首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Time scales and heterogeneous structure in geodynamic earth models   总被引:1,自引:0,他引:1  
Computer models of mantle convection constrained by the history of Cenozoic and Mesozoic plate motions explain some deep-mantle structural heterogeneity imaged by seismic tomography, especially those related to subduction. They also reveal a 150-million-year time scale for generating thermal heterogeneity in the mantle, comparable to the record of plate motion reconstructions, so that the problem of unknown initial conditions can be overcome. The pattern of lowermost mantle structure at the core-mantle boundary is controlled by subduction history, although seismic tomography reveals intense large-scale hot (low-velocity) upwelling features not explicitly predicted by the models.  相似文献   

2.
A three-dimensional model of mantle convection in which the known history of plate tectonics is imposed predicts the anomalous Cretaceous vertical motion of Australia and the present-day distinctive geochemistry and geophysics of the Australian-Antarctic Discordance. The dynamic models infer that a subducted slab associated with the long-lived Gondwanaland-Pacific converging margin passed beneath Australia during the Cretaceous, partially stagnated in the mantle transition zone, and is presently being drawn up by the Southeast Indian Ridge.  相似文献   

3.
High-resolution seismic tomographic models of the upper mantle provide powerful new constraints on theories of plate tectonics and hotspots. Midocean ridges have extremely low seismic velocities to a depth of 100 kilometers. These low velocities imply partial melting. At greater depths, low-velocity and high-velocity anomalies record, respectively, previous positions of migrating ridges and trenches. Extensional, rifting, and hotspot regions have deep (> 200 kilometers) low-velocity anomalies. The upper mantle is characterized by vast domains of high temperature rather than small regions surrounding hotspots; the asthenosphere is not homogeneous or isothermal. Extensive magmatism requires a combination of hot upper mantle and suitable lithospheric conditions. High-velocity regions of the upper 200 kilometers of the mantle correlate with Archean cratons.  相似文献   

4.
The Hawaiian-Emperor hotspot track has a prominent bend, which has served as the basis for the theory that the Hawaiian hotspot, fixed in the deep mantle, traced a change in plate motion. However, paleomagnetic and radiometric age data from samples recovered by ocean drilling define an age-progressive paleolatitude history, indicating that the Emperor Seamount trend was principally formed by the rapid motion (over 40 millimeters per year) of the Hawaiian hotspot plume during Late Cretaceous to early-Tertiary times (81 to 47 million years ago). Evidence for motion of the Hawaiian plume affects models of mantle convection and plate tectonics, changing our understanding of terrestrial dynamics.  相似文献   

5.
The neodymium isotope and samarium-neodymium systematics of 2.7-billion-year-old mantle-derived magmas indicate that the lifetime of chemical heterogeneities was much shorter in the Archean mantle than in the modern mantle. Isotopic evidence is compatible with a Rayleigh number 100 times larger and convection 10 times faster in the Late Archean compared with the present-day mantle. Modern plate tectonics thus may be an improbable analog for the Archean. Chemical heterogeneities in the mantle may originate upon magma migration and mineralogical phase changes rather than by recycling of oceanic and continental crust.  相似文献   

6.
Fukao Y 《Science (New York, N.Y.)》1992,258(5082):625-630
Recent seismic tomography of the Earth's mantle has revealed a large-scale pattern of mantle convection comprising upwelling columnar plumes in the Pacific and Africa and downwelling planar sheets along the Circum Pacific. Upwelling and downwelling occur most extensively under the south Pacific and west Pacific, respectively. High-resolution image of plate subduction has been obtained from the dense seismic networks around Japan. Japanese seismologists are in the best position to resolve the internal structure of downwelling current as an integral part of the whole convection system.  相似文献   

7.
King SD  Ritsema J 《Science (New York, N.Y.)》2000,290(5494):1137-1140
Numerical models demonstrate that small-scale convection develops in the upper mantle beneath the transition of thick cratonic lithosphere and thin oceanic lithosphere. These models explain the location and geochemical characteristics of intraplate volcanos on the African and South American plates. They also explain the presence of relatively high seismic shear wave velocities (cold downwellings) in the mantle transition zone beneath the western margin of African cratons and the eastern margin of South American cratons. Small-scale, edge-driven convection is an alternative to plumes for explaining intraplate African and South American hot spot volcanism, and small-scale convection is consistent with mantle downwellings beneath the African and South American lithosphere.  相似文献   

