphorus concentration first increased and then remained stable; potassium concentration remained stable. Concentration of these three elements generally decreased in the roots during this hardening.  相似文献   

18.
The effects of pre-storage CO(2) enrichment on growth, non-structural carbohydrates and post-storage root growth potential of Engelmann spruce (Picea engelmannii Parry) seedlings were studied. Seedlings were grown from seed for 202 days in growth chambers with ambient (340 micro l l(-1)) or CO(2) enriched (1000 micro l l(-1)) air. Some seedlings were transferred between CO(2) treatments at 60 and 120 days. Photoperiod was reduced at 100 days to induce bud set and temperature was reduced at 180 days to promote frost hardiness development for storage at -5 degrees C for 2 or 4 months. Stored seedlings were planted in a growth chamber after thawing for one week at +5 degrees C. At 80, 120, 140 and 202 days, and at each planting time after storage, seedlings were harvested for growth measurements and analysis of starch and soluble sugar concentrations. Planted seedlings were assessed for bud break every two days and new roots > 5 mm long were counted after four weeks. Carbon dioxide enrichment increased root collar diameter and almost doubled seedling biomass, with the most obvious effects occurring after bud set. Stem height was affected only slightly and shoot/root ratios were not affected at all. Carbon dioxide enrichment increased the rate of reserve carbohydrate accumulation, but did not influence the final concentration attained before storage (accounting for 32% of seedling dry weight). Needles were the major storage organ for soluble sugars, whereas roots were the major storage organ for starch. Soluble sugars were not strongly affected by two or four months of storage, but starch was reduced by more than 50% in all plant parts. None of the CO(2) treatments had an impact on bud break or root growth potential.  相似文献   

19.
Increasing global temperatures could potentially cause large increases in root respiration and associated soil CO2 efflux. However, if root respiration acclimates to higher temperatures, increases in soil CO2 efflux from this source would be much less. Throughout the snow-free season, we measured fine root respiration in the field at ambient soil temperature in a sugar maple (Acer saccharum Marsh.) forest and a red pine (Pinus resinosa Ait.) plantation in Michigan. The objectives were to determine effects of soil temperature, soil water availability and experimental N additions on root respiration rates, and to test for temperature acclimation in response to seasonal changes in soil temperature. Soil temperature and soil water availability were important predictors of root respiration and together explained 76% of the variation in root respiration rates in the red pine plantation and 71% of the variation in the sugar maple forest. Root N concentration explained an additional 6% of the variation in the sugar maple trees. Experimental N additions did not affect root respiration rates at either site. From April to November, root respiration rates measured in the field increased exponentially with increasing soil temperature. For sugar maple, long-term Q10 values calculated from the field data were slightly, but not significantly, less than short-term Q10 values determined for instantaneous temperature series conducted in the laboratory (2.4 versus 2.62.7). For red pine, long-term and short-term Q10 values were similar (3.0 versus 3.0). Sugar maple root respiration rates at constant reference temperatures of 6, 18 and 24 degrees C were measured in the laboratory at various times during the year when field soil temperatures varied from 0.4 to 16.8 degrees C. No relationship existed between ambient soil temperature just before sampling and root respiration rates at 6 and 18 degrees C (P = 0.37 and 0.86, respectively), and only a very weak relationship was found between ambient soil temperature and root respiration at 24 degrees C (P = 0.08, slope = 0.09). We conclude that root respiration in these species undergoes little, if any, acclimation to seasonal changes in soil temperature.  相似文献   

20.
Effects of temperature on shoot growth in northern provenances of Pinus sylvestris L. were studied under natural long-day conditions (Lat. 69 degrees 39' N) at controlled temperatures. The optimum constant temperature for formation of stem unit primordia in the terminal resting bud was 18 to 21 degrees C. Stem unit number decreased linearly with temperature between 15 and 9 degrees C. Temperature during bud formation had a significant effect on final stem unit length achieved in the following year. Final shoot length was significantly affected by temperature during shoot elongation. The optimum constant temperature for elongation growth was 18 to 21 degrees C. The rate of shoot elongation was positively correlated with the number of stem units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号