首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The envelope glycoprotein D of equine herpesvirus 1 (EHV-1 gD) has been shown in laboratory animal models to elicit protective immune responses against EHV-1 challenge, and hence is a potential vaccine antigen. Here we report that intramuscular inoculation of EHV-1 gD produced by a recombinant baculovirus and formulated with the adjuvant Iscomatrix elicited virus-neutralizing antibody and gD-specific ELISA antibody in the serum of over 90% of adult mixed breed horses. The virus-neutralizing antibody responses to EHV-1 gD were similar to those observed after inoculation with a commercially available killed EHV-1/4 whole virus vaccine. Intramuscular inoculation of EHV-1 gD DNA encoded in a mammalian expression vector was less effective in inducing antibody responses when administered as the sole immunogen, but inoculation with EHV-1 gD DNA followed by recombinant EHV-1 gD induced increased gD ELISA and virus-neutralizing antibody titres in six out of seven horses. However, these titres were not higher than those induced by either EHV-1 gD or the whole virus vaccine. Isotype analysis revealed elevated gD-specific equine IgGa and IgGb relative to IgGc, IgG(T) and IgA in horses inoculated with EHV-1 gD or with the whole virus vaccine. Following inoculation of pregnant mares with EHV-1 gD, their foals had significantly higher levels of colostrally derived anti-gD antibody than foals out of uninoculated mares. The EHV-1 gD preparation did not induce a significant mean antibody response in neonatal foals following inoculation at 12 h post-partum and at 30 days of age, irrespective of the antibody status of the mare. The ability of EHV-1 gD to evoke comparable neutralizing antibody responses in horses to those of a whole virus vaccine confirms EHV-1 gD as a promising candidate for inclusion in subunit vaccines against EHV-1.  相似文献   

2.
We have shown previously that equine herpesvirus 1 (EHV-1) glycoprotein D (gD) DNA elicited protective immune responses against EHV-1 challenge in murine respiratory and abortion models of EHV-1 disease. In this study, 20 horses, all with pre-existing antibody to EHV-4 and two with pre-existing antibody to EHV-1, were inoculated intramuscularly with three doses each of 50, 200 or 500microg EHV-1 gD DNA or with 500microg vector DNA. In 8 of 15 horses, inoculation with EHV-1 gD DNA led to elevated gD-specific antibody and nine horses exhibited increased virus neutralising (VN) antibody titres compared to those present when first inoculated. A lack of increase in gC-specific antibody during the 66 weeks of the experiment showed that the increase in gD-specific antibodies was not due to a natural infection with either EHV-1 or EHV-4. The increase in EHV-1 gD-specific antibodies was predominantly an IgGa and IgGb antibody response, similar to the isotype profile reported following natural EHV-1 infection.  相似文献   

3.
The potential of DNA-mediated immunisation to protect against equine herpesvirus 1 (EHV-1) disease was assessed in a murine model of EHV-1 respiratory infection. Intramuscular injection with DNA encoding the EHV-1 envelope glycoprotein D (gD) in a mammalian expression vector induced a specific antibody response detectable by two weeks and maintained through 23 weeks post injection. Immune responses were proportional to the dose of DNA and a second injection markedly enhanced the antibody response. EHV-1 gD DNA-injected mice developed neutralising antibodies, and a predominance of IgG2a antibodies after the DNA injection was consistent with the generation of a type 1 helper T-cell (Th1) response. Following intranasal challenge with EHV-1, mice immunised with 50 microg of EHV-1 gD DNA were able to clear virus more rapidly from lung tissue and showed reduced lung pathology in comparison with control mice. The data indicate that DNA-mediated immunisation may be a useful strategy for vaccination against EHV-1.  相似文献   

