首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field-derived growth rates (RNA-DNA based) of cod (Gadus morhua) larvae collected on the southern flank of Georges Bank were higher on average in May 1993 than May 1994, despite the apparent higher abundance of potential prey in 1994. A biophysical modeling study is presented here in which factors are examined that may have led to the difference in population mean growth. A one-dimensional physical model, forced by winds and tides, was used to simulate the vertical structure (of currents, temperature field, and turbulent kinetic energy dissipation rate) following a column of water in a Lagrangian sense at a site on the southern flank of Georges Bank over 5-day periods in late May of 1993 and 1994. The biophysical model and observed zooplankton abundance allowed us to explore the vertical structure and temporal (hourly) evolution of feeding and growth for cod larvae in relation to environmental conditions. Our trophodynamic model is improved over previous versions and now includes the effect of light on larval feeding response, as well as the effect of temperature on larval metabolic costs, ingestion, and digestion. Larval prey profiles, comprising four copepod species, were used from a time series of 1/4-m2 MOCNESS tows to define the prey field. Data from a collateral time-series of larval gut contents (1-m2 MOCNESS tows) was used to define maximum ingestion (satiation level) and prey selection. Model outputs provide depth-dependent estimates of growth, prey biomass ingested, larval length, and larval weight. Water-column growth-rate profiles were made for four size classes of larvae (5, 6, 7 and 9 mm) under the environmental conditions observed in May 1993 and 1994. A weighted-mean growth rate based on the mean vertical distribution of larvae was estimated for each size class. In all cases, when using all available potential prey, the model-derived 1994 growth rates were higher (by 3–6% day−1) than those for 1993. However, simulations in which 7-mm larvae followed the field-derived weighted mean depth over the sampling period, and were limited to their preferred Pseudocalanus prey, resulted in average growth of 12.2% day−1 for 1993 and 9.7% day−1 for 1994. These compared closely to the field growth means of 11.3% day−1 in 1993 and 9.8% day−1 in 1994. Thus, the lower observed growth in May 1994 may have resulted from depth-dependent food limitation and prey-selectivity coupled with the greater metabolic costs induced by the higher temperature that year.  相似文献   

2.
We estimated recent growth of Atlantic cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae collected on the southern flank of Georges Bank in May 1992–94 from the ratio of RNA to DNA (R/D) and water temperature. Growth of both species increased with water temperature to about 7°C and then decreased. The highest growth rates were observed in May 1993 at water temperatures around 7°C. These data confirm an earlier observation of comparable temperature optima for growth of Atlantic cod and haddock larvae in the north‐west Atlantic. Comparisons of field growth rates and temperature optima with data for larvae cultured at high temperatures and prey densities in the laboratory suggest that growth may have been food‐limited at higher temperatures on Georges Bank. Given that 7°C is the long‐term mean water temperature on the southern flank in May and that climate models predict a possible 2–4°C rise in water temperatures for the western North Atlantic, our findings point to a possible adverse effect of global warming on Atlantic cod and haddock.  相似文献   

3.
According to the match/mismatch hypothesis, larval fish survival and eventual recruitment is dependent on the offset time between the peaks of abundance of larvae and their planktonic prey. A rudimentary larval food supply model is developed to determine the dependence of food availability on the mismatch between peaks. The model predicts that recruitment variability should increase as spawning duration decreases, a result which is moderately supported by an analysis of Atlantic cod (Gadus morhua) data.  相似文献   

4.
Capelin, herring, and red salmon diets were examined in relation to zooplankton abundance and biomass in the water column and surface layer of Auke Bay, Alaska, during the spring bloom period, 1987 and 1988 (April through mid-June). Euphausiid eggs were the dominant prey of capelin in mid-May 1987. Pseu-docalanus spp. and barnacle nauplii dominated during the rest of the season. Capelin consumed Calanus spp. and Metridia spp. in April and Pseudocaknus and Cen-tropages abdominalis in May and June 1988. During May and June 1987, herring were eating primarily barnacle larvae and Oikopleura spp. During April 1988, herring consumed primarily Calanus spp. and barnacle nauplii. In late April and early May they shifted to Pseudocalanus and Thysanoessa raschii, and in late May and June they consumed Centropages abdominalis and barnacle cyprids. Outmigrating red salmon fry consumed primarily Oikopleura during both years, along with substantial quantities of barnacle larvae. These dietary changes roughly correspond with variations in the abundance of prey taxa in the plankton samples. Likelihood measures of niche breadth indicated that capelin sometimes consume prey in approximately equal proportions to its abundance. Niche overlap between the herring and capelin was greatest in April and early May. Niche overlap was also high between herring and red salmon during June, when herring were in shallow water to breed.  相似文献   

