首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Bacterial blight (BB) is the most economically damaging disease of rice in Asia and other parts of the world. In this study, a multiplex PCR genotyping method was developed to simultaneously identify genotypes of five BB resistance genes, Xa4, xa5, Xa7, xa13 and Xa21. The resistance R alleles were amplified using five functional markers (FMs) to generate amplicons of 217, 103, 179, 381 and 595 bp in IRBB66. Amplicons of 198, 107, 87, 391 and 467 bp corresponded to susceptible alleles in Taiwanese japonica rice cultivars. In backcross breeding programmes, the multiplex PCR assay was integrated into selection from a population using BB resistance donor IRBB66 crossed to rice cultivar ‘Tainung82’. Two plants with homozygosity for Xa4, xa5, Xa7, xa13 and Xa21 were selected from 1100 BC2F2 plants. In addition, the five BB resistance genes were also accurately identified in F2 populations. This multiplex PCR method provides a rapid and efficient method for detecting various BB resistance genes, which will assist in pyramiding genes to improve durability of BB resistance in Taiwanese elite rice cultivars.  相似文献   

2.
Tomato mosaic virus (ToMV) is an important Tobamovirus that causes significant crop losses. Resistance to the ToMV is conferred by the genes Tm1, Tm2 and Tm2a. Among these three genes, Tm2a confers resistance to most strains of the ToMV. Screening of genetic lines under field conditions based on phenotype is time‐consuming and challenging due to concerns associated with stability of the virus and its potential transmission to other plants. Tightly linked molecular markers associated with resistance genes can improve selection efficiency and avoid these problems. This study developed a PCR‐based marker based on restriction site differences from Tm2a locus‐specific sequences, which was found to be useful in identifying the resistant and susceptible genotypes and was consistent with phenotypic data. The marker is a codominant cleaved amplified polymorphic sequence (CAPS) marker producing 270‐ and 600‐bp DNA fragments from resistant genotypes and an 870‐bp fragment from susceptible genotypes when digested with HaeIII restriction enzyme. This novel marker can be useful for tomato breeders to screen progeny from segregating populations for ToMV resistance.  相似文献   

3.
Sequence characterized amplified region (SCAR) markers that are highly desirable in crop breeding for marker‐assisted selection (MAS) are routinely analysed by gel‐based methods that are low‐throughput, time‐consuming and laborious. In this study, we showed a rapid and convenient method for analysis of SCAR markers in a gel‐free manner. Seven SCAR markers, linked to rust resistance genes (Sr24, Sr26 and Sr31) and seed quality traits (Pina, Pinb and Glu‐D1) in wheat (Triticum aestivum), were amplified on a real‐time PCR machine using custom reaction mixture. Subsequently, melting curve analysis was performed, to assess the specificity of amplicons. Using the amplicon‐specific melt‐profiles, the presence/absence of SCAR markers was analysed in fifteen genotypes and five F2 populations. Unlike the fluorescence‐based in‐tube detection methods, the present method used the amplicon‐specific melt‐profiles to evaluate the status of the SCAR markers, thus eliminating the need for gel‐based analysis. Results also showed feasibility of multiplex analysis of two markers with well‐separated melting profiles. Overall, the approach is a rapid, convenient and cost‐effective method for high‐throughput screening of SCAR markers.  相似文献   

4.
Potato cyst nematodes (PCN) collected in six localities in the Leningrad region of North West Russia were identified as Globodera rostochiensis pathotype Ro1 and were used for subsequent resistance tests. Seventy‐nine accessions of cultivated and closely related wild potato species from the VIR collection in Russia were screened on resistance to G. rostochiensis pathotype Ro1 and on the presence of molecular markers for H1 and Gro1‐4 resistance genes. No associations were detected between the resistance level of diploid and tetraploid Andean and tetraploid Chilean potato landraces (indigenous cultivars) and their related wild species and their geographical distribution or presence of PCR‐based markers that are associated with the H1 and Gro1‐4 genes. At the same time, all susceptible genotypes lacked such markers. New sources of resistance were found and could be used in breeding.  相似文献   

5.
K. Werner    B. Pellio    F. Ordon  W. Friedt 《Plant Breeding》2000,119(6):517-519
Based on the RAPD marker OP‐C04H910 which is closely linked to the barley mild mosaic virus (BaMMV) resistance gene rym9 derived from the variety ‘Bulgarian 347’ the marker STS‐C04H910 cosegregating with OP‐C04H910 and generating a single additional band on plants carrying the recessive resistance encoding allele has been developed. Furthermore, the simple sequence repeats (SSRs) WMS6 and HVM67 have been integrated into the genetic map of the rym9 region on chromosome 4HL. Because of their close linkage to rym9 and distinct banding pattern STS‐C04H910 and HVM67 are well‐suited for marker‐ assisted selection, enhanced backcrossing procedures and pyramiding of resistance genes.  相似文献   