4.
The specificity of selected immune responses to equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) was examined in 3 colostrum-deprived specific-pathogen-free foals. Single foals were vaccinated with inactivated EHV-1, inactivated EHV-4, or control cell lysate plus adjuvant followed by successive intranasal challenge exposures with EHV-1 and EHV-4 or with EHV-4 and EHV-1. Vaccination with inactivated virus preparations elicited cellular immune responses and antibody which were augmented by subsequent challenge exposures. Cellular immune responses, as measured by in vitro lymphocyte blastogenesis, were cross-reactive after foals were given either EHV-1 or EHV-4. Serum virus-neutralizing antibody responses were type-specific for foals given EHV-1, but were cross-reactive after EHV-4 administrations. It was concluded that diseases caused by EHV-1 and EHV-4 may be more effectively controlled with a bivalent vaccine containing both EHV-1 and EHV-4 than with the presently used monovalent vaccines based on EHV-1 alone.  相似文献   

5.
DNA-mediated immunization was assessed in a murine model of equine herpesvirus 1 (EHV-1) abortion. Whilst there are differences between the model and natural infection in the horse, literature suggests that EHV-1 infection of pregnant mice can be used to assess the potential ability of vaccine candidates to protect against abortion. Female BALB/c mice were inoculated twice, 4 weeks apart, with an expression vector encoding EHV-1 glycoprotein D (gD DNA). They were mated 15 days after the second inoculation, challenged at day 15 of pregnancy and killed 3 days later. The gD DNA-inoculated mice had fewer foetuses which were damaged or had died in utero (6% in gD DNA, 21% vector DNA and 28% in nil inoculated groups challenged with EHV-1), a reduction in the stunting effect of EHV-1 infection on foetuses (gD DNA: 0.40g+/-0.06, vector DNA: 0.34g+/-0.10), reduced placental and herpesvirus-specific lung histopathology and a lower titre of virus (TCID(50)+/-SEM/lung) in maternal lung than control groups (gD DNA 4.7+/-0.3, vector 5.3+/-0.2, nil 5.6+/-0.2). Maternal antibody to EHV-1 gD was demonstrated in pups born to a dam inoculated 123 days earlier with gD DNA. Although protection from abortion was incomplete, immunization of mice with gD DNA demonstrated encouragingly the potential of this vaccine strategy.  相似文献   

6.
The binding of the complement C3d molecule with receptors on B cells and/or follicular dendritic cells (FDCs) influences the induction of humoral immune responses. For example, C3d fused to an antigen has been shown to have a strong adjuvant effect on antibody production. We investigated the possibility that co-expression of antigen and C3d as a fusion protein could enhance antigen-specific immune responses, following plasmid immunization. One or two copies of murine C3d-cDNA, C3d or (C3d)(2), respectively, were cloned together with bovine rotavirus (BRV) VP7 or bovine herpesvirus type 1 (BHV-1) glycoprotein D (gD) genes. All constructs contained a signal peptide that resulted in the secretion of the expressed proteins. In vitro, the characterization of the chimeric proteins indicated that both VP7 and gD retained their antigenicity and the C3d remained biologically active. However, immunization with plasmids encoding VP7-C3d chimeras did not enhance rotavirus-specific antibody responses and the frequency of BRV-specific IFN-gamma secreting cells in the spleens were significantly lower in mice immunized with pVP7-(C3d)(2) when compared with mice immunized with plasmid encoding VP7. The same pattern of immune responses was observed for plasmids encoding gD-C3d. Both gD-specific antibody responses and the frequency of gD-specific IFN-gamma secreting cells were significantly lower in mice immunized with plasmid expressing gD-C3d chimeras when compared with mice immunized with plasmid encoding gD alone. These results indicate that co-expression of C3d with an antigen actually inhibit both humoral and cell-mediated antigen-specific immune responses.  相似文献   