5.
The reproductive success of marine ectotherms is especially vulnerable in warming oceans due to alterations in adult physiology, as well as embryonic and larval survival prospects. These vital responses may, however, differ considerably across the species' geographical distribution. Here we investigated the life history, focusing on reproductive ecology, of three spatially distant populations (stocks) of Atlantic cod (Gadus morhua, Gadidae) (50–80° N), in the Irish/Celtic Seas-English Channel Complex, North and Barents Seas, under past and projected climate. First, experimental tracking of spawning behaviour evidenced that the ovulation cycle is highly distressed at ≥9.6 (±0.25)°C (Tup). This knife-edge threshold resulted in erratic spawning frequencies, whereas vitellogenin sequestration remained unaffected, indicating endocrine rather than aerobic scope constraints. Cod in the Celtic Sea-English Channel are, therefore, expected to show critical stock depensation over the next decades as spawning grounds warm above Tup, with Irish Sea cod subsequently at risk. Second, in the relatively cooler North Sea, the northward retraction of Calanus finmarchicus (Calanidae) and Para-Pseudocalanus spp. (Clausocalanidae) (1958–2017) limit cod larvae feeding opportunities, particularly in the southernmost subarea. However, the contrasting increase in Calanus helgolandicus (Calanidae) does not counteract this negative effect, likely because cod larvae hatch ahead of its abundance peaks. Overfishing again comes as a twin effect. Third, in the still relatively cold Barents Sea, the sustainably harvested cod benefit from improved food conditions in the recent ice-free polar region but at the energetic cost of lengthier and faster spawning migrations. Consequently, under climate change local stocks are stressed by different mechanistic factors of varying management severity.  相似文献   

6.
Proteome analysis was used to study the effects of feeding early Atlantic cod (Gadus morhua) larvae with a saithe (Pollachius virens) protein hydrolysate (SPH). Protein hydrolysates have previously been shown to beneficially affect fish larval development. Feeding was initiated on day 2 post hatch (ph) or as soon as the larvae opened their mouth and the protein expression was monitored 4 days later or in 6‐dph cod larvae. The results demonstrated changes in the abundance of 13 protein spots in the cod larvae fed SPH. Of these, seven protein spots were up‐regulated and six protein spots showed down‐regulation. Five of the up‐regulated proteins in cod larvae are known to be involved in energy metabolism. A few early larval specific proteins were down‐regulated in the SPH‐fed cod larvae possibly because of an enhanced development in this group relative to the control group. Two trypsin isoforms were detected within the cod larval proteome. The detection of the trypsin spots was made possible by co‐electrophoresis of known cod trypsins with the cod larval protein extract. Surprisingly, no difference in trypsin content was observed between the SPH‐fed and the control larval groups.  相似文献   

7.
The poleward flowing East Australian Current (EAC) drives sporadic upwelling, entrains coastal water and forms the western Tasman Front (wTF), creating a mosaic of water types and larval transport routes along south eastern Australia. The spatial distribution, otolith chemistry and growth rates of larval sardine (Sardinops sagax) were examined to infer spawning location and larval transport. A gradient of increasing larval size from north to south along the shelf was not detected but was evident between the shelf and offshore in the wTF. Here larvae were larger and older. Based on the occurrence of newly hatched larvae, spawning by S. sagax between southern Queensland and mid New South Wales (NSW) was more extensive than previously reported. The otolith chemistry from two wTF larval size classes differed, implying different origins. The otolith chemistry of wTF post‐flexion larvae was similar to larvae from northern NSW, whereas wTF flexion larvae were similar to larvae observed nearby from mid‐NSW. Two possible larval transport routes, direct and indirect, are inferred from otolith chemistry, current velocities and a previously published particle tracking study. Either larvae from northern NSW were advected south and entrained with younger larvae directly into the wTF, or larvae from a range of shelf regions were advected around the southern edge of an anticyclonic eddy, to join younger larvae directly entrained into the wTF. Based on the co‐occurrence of larval ages and sizes in the wTF and their advection routes, the wTF appears to be an important larval retention zone.  相似文献   