6.
B. K. Das    A. Saini    S. G. Bhagwat    N. Jawali 《Plant Breeding》2006,125(6):544-549
The stem rust resistance gene Sr31, transferred from rye (Secale cereale) into wheat (Triticum aestivum L.) imparts resistance to all the virulent pathotypes of stem rust (Puccinia graminis f. sp. tritici) found in India. Wheat genotypes including carriers and non‐carriers of the Sr31 gene were analysed using arbitrary primed polymerase chain reaction (AP‐PCR). AP‐PCR markers viz. SS30.2580(H) associated with the Sr31 gene and SS26.11100 associated with the allele for susceptibility were identified. Linkage between the markers and phenotypes was confirmed by analysing an F2 population obtained from a cross between a resistant and a susceptible genotype. The markers were tightly linked to the respective alleles. Both the AP‐PCR markers were converted into sequence characterized amplified region (SCAR) markers, viz. SCSS30.2576 and SCSS26.11100 respectively. The markers were validated in two more segregating populations and 49 wheat genotypes. Using both markers it was possible to distinguish the homozygous from the heterozygous carriers of the Sr31 gene in the F2 generation. The markers developed in this study can be used for pyramiding of the Sr31 gene with other rust resistance genes and in marker‐assisted selection.  相似文献   

7.
Summary An Agropyron elongatum-derived leaf rust resistance gene Lr24 located on chromosome 3DL of wheat was tagged with six random amplified polymorphic DNA (RAPD) markers which co-segregated with the gene. The markers were identified in homozygous resistant F2 plants taken from a population segregating for leaf rust resistance generated from a cross between two near-isogenic lines (NILs) differing only for Lr24. Phenotyping was done by inoculating the plants with pathotype 77-5 of Puccinia triticina. To enable gene-specific selection, three RAPD markers (S1302609, S1326615 and OPAB-1388) were successfully converted to polymorphic sequence characterized amplified region (SCAR) markers, amplifying only the critical DNA fragments co-segregating with Lr24. The SCAR markers were validated for specificity to the gene Lr24 in wheat NILs possessing Lr24 in 10 additional genetic backgrounds including the Thatcher NIL, but not to 43 Thatcher NILs possessing designated leaf rust resistance genes other than Lr24. This indicated the potential usefulness of these SCAR markers in marker assisted selection (MAS) and for pyramiding leaf rust resistance genes in wheat.  相似文献   

8.
Samba Mahsuri (BPT5204) is a medium slender grain indica rice variety that is very popular with farmers and consumers across India because of its high yield and excellent cooking quality. However, the variety is susceptible to several diseases and pests, including bacterial blight (BB). We have used PCR based molecular markers in a backcross-breeding program to introgress three major BB resistance genes (Xa21, xa13 and xa5) into Samba Mahsuri from a donor line (SS1113) in which all the three genes are present in a homozygous condition. At each backcross generation, markers closely linked to the three genes were used to select plants possessing these resistance genes (foreground selection) and microsatellite markers polymorphic between donor and recurrent parent were used to select plants that have maximum contribution from the recurrent parent genome (background selection). A selected BC4F1 plant was selfed to generate homozygous BC4F2 plants with different combinations of BB resistance genes. The three-gene pyramid and two-gene pyramid lines exhibited high levels of resistance against the BB pathogen. Under conditions of BB infection, the three-gene pyramid lines exhibited a significant yield advantage over Samba Mahsuri. Most importantly, these lines retain the excellent grain and cooking qualities of Samba Mahsuri without compromising the yield as determined in multi-location trials. This work demonstrates the successful application of marker-assisted selection for targeted introgression of multiple resistance genes into a premium quality rice variety. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. R. M. Sundaram and M. R. Vishnupriya have contributed equally to this work.  相似文献   