7.
Replication-competent and replication-defective bovine adenovirus type 3 recombinants expressing the bovine herpesvirus type 1 (BHV-1) glycoprotein D (gD) were tested for induction of gD specific immune responses in calves using intratracheal (1st and 2nd immunization) and sub-cutaneous (3rd immunization) route of immunization. The replication-defective recombinant BAV501 induced systemic immune responses against gD as low titers of anti gD-IgG were detected in the serum. However, the efficacy of the replication-competent BAV3.E3gD to induce gD-specific antibodies in the serum and the nasal secretions was superior to that of replication-defective BAV501 when both viruses were given at the same dosage. Partial protection from challenge was induced in calves immunized with replication-competent BAV3.E3gD. A dramatic increase in the titers of anti-gD IgG and IgA levels, both in serum and nasal secretions, following BHV-1 challenge (anamnestic response) suggested that the animals immunized with replication-defective BAV501 had been primed for gD-specific antibody responses.  相似文献   

8.
The gene encoding equine herpesvirus 1 (equine abortion virus; EHV-1) glycoprotein D was engineered into the prokaryotic vector pEX, and expressed as a β-galactosidase fusion product, which was recognized by pooled equine sera and anti-EHV-1 rabbit sera. Antibodies raised against the EHV-1 gD fusion product identified strong bands in infected cells at 66 and 68 K and at 138 K in purified virus, thus characterizing the several forms of this major envelope glycoprotein which is an important candidate for inclusion in subunit vaccines.  相似文献   

9.
Equine herpesvirus type 1 (EHV-1) is a major cause of respiratory and reproductive diseases in horses worldwide. The genome of EHV-1 strain 438/77 (isolated from an aborted equine fetus) was cloned as a bacterial artificial chromosome (BAC) in E. coli without any gene deletions. The mini-F plasmid sequence was inserted in the middle of ORF19 and 20 via homologous recombination following co-transfection of viral DNA and plasmid pE19_20/HA into RK13 cells. Circular viral DNA was extracted from RK13 cells infected with purified recombinant virus expressing green fluorescent protein (GFP) and electrophorated into E. coli DH10B cells. The clone harboring the BAC was screened and analyzed by PCR and RFLP. Reconstitution of the recombinant virus was achieved successfully by transfection of the BAC DNA into RK13 cells. The mini-F sequence in the reconstituted virus was subsequently removed by homologous recombination between virus DNA and plasmid pE1920XM, inducing a point mutation in the Xbal site in ORF19. Comparison of RFLP profiles of the rescued, recovered and the wild-type viral genome demonstrated that no unexpected changes occurred during mutagenesis. In vitro replication assays showed that BAC-reconstituted virus mutant growth kinetics and plaque formation morphology/size were indistinguishable to those measured for wild-type virus.  相似文献   

10.
为了获得具有生物学活性的牛传染性鼻气管炎病毒(infectious bovine rhinotracheitis virus,IBRV) gD蛋白特异性单链抗体,试验采用PCR方法扩增杂交瘤细胞的cDNA单链抗体重链可变区(VH)和轻链可变区(VL)基因,通过重叠延伸PCR及Linker序列获得完整的单链抗体基因,将单链抗体基因克隆至杆状病毒载体pFB-LIC-Bse中,构建重组转移载体pFB-VH-VL,将其转化至大肠杆菌DH10Bac感受态细胞中制备重组杆粒rBacmid-VH-VL,将重组杆粒rBacmid-VH-VL转染至Sf9细胞中获得携带单链抗体基因的重组杆状病毒。该重组杆状病毒在Sf9细胞中表达了分子质量约为30 ku的单链抗体蛋白。Western blotting结果显示,重组单链抗体蛋白能被His标签抗体特异性结合,也能特异性结合gD蛋白。间接免疫荧光试验结果显示,该单链抗体蛋白能够识别感染牛肾细胞MDBK中的IBRV。本研究在昆虫细胞中成功表达了具有识别IBRV的gD蛋白特异性单链抗体,为牛传染性鼻气管炎的诊断与治疗奠定了基础。  相似文献   