8.
Climate change has led to major shifts in the timing of biological events, with many studies demonstrating earlier phenology in response to warming. However, few of these studies have investigated the effects of climate change on the phenology of larvae in marine species. Phenological shifts can result in mismatches between consumers and prey and hence affect growth and survival of individuals, and ultimately population demography. We investigated the temporal changes in phenology and abundance of the larvae of dominant brachyuran crabs in the southern Gulf of St. Lawrence (eastern Canada) based on plankton collections spanning 1982–2012. The Gulf of St. Lawrence has warmed since the early 1990s, and our analyses revealed that larvae of snow crab (Chionoecetes opilio) and toad crabs (Hyas spp.) exhibited a significant trend towards earlier phenology over the 30‐year study period. This shift in phenology appeared to be a consequence of the effect of climate warming on both the timing of hatching and larval development rate. Larval abundance responded differently by crab taxon to climate warming, likely due to differences in thermal tolerance. The warming trend was unfavourable to snow crab, which is the most cold‐adapted and stenothermic of the taxa examined in this study. The abundance of snow crab larvae was lower when sea ice retreat occurred earlier than day 110 of the year and sea surface temperature was higher than 8.5°C. On the other hand, larval abundance of rock crab (Cancer irroratus), which prefers higher temperatures, was positively related to surface temperature.  相似文献   

9.
High larval mortalities and anatomical deformities are among the major obstacles restricting the development of Atlantic cod (Gadus morhua) aquaculture. The immune system of cod larvae is poorly developed at hatch, and innate immune parameters are therefore of importance for defence against environmental microorganisms. Two separate experiments were conducted with bioencapsulation of the live feed of cod larvae using a pollock (Pollachius virens) protein hydrolysate. Offering peptide enhanced live feed to larvae during the first weeks of exogenous feeding promoted larval development, with reduced incidence of severe deformities to 3.0% as compared with 9.6% deformities observed in the control group at 160 days posthatch. The production and distribution of IgM and lysozyme were furthermore increased in larvae fed peptide enhanced feed compared with control larvae. IgM was predominantly detected in the foregut and the epithelial lining of the digestive tract as well as in the epidermal mucus of the skin. Lysozyme was mainly detected in the epidermal mucus of the skin and in the foregut. Overall, the results indicate that live feed enhancement using a protein hydrolysate derived from pollock may reduce deformities and promote normal development during early production stages of cod larvae.  相似文献   

10.
11.
The reproductive success of Lepeophtheirus salmonis settled on host and non‐host fish has been compared. Triplicate single species tanks of Atlantic salmon, marine three‐spined sticklebacks, saithe and Atlantic cod were exposed to 10 adult female L. salmonis per tank (n=30 lice per species). Adult female L. salmonis settlement and egg string production occurred only on salmon and cod, with no egg production occurring on saithe and three‐spined sticklebacks. The number of eggs in egg strings, hatching success of eggs and the survival of all larval stages to the copepodid stage were severely affected by the species of fish on which female L. salmonis had settled. L. salmonis settled on cod produced significantly fewer eggs, lower hatching rates and lower survival rates of larvae than females on Atlantic salmon. The production of egg strings by L. salmonis females infecting cod, which successfully hatch and moult through to the infective copepodid stage, albeit in small numbers, is discussed in terms of the implications to aquaculture and salmon and cod farming scenarios.  相似文献   

12.
It currently remains unclear if rotifers contain sufficient mineral levels to meet larval fish requirements. In this study, rotifers were enriched with a commercial enrichment (control), or with additional iodine, iodine and copper, or iodine, copper and manganese, and the effects of feeding these rotifers to Atlantic cod (Gadus morhua) larvae from 3 to 18 days post hatch were investigated. Rotifer enrichment with minerals was successful, but Mn enrichment also increased rotifer zinc levels. No differences were observed between treatments in larval growth or survival, or in the mRNA levels in the majority of the redox system genes analysed. Only Zn levels increased in cod larvae in response to mineral enrichment of rotifers. Apart from Zn, little evidence was found to suggest that cod larvae require increased concentrations above the control rotifer levels of the essential elements studied here.  相似文献   

13.
The aim of this study was to investigate the effect of natural zooplankton versus rotifers and the effect of prey size on the growth and survival of cod larvae. At 20 days post hatch (DPH) myotome height, standard length and dry mass were significantly higher in larvae fed zooplankton compared to those fed rotifers. The dry mass at age 25 DPH was 135 μg (±45), 331 μg (±114), 391 μg (±121) for larvae fed rotifers, small size and large size plankton, respectively. At 25 days post hatch, the survival rates were 41.8% (±10.5), 90.7% (±2.3) and 91.4% (±1.7) for larvae reared on rotifers, small size and large size plankton, respectively. The limited growth and survival of cod larvae reared on rotifers were not mainly caused by the small size of rotifers. Large differences in skin coloration between larvae in the rotifer group and the two zooplankton groups were observed, probably caused by the large difference in astaxanthin levels in rotifers and natural zooplankton. We suggest that the nutritional composition of rotifers is a limiting factor for cod larvae growth and survival.  相似文献   