9.
Random amplified polymorphic DNAs and atp9‐related sequences were amplified in cytoplasmic male sterile (CMS) and maintainer lines drawn from a backcross programme to represent all five known cytoplasm types in chives. From these PCR amplifications, markers associated with CMS‐inducing cytoplasm types, (S1) and (S2), and for two of the three known normal cytoplasm types, (N2) and (N3), were developed. These newly developed PCR markers were used to determine the cytoplasm types in 126 plants representing 12 German chive varieties. The dependability of these PCR markers was confirmed by analysis with previously described and marker‐trait linked restriction fragment length polymorphisms. Two to five cytoplasm types were found in each of the 12 German chive varieties investigated. While the (S1) cytoplasm occurred, on average, at a frequency of 5% and the (S2) cytoplasm at 12%, the three normal cytoplasms (N1), (N2) and (N3) were present at 30, 29 and 24%, respectively. Thus, the prospects of finding maintainers for both CMS systems are relatively high in this population, if the frequency of non‐restoring alleles for the nuclear genes involved is also high enough.  相似文献   

10.
K. Williams    P. Bogacki    L. Scott    A. Karakousis  H. Wallwork   《Plant Breeding》2001,120(4):301-304
Seedlings of the barley line ‘B87/14’ were resistant to 22 out of 23 Australian isolates of Rhynchosporium secalis, the causal agent of leaf scald.‘B87/14’‐based populations were developed to determine the location of the resistance locus. Scald resistance segregated as a single dominant trait in BC1F2 and BC1F3 populations. Bulked segregant analysis identified amplified fragment length polymorphisms (AFLPs) with close linkage to the resistance locus. Fully mapped populations not segregating for scald resistance located these AFLP markers on chromosome 3H, possibly within the complex Rrs1 scald locus. Microsatellite and restriction fragment length polymorphism markers adjacent to the AFLP markers were identified and validated for their linkage to scald resistance in a second segregating population, with the closest marker 2.2 cM from the resistance locus. These markers can be used for selection of the Rrs.B87 scald‐resistance locus, and other genes at the chromosome 3H Rrs1 locus.  相似文献   

11.
X. K. Zhang    L. Liu    Z. H. He    D. J. Sun    X. Y. He    Z. H. Xu    P. P. Zhang    F. Chen    X. C. Xia 《Plant Breeding》2008,127(2):109-115
Wheat quality properties are genetically determined by the compositions of high and low molecular weight glutenin subunits, grain hardness, polyphenol oxidase (PPO) activity and starch viscosity. Two multiplex PCR assays were developed and validated using 70 cultivars and advanced lines from Chinese autumn‐sown wheat regions. Multiplex PCR I includes molecular markers for genes/loci ω‐secalin, Glu‐B1‐2a (By8), Glu‐D1‐1d (Dx5), Glu‐A3d, Glu‐B3 (for non‐1B·1R type) and Pinb‐D1b targeting improved gluten parameters and pan bread quality. Multiplex PCR II comprises markers for genes/loci Ppo‐A1, Ppo‐D1 and Wx‐B1b targeting improved noodle quality. The results were consistent with those achieved by SDS‐PAGE and RP‐HPLC, indicating that the two multiplex assays were highly effective, with good repeatability and low costs enabling their use in wheat breeding programmes. In total, nine alleles (subunits) at locus Glu‐B1, four at Glu‐D1 and five at Glu‐A3 locus were identified, and the alleles (subunits) Glu‐B1b (7 + 8), Glu‐B1c (7 + 9), Glu‐D1a (2 + 12), Glu‐D1d (5 + 10), Glu‐A3a, Glu‐A3c and Glu‐A3d were most frequently present in the cultivars and lines tested. The 1B·1R translocation was present in 28 (40.0%) lines, whereas the Wx‐B1 null allele for better noodle quality was present in only seven (10.0%) cultivars and advanced lines, and 37 (52.9%) lines had Pinb‐D1b associated with hard grains. The allele Ppo‐A1b on chromosome 2AL associated with lower PPO activity was present in 38 (54.3%) genotypes, whereas the less effective allele Ppo‐D1a on chromosome 2DL, also associated with low PPO activity was present in 45 (64.3%) of genotypes. These two multiplex PCR assays should be effective in marker assisted selection targeting improved pan bread‐making and noodle qualities.  相似文献   

12.
13.
Associations of PCR markers with freezing tolerance and acclimation of photosynthetic apparatus to cold were tested on 28 winter barley cultivars and advanced breeding forms to select alleles for practical application in marker assisted selection (MAS). We found significant associations between freezing tolerance evaluated with field-laboratory method (FLM) and markers located on 5H chromosome in region of gene Fr-H2 (bin9-10: Xbmag812, Xmwg2230) and region of gene Fr-H1 (bin11: Xmwg514, HvBM5, Xmwg644). Additionally, significant associations with photochemical quenching of chlorophyll a fluorescence (qP) were found for PCR markers Xpsr115 and Xmwg2062. In our study variation in the promoter region of Vrn-H1 (HvBM5) was directly connected with freezing tolerance of plants partially de-acclimated in the field. The results obtained here showed that different loci of freezing tolerance may play role in variable selection pressure of winter conditions.  相似文献   