11.
For preparation of bioactive single chain fragment variable (ScFv) which was targeted against envelope glycoprotein D (gD) of infectious bovine rhinotracheitis virus (IBRV),VH and VL genes were amplified from the cDNA of lymphocyte hybridoma, then VH and VL genes were integrated with a Linker by SOE-PCR,and the ScFv gene was cloned into the baculovirus vector pFB-LIC-Bse, which was transformed into Escherichia coli DH10Bac competent cells to construct a recombinant bacmid rBacmid-VH-VL. Finally,ScFv was expressed by transfected rBacmid-VH-VL into insect Sf9 cells, its molecular weight was about 30 ku. The result of Western blotting suggested that ScFv generated in Sf9 cells was specifically binds to His antibody,the protein also showed high affinity to gD of IBRV. The result of indirect immunofluorescence assay showed that ScFv could recognize IBRV which infected bovine kidney cells (MDBK). The study indicated that the recombinant ScFv was expressed in Sf9 cells, and could bind to gD of IBRV specifically. The result could provide the basis for the diagnosis and treatment of infection of IBRV.  相似文献   

12.
Equine herpes virus (EHV)-1 replicates in the epithelial cells of the upper respiratory tract and reaches the lamina propria and bloodstream in infected mononuclear cells. This study evaluated expression of the late viral proteins gB, gC, gD and gM in respiratory epithelial and mononuclear cells using: (1) epithelial-like rabbit kidney cells and peripheral blood mononuclear cells infected with EHV-1 in vitro; (2) an equine ex vivo nasal explant system; and (3) nasal mucosa tissue of ponies infected in vivo. The viral proteins were expressed in all late-infected epithelial cells, whereas expression was not observed in infected leucocytes where proteins gB and gM were expressed in 60-90%, and proteins gC and gD in only 20% of infected cells, respectively. The results indicate that expression of these viral proteins during early-stage EHV-1 infection is highly dependent on the cell type infected.  相似文献   

13.
Two groups each of six sibling ponies were exposed to sequential infections with equid herpesvirus 1 or 4 (EHV-1 or EHV-4) at four or five month intervals. Two exposures to EHV-4 did not significantly reduce virus shedding or pyrexia when the ponies were subsequently exposed to EHV-1. However, two sequential infections with EHV-1 completely protected against challenge with EHV-4. Virus neutralising antibody in each group did not increase until 21 days after primary exposure and was subtype specific. However, complement fixing antibody rose within seven days after inoculation with EHV-1, and 14 days after inoculation with EHV-4, and while the latter was subtype specific the former was directed against both EHV-1 and EHV-4. Interpretation of these findings in relation to vaccination is discussed.  相似文献   

14.
Equine herpesvirus 1 (EHV-1) is a major cause of respiratory disease and abortion in horses worldwide. Although some vaccines have been shown experimentally to reduce disease, there are few reports of the responses to vaccination in the field. This study measured antibody responses to vaccination of 159 mares (aged 4-17 years) and 101 foals (aged 3-6 months) on a large stud farm with a killed whole virus EHV-1/4 vaccine used as per the manufacturer's recommendations. Using an EHV glycoprotein D (gD)-specific ELISA and a type-specific glycoprotein G (gG) ELISA, respectively 13.8 and 28.9% of mares, and 42.6 and 46.6% of foals were classed as responding to vaccination. Additionally, 16.4 and 17.6% of mares were classified as persistently seropositive mares. Using both assays, responder mares and foals had lower week 0 mean ELISA absorbances than non-responder mares and foals. Responder mares were ten times more likely to have responder foals, and non-responder mares were six times more likely to have non-responder foals than other mares using the gG ELISA. Mares aged 7 years or less and foals aged 4 months or more were more likely to respond to vaccination than animals in other age groups. There was no association between response of mares and the number of previous vaccinations received and persistently seropositive mares did not respond to vaccination. This study documents the responses of mares and foals to vaccination in a large scale commercial environment in 2000, and suggests that knowledge of antibody status may allow a more selective vaccination strategy, representing considerable savings to industry.  相似文献   