14.
We applied a physiological individual‐based model for the foraging and growth of cod (Gadus morhua) and haddock (Melanogrammus aeglefinus) larvae, using observed temperature and prey fields data from the Irish Sea, collected during the 2006 spawning season. We used the model to estimate larval growth and survival and explore the different productivities of the cod and haddock stocks encountered in the Irish Sea. The larvae of both species showed similar responses to changes in environmental conditions (temperature, wind, prey availability, daylight hours) and better survival was predicted in the western Irish Sea, covering the spawning ground for haddock and about half of that for cod. Larval growth was predicted to be mostly prey‐limited, but exploration of stock recruitment data suggests that other factors are important to ensure successful recruitment. We suggest that the presence of a cyclonic gyre in the western Irish Sea, influencing the retention and/or dispersal of larvae from their spawning grounds, and the increasing abundance of clupeids adding predatory pressure on the eggs and larvae; both may play a key role. These two processes deserve more attention if we want to understand the mechanisms behind the recruitment of cod and haddock in the Irish Sea. For the ecosystem‐based management approach, there is a need to achieve a greater understanding of the interactions between species on the scale a fish stock is managed, and to work toward integrated fisheries management in particular when considering the effects of advection from spawning grounds and prey–predator reversal on the recovery of depleted stocks.  相似文献   

15.
Considerable progress has been achieved in the intensive culture of Atlantic cod (Gadus morhua). However, there is little information concerning optimum live-feed enrichments for cod larvae, since many of the techniques used during the larviculture have been borrowed from other fish species and adapted for the production of Atlantic cod. The present study compared four different protocols for the enrichment of Artemia to be used as live feed for cod larvae. The protocols tested were: (1) AlgaMac 2000, (2) AquaGrow Advantage, (3) Pavlova sp. + AlgaMac 2000, and (4) DC DHA Selco + AlgaMac 2000. Larvae were fed differently enriched Artemia between 37 and 59 days post hatch. At the end of the experiment, larvae from treatment 1 [specific growth rate (SGR) = 10.4 ± 0.4% day−1] grew faster than larvae from treatments 3 (SGR = 6.9 ± 0.2% day−1) and 4 (SGR = 4.9 ± 0.4% day−1, P < 0.0001). However, treatments 3 and 4 resulted in better larval survival at the end of the experimental period, estimated to be 3 on a scale from 1 to 5, whereas the survival estimates for the two other groups were 2. The treatments affected the fatty-acid composition of Artemia and of cod larvae. Larvae from treatment 1 had a higher percentage of AA (20:4ω6, P < 0.0001) and ω6DPA (22:5ω6, P < 0.0001) than the other larvae. Levels of DHA (22:6ω3) were similar in larvae from treatments 1 and 4, and higher than in the other larvae (P < 0.0001). Our results suggest that Artemia containing a DHA/EPA/AA ratio of 7/2/1 result in good larval performance. Joseph A. Brown—Deceased September 2005.  相似文献   

16.
The effects of two weaning diets and different weaning protocols on growth, survival, skeletal deformity and gut morphology of Atlantic cod larvae were studied in four groups from 16 to 45 days posthatch (dph). Cod larvae in groups 1 (early weaning with control diet) and 2 (early weaning with experimental diet) were used to evaluate the effects of different polar lipid content of weaning diets on larval and juvenile performance. Cod larvae in groups 2, 3 (early weaning with experimental diet + cofeeding with Artemia) and 4 (earlier weaning with experimental diet and earlier cofeeding with Artemia) were used to evaluate the effects of early introduction of dry diet and Artemia. From 45 to 170 dph, cod juveniles from all four groups were reared using a standard feeding protocol. No significant differences in growth, survival, deformities and gut morphology were found between cod larvae and juveniles from groups 1 and 2. Cod larvae fed on cofeeding regime with Artemia nauplii (groups 3 and 4) were bigger and had lower frequencies of jaw and neck deformities and higher foregut microvillus circumference than cod larvae from group 2. Our results demonstrate the importance of proper weaning protocols in producing better quality cod juveniles.  相似文献   