14.
PI284752, an accession of wild barley (Hordeum vulgare ssp. spontaneum) resistant to powdery mildew caused by Blumeria graminis f.sp. hordei, was studied with the aim of identifying genes involved in powdery mildew resistance. An F2 population (456 plants) was established from a cross between the winter barley variety ‘Tiffany’ and PI284752. This cross demonstrated a two-locus model of resistance. Linkage analysis using polymorphic DNA markers was carried out on 180 plants. The RGH1a gene sequence from the Mla locus was used as a source for developing the RGH1aE2I2 marker. By interval mapping on chromosome 1HS, one resistance gene was found to be tightly linked with RGH1aE2I2 and it was found to be located 2 cM from GBMS062. In F2 plants exhibiting resistance reaction type (RT) 0, specific DNA fragments for the RGH1aE2I2 marker were amplified. In plants with RT1 to RT2-3, the resistance was conferred exclusively by the second R gene that we identified, which is linked with Bmac0134 and GBMS247 on chromosome 2HS. The aforementioned markers may be valuable candidates for marker-assisted selection of resistant genotypes conferred by one or both genes.  相似文献   

15.
Potyviruses cause serious yield losses in maize production worldwide. While the maize dwarf mosaic virus (MDMV) predominates in the USA, sugarcane mosaic virus (SCMV) is a major pathogen in China and Germany. In previous studies, inbred FAP1360A revealed complete resistance against both MDMV and SCMV. Two major SCMV resistance genes, Scmv1 and Scmv2, were located on chromosomes 6 and 3, respectively, in populations derived from crosses with the susceptible inbred line F7. For validation of these results obtained in segregating backcross‐ or F2:3‐populations, near‐isogenic lines to F7 have been produced after one initial cross to FAP1360A by repeated backcrossing to F7, phenotypic selection for SCMV resistance, and marker‐assisted selection for the Scmv1 and Scmv2 regions from FAP1360A. The near‐isogenic line F7R has been studied in detail both at the genomic level and for resistance to different potyviruses. Based on 112 polymorphic simple sequence repeat markers, F7R received genomic segments introgressed from FAP1360A exclusively in the Scmv1 and Scmv2 chromosomal regions. F7R conferred complete resistance to SCMV and MDMV, but also to zea mosaic virus and to systemic infection by wheat streak mosaic virus. FAP1360A, F7, F7R were not systemically infected by high plains virus. Thus, introgression of Scmv1 and Scmv2 from FAP1360A into F7 was sufficient to generate the first potyvirus multiresistant European Flint line reported so far.  相似文献   

16.
One of major objectives of crop breeding is conferring resistance to diseases and pests. However, large-scale phenotypic evaluation for many diseases and pests is difficult because strict controls are required to prevent their spread. Detection of disease resistance genes by using DNA markers may be an alternative approach to select potentially resistant accessions. Potato (Solanum tuberosum L.) breeders in Japan extensively use resistance gene H1, which confers nearly absolute resistance to potato cyst nematode (Globodera rostochiensis) pathotype Ro1, the only pathotype found in Japan. However, considering the possibility of accidental introduction of the other pathotypes, breeding of resistant varieties is an important strategy to prevent infestation by non-invading pathotypes in Japan. In this study, to evaluate the prevalence of resistance genes in Japanese genetic resources, we developed a multiplex PCR method that simultaneously detects 3 resistance genes, H1, Gpa2 and Gro1-4. We revealed that many Japanese varieties possess not only H1 but Gpa2, which are potentially resistant to other pathotypes of potato cyst nematode. On the other hand, no genotype was found to have the Gro1-4, indicating importance of introduction of varieties having Gro1-4. Our results demonstrate the applicability of DNA-marker assisted evaluation of resistant potato genotypes without phenotypic evaluation.  相似文献   