15.
16.
Equid herpes virus 1 (EHV-1) related isolates from a captive blackbuck (strain Ro-1) and Grevy's zebra (strain T965) behaved similarly to EHV-1 and EHV-9 in respect to their host cell range. Restriction enzyme analysis and a phylogenetic tree confirmed that Ro-1 and T965 were identical and more closely related to EHV-1 than to EHV-9. Differences from EHV-1 became obvious firstly, by amino acid alignments revealing two unique substitutions in the gB protein of Ro-1 and T965. Secondly, an EHV-1 type-specific monoclonal antibody did not detect its antigen on Ro-1, T965 or EHV-9 infected cells by immunohistochemistry. The results support the view that Ro-1 and T965 isolates represent a distinct, previously unrecognized species of equid herpesviruses.  相似文献   

17.
Equid herpesviruses types 1 and 4 (EHV-1 and EHV-4) are closely related pathogens of horses. While both viruses can infect the upper respiratory tract, EHV-1 regularly causes systemic infection, which is only rarely observed in the case of EHV-4. Little is known about the molecular basis for this striking difference in pathogenic potential. Recently, we have started a systematic analysis of differences in the amino acid sequences of proteins involved in virus replication, more specifically entry and egress, as well as proteins involved in immune evasion. Here, we summarize our findings relevant to glycoproteins D and G (gD and gG), which share a high degree of similarity between the viruses, yet exhibit important differences. We found that both these glycoproteins appear to be involved in the conquest of the mononuclear cell compartment. While gD is involved in infection of peripheral blood mononuclear cells through an RSD motif present in EHV-1 but not EHV-4, gG is implicated in thwarting innate responses by sequestration of chemokines. Again, the activity is only present in EHV-1, more specifically in a short stretch of variable amino acids in the extracellular domain of gG. The differences in the two glycoproteins of EHV-1 and EHV-4 are discussed, as is their role in pathogenesis. In addition, hypotheses are proposed related to the other equid respiratory alphaherpesviruses, EHV-8 and EHV-9, based on the amino acid sequences of gD and gG.  相似文献   

18.
The temperature sensitive and host range mutant clone 147 of equine herpesvirus 1 (EHV-1) was assessed for its ability to protect conventional, susceptible adult horses against respiratory infection by EHV-1 and equine herpesvirus 4 (EHV-4).Intranasal (IN) vaccination with 5.2 log(10) TCID(50) did not cause adverse clinical reactions although a limited virus shedding and viraemia (leukocytes) was observed in 11 of 15 and 10 of 15 vaccinated horses respectively. All 15 vaccinated horses showed a significant seroresponse to both EHV-1 and EHV-4 for virus neutralising (VN) antibody. None of 14 control horses shed virus or became viraemic or seroconverted prior to challenge. EHV-1 challenge (dose 6.0 log(10)) 6 weeks after vaccination resulted in pyrexia in all eight control horses while eight vaccinated horses remained unaffected. Six control horses developed nasal discharge, five of which were mucopurulent nasal discharge (mean duration 3.2 days) which also occurred in four vaccinated horses for 1 day. All eight control horses shed challenge EHV-1 at a significantly higher level (group mean titre 2.6+/-0.4 log(10) TCID(50) per sample) and for much longer (mean duration 4.8+/-1.5 days) than that (group mean titre 1.4+/-0.8 log(10) TCID(50) per sample and mean duration 1.5+/-0.5 days) in six vaccinated horses. Furthermore, all eight control horses became viraemic (mean duration 2.9 days) but viraemia did not occur in eight vaccinated horses. Following EHV-1 challenge, all eight control horses showed a significant VN antibody rise to both EHV-1 and EHV-4 but this occurred in only one vaccinated horse and to EHV-4 only. In EHV-4 challenge (dose of 4.2 log(10) TCID(50)) of a separate pair of seven vaccinated and six control horses, 6 weeks after EHV-1 vaccination resulted in pyrexia (mean duration 2.3 days) and nasal discharge (mean duration 1.8 days) in three and five control horses respectively but the only reaction observed in the vaccinated group was nasal discharge for 1 day in one animal. All six control animals shed virus (mean titre 2.5+/-0.6 log(10) TCID(50) per sample and mean duration 2+/-0.6 days) compared to one vaccinated animal. Although EHV-4 viraemia is rare, 3 of 6 control horses became viraemic after EHV-4 challenge but this was not observed in vaccinated horses. After EHV-4 challenge 3 and 5 of 6 control horses seroconverted for VN antibody to EHV-1 and EHV-4 respectively; a non-responsive control horse had high level of pre-existing VN antibody to EHV-4. However, only 1 of 7 vaccinated horses showed a significant antibody rise and only to EHV-4.  相似文献   