17.
We investigated the first‐feeding success of two species: southern bluefin tuna (Thunnus maccoyii) and yellowtail kingfish (Seriola lalandi) to determine if similar culture parameters can be used for both, especially when S. lalandi are held in the same tanks as prey for T. maccoyii. The feeding performance (proportion and intensity) was examined in three short‐duration (4 h) experiments: prey density, prey size and larval density. Increasing prey density from 0.5 to 25 rotifers mL?1 increased the proportion of T. maccoyii and S. lalandi larvae feeding. Prey size alone did not affect feeding in either species. Seriola lalandi had a decreased proportion of larvae feeding when larval density reached 50 larvae L?1 concurrent with a gradual increase in feeding intensity between 2 and 50 larvae L?1. In T. maccoyii, there was no pattern to the effect of larval density on the proportion of larvae feeding. The overall feeding performance of larvae was higher in T. maccoyii than S. lalandi. Increased prey density improved the first‐feeding ability of T. maccoyii and S. lalandi larvae. The effect of larval density on S. lalandi feeding requires further investigation, to ensure that they remain feeding when provided as prey in T. maccoyii culture. The identification of factors in this study, which increase first‐feeding success, will improve the culture of both species.  相似文献   

18.
Mackerel (Scomber scombrus) is one of the ecologically and economically most important fish species in the Atlantic. Its recruitment has, for unknown reasons, been exceptional from 1998 to 2012. The majority (75%) of the survivors in the first winter were found north of an oceanographic division at approximately 52°N, despite the fact that mackerel spawns over a wide range of latitudes. Multivariate time series modelling of survivor abundance in the north revealed a significant correlation with the abundance of copepodites (stage I–IV) of Calanus sp. in the spawning season (April to June). The copepodites were a mix of C. helgolandicus (dominating) and C. finmarchicus. The growth of mackerel larvae is known to be positively related to the availability of nauplii and copopodites of preferred prey species, namely, large calanoid copepod species such as Calanus. The statistical relationship between mackerel survivors and abundance of Calanus, therefore, most likely, reflected a causal relationship: high availability of Calanus probably reduced starvation, stage‐specific predation and cannibalism (owing to prey switching). The effects of other abundant, but less preferred zooplankton taxa, (Acartia sp., Branchiopoda spp. and Echinodermata spp. larvae), as well as stock size, temperature and wind‐induced turbulence were not found to be significant. However, stock size was retained in the final model because of a significant interaction with Calanus in oceanic areas west of the North European continental shelf. This was suggested to be a consequence of a density driven expansion of the spawning area that increased the overlap between early life stages of mackerel and food (Calanus) in new areas.  相似文献   

19.
The effects of different egg incubation densities on the incidences of vertebral deformities in Atlantic cod larvae were investigated. Cod eggs were incubated at four different densities, 3, 6, 12 and 48 mL eggs L−1, of water.  When all the eggs hatched, larvae were reared in 30 L glass aquaria. Larval samples were taken at 0, 14, 42 and 56 days post hatch (dph) for deformity analysis. Larval samples were stained using bone and cartilage staining methods to determine vertebral deformity. Incubation densities did not have any significant effects on vertebral deformities in Atlantic cod larvae. However, the incidence of larval vertebral deformity was high at hatch and decreased as the larvae grew older until 42 dph, indicating selective mortality of deformed larvae during this period. Larvae at 56 dph, however, showed an increase in the incidence of vertebral deformity, indicating a possible nutritional or prey-type effect. To our knowledge, no studies have documented the occurrence of variable patterns in vertebral deformities in cod at various developmental stages. Overall, our results suggest that broodstock husbandry, genetics and/or nutrition could play a major role in causing vertebral deformities in Atlantic cod at hatch; however, nutrition and prey type may play a major role during metamorphosis.  相似文献   

20.
As the world's oceans continue to undergo drastic changes, understanding the role of key species therein will become increasingly important. To explore the role of Atlantic cod ( Gadus morhua Gadidae) in the ecosystem, we reviewed biological interactions between cod and its prey, predators and competitors within six ecosystems taken from a broad geographic range: three are cod-capelin ( Mallotus villosus Osmeridae) systems towards cod's northern Atlantic limit (Barents Sea, Iceland and Newfoundland–Labrador), two are more diverse systems towards the southern end of the range (North Sea and Georges Bank–Gulf of Maine), and one is a species-poor system with an unusual physical and biotic environment (Baltic Sea). We attempt a synthesis of the role of cod in these six ecosystems and speculate on how it might change in response to a variety of influences, particularly climate change, in a fashion that may apply to a wide range of species. We find cod prey, predators and competitors functionally similar in all six ecosystems. Conversely, we estimate different magnitudes for the role of cod in an ecosystem, with consequently different effects on cod, their prey and predator populations. Fishing has generally diminished the ecological role of cod. What remains unclear is how additional climate variability will alter cod stocks, and thus its role in the ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号