17.
Potato leafroll virus (PLRV; Genus Polerovirus; Family Luteoviridae) is one of the most important virus pathogens of potato worldwide and breeders are looking for new sources of resistance. Solanum etuberosum Lindl., a wild potato species native to Chile, was identified as having resistances to PLRV, potato virus Y, potato virus X, and green peach aphid. Barriers to sexual hybridization between S. etuberosum and cultivated potato were overcome through somatic hybridization. Resistance to PLRV has been identified in the BC1, BC2 and BC3 progeny of the somatic hybrids of S. etuberosum (+) S. tuberosum haploid × S. berthaultii Hawkes. In this study, RFLP markers previously mapped in potato, tomato or populations derived from S. palustre (syn S. brevidens) × S. etuberosum and simple sequence repeat (SSR) markers developed from tomato and potato EST sequences were used to characterize S. etuberosum genomic regions associated with resistance to PLRV. The RFLP marker TG443 from tomato linkage group 4 was found to segregate with PLRV resistance. This chromosome region has not previously been associated with PLRV resistance and therefore suggests a unique source of resistance. Synteny groups of molecular markers were constructed using information from published genetic linkage maps of potato, tomato and S. palustre (syn. S. brevidens) × S. etuberosum. Analysis of synteny group transmission over generations confirmed the sequential loss of S. etuberosum chromosomes with each backcross to potato. Marker analyses provided evidence of recombination between the potato and S. etuberosum genomes and/or fragmentation of the S. etuberosum chromosomes.  相似文献   

18.
We recently mapped the Pp523 locus that includes a single, dominant gene conferring resistance to downy mildew expressed in adult plants to a 75.1 cm long linkage group on a genetic linkage map of Brassica oleracea L. More recently, we identified a new AFLP marker 2.8 cm downstream from the resistance gene. The five DNA markers within an 8.5 cm region encompassing the Pp523 gene were cloned and sequenced. Three of these markers were transformed into SCARs (sequence characterised amplified regions), however, two among them were monomorphic and were analysed as CAPS (cleaved amplified polymorphic sequence) markers among the mapping population. Searched against genomic databases, the five B. oleracea DNA-marker sequences matched Arabidopsis thaliana L. gene sequences that delimit a conserved syntenic region in the top arm end of chromosome 1 of this last species. Considering the close genetic relatedness between both species, the information on this specific genomic region in A. thaliana is particularly useful for the construction of a fine-scale map of the corresponding genomic region in B. oleracea. The identified SCAR and CAPS markers can be used for marker assisted selection (MAS) in breeding programs aimed at the introgression of the Pp523 resistance locus, allowing the reliable indirect identification of plants harbouring the resistance gene with a margin of error of approximately six in ten-thousand selected plants.  相似文献   

19.
Brown planthopper (BPH) is the most devastating insect pest in rice‐growing areas. Information on availability of BPH resistance alleles and their sources enhances BPH‐resistant breeding programmes. In this study, 260 highly diversified rice cultivars or breeding lines were screened for the presence of five major BPH resistance genes (Bph10, Bph13, Bph18, Bph20 and Bph21) using gene‐specific markers. The analysis revealed that 137 of the 260 cultivars possess at least one BPH resistance gene. Bph10 was predominant while Bph20 was the least distributed. Moreover, two and three different resistance gene combinations were found in the cultivars. Molecular markers play an important role in molecular breeding programmes. A tightly linked PCR‐based co‐dominant Bph18 marker was developed, which is cost effective and time effective and simpler than available Bph18 CAPS marker (7312.T4A). We strongly believe that the identified BPH‐resistant cultivars can be used as alternative resistance gene sources and also as resource for novel BPH resistance genes. The developed Bph18 marker will be highly useful in molecular breeding applications of BPH‐resistant breeding programmes.  相似文献   

20.
In order to implement reliable marker-assisted selection systems for the restorer-of-fertility locus (Ms) in onions (Allium cepa L.), simple PCR-based codominant markers linked to the Ms locus were developed. Based on the EST probe sequences of previously reported RFLP markers, full-length genomic sequences of the gene encoding putative oligopeptide transporter (OPT) was obtained by RACE. The first intron contained two 108 and 439-bp indel polymorphisms between the two Ms allele-linked OPT alleles. A simple PCR marker for OPT was developed by designing a primer pair on the flanking regions of the 108-bp indel which is created by two tandem repeats. The second simple PCR marker was developed from the EST probe encoding photosystem I subunit O (PsaO). Two 14 and 39-bp tandem repeats were identified from the 5′ upstream sequences of the PsaO-coding gene, which were isolated by genome walking. Three different compositions of these tandem repeats were identified from diverse onion germplasm. A primer set binding to the flanking sequence of these polymorphic repeats was used to amplify three different marker haplotypes. The OPT marker was tightly linked to the Ms locus at a distance of 1.5 cM, but the analysis of the linkage relationship showed little linkage disequilibrium between the marker and the Ms locus. Even so, these simple PCR markers are valuable tools for the marker-assisted selection of segregating individuals in onion F1 hybrid breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号