19.
The relationship of passage-induced mutant genes 1 and 71 of an attenuated equine herpesvirus 1 (EHV-1) with virulence was analysed by constructing nine recombinant EHV-1 viruses by homologous recombination. Gene 1 or/and gene 71 of a virulent EHV-1 strain, HH1, was replaced by a mutant gene 1 or/and 71 of an attenuated HH1 strain, BK343, respectively. The beta-galactosidase gene of Escherichia coli was inserted within the gene 1 or 71 coding sequence of HH1 to inactivate the genes. Virus replications of these recombinant viruses in cell cultures were similar, but release of the gene 71-inactivated virus from infected cells was delayed compared to that of the other viruses. Plaque sizes of the recombinant viruses were similar to those of HH1, but those of BK343 were significantly smaller, indicating an effect of some unknown factor(s) on viral cell-to-cell spread. The growth abilities of the recombinant viruses with a mutant gene 1 or/and 71 in lungs of mice were similar to those of HH1, but those of gene 71-inactivated viruses were reduced to the level of BK343 and the titers were about 100-times lower than those of the other recombinant viruses. These results indicate that the mutant genes 1 and 71 of BK343 might not confer an attenuated nature to EHV-1.  相似文献   

20.
Equine herpesvirus-1 (EHV-1) is the cause of serious disease with high economic impact on the horse industry, as outbreaks of EHV-1 disease occur every year despite the frequent use of vaccines. Cytotoxic T-lymphocytes (CTLs) are important for protection from primary and reactivating latent EHV-1 infection. DNA vaccination is a powerful technique for stimulating CTLs, and the aim of this study was to assess antibody and cellular immune responses and protection resulting from DNA vaccination of ponies with combinations of EHV-1 genes. Fifteen ponies were divided into three groups of five ponies each. Two vaccination groups were DNA vaccinated on four different occasions with combinations of plasmids encoding the gB, gC, and gD glycoproteins or plasmids encoding the immediate early (IE) and early proteins (UL5) of EHV-1, using the PowderJect XR research device. Total dose of DNA/plasmid/vaccination were 25 microg. A third group comprised unvaccinated control ponies. All ponies were challenge infected with EHV-1 6 weeks after the last vaccination, and protection from clinical disease, viral shedding, and viremia was determined. Virus neutralizing antibodies and isotype specific antibody responses against whole EHV-1 did not increase in either vaccination group in response to vaccination. However, glycoprotein gene vaccinated ponies showed gD and gC specific antibody responses. Vaccination did not affect EHV-1 specific lymphoproliferative or CTL responses. Following challenge infection with EHV-1, ponies in all three groups showed clinical signs of disease. EHV-1 specific CTLs, proliferative responses, and antibody responses increased significantly in all three groups following challenge infection. In summary, particle-mediated EHV-1 DNA vaccination induced limited immune responses and protection. Future vaccination strategies must focus on generating stronger CTL responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号