8.
Using an inverse mantle convection model that assimilates seismic structure and plate motions, we reconstruct Farallon plate subduction back to 100 million years ago. Models consistent with stratigraphy constrain the depth dependence of mantle viscosity and buoyancy, requiring that the Farallon slab was flat lying in the Late Cretaceous, consistent with geological reconstructions. The simulation predicts that an extensive zone of shallow-dipping subduction extended beyond the flat-lying slab farther east and north by up to 1000 kilometers. The limited region of flat subduction is consistent with the notion that subduction of an oceanic plateau caused the slab to flatten. The results imply that seismic images of the current mantle provide more constraints on past tectonic events than previously recognized.  相似文献   

9.
A finite-element formulation of faults has been incorporated into time-dependent models of mantle convection with realistic rheology, continents, and phase changes. Realistic tectonic plates naturally form with self-consistent coupling between plate and mantle dynamics. After the initiation of subduction, trenches rapidly roll back with subducted slabs temporarily laid out along the base of the transition zone. After the slabs have penetrated into the lower mantle, the velocity of trench migration decreases markedly. The inhibition of slab penetration into the lower mantle by the 670-kilometer phase change is greatly reduced in these models as compared to models without tectonic plates.  相似文献   

10.
The region of sea floor beneath French Polynesia (the "Superswell") is anomalous in that its depth is too shallow, flexural strength too weak, seismic velocity too slow, and geoid anomaly too negative for its lithospheric age as determined from magnetic isochrons. These features evidently are the effect of excess heat and extremely low viscosity in the upper mantle that maintain a thin lithospheric plate so easily penetrated by volcanism that 30 percent of the heat flux from all hot spots is liberated in this region, which constitutes only 3 percent of the earth's surface. The low-viscosity zone may facilitate rapid plate motion and the development of small-scale convection. A possible heat supply for the Superswell is a mantle reservoir enriched in radioactive isotopes as suggested by the geochemical signature of lavas from Superswell volcanoes.  相似文献   

11.
Thermal calculations and convection analysis, constrained by seismic tomography results, suggest that a small-scale convective instability developed in the upper 200 kilometers of the mantle under California after the upwelling and cooling of asthenosphere into the slab window associated with the formation of the San Andreas transform boundary. The upper bound for the upper mantle viscosity in the slab window, 5 x 10(19) pascal seconds, is similar to independent estimates for the asthenosphere beneath young oceanic and tectonically active continental regions. These model calculations suggest that many tectonically active continental regions characterized by low upper mantle seismic velocities may be affected by time-dependent small-scale convection that can generate localized areas of uplift and subsidence.  相似文献   

12.
The distribution of seafloor ages determines fundamental characteristics of Earth such as sea level, ocean chemistry, tectonic forces, and heat loss from the mantle. The present-day distribution suggests that subduction affects lithosphere of all ages, but this is at odds with the theory of thermal convection that predicts that subduction should happen once a critical age has been reached. We used spherical models of mantle convection to show that plate-like behavior and continents cause the seafloor area-age distribution to be representative of present-day Earth. The distribution varies in time with the creation and destruction of new plate boundaries. Our simulations suggest that the ocean floor production rate previously reached peaks that were twice the present-day value.  相似文献   

13.
Recent studies have implied that (Mg, Fe)SiO(3)-perovskite, a likely dominant mineral phase in the lower mantle, may have a high melting temperature. The implications of these findings for the dynamics of the lower mantle were investigated with the use of numerical convection models. The results showed that low homologous temperatures (0.3 to 0.5) would prevail in the modeled lower mantle, regardless of the effective Rayleigh number and internal heating rates. High-temperature ductile creep is possible under relatively cold conditions. In models with low rates of internal heating, local maxima of viscosity developed in the mid-lower mantle that were similar to those obtained from inversion of geoid, topography, and plate velocities.  相似文献   

14.
Three-dimensional numerical simulations were conducted of mantle convection in which flow through the transition zone is impeded by either a strong chemical change or an endothermic phase change. The temperature fields obtained from these models display a well-defined minimum in the vertical correlation length at or near the radius where the barrier is imposed, even when the fields were filtered to low angular and radial resolutions. However, evidence for such a feature is lacking in the shear-velocity models derived by seismic tomography. This comparison suggests that any stratification induced by phase or chemical changes across the mid-mantle transition zone has a relatively small effect on the large-scale circulation of mantle material.  相似文献   

15.
A numerical model of mantle convection shows that sea level fluctuations are not simply associated with temporal changes in ocean c plate spreading. In the dynamic model, sea level rises rapidly and then falls toward a steady value (but one still higher than the initial) following increased ridge spreading; this time dependence results from profound changes in the deep thermal structure under ocean and continent. The use of past variations in oceanic spreading to infer sea level fluctuations is called into question. With more realistic models and better continental stratigraphy, constraints may be placed on the viscosity structure of the mantle.  相似文献   

16.
Schmerr N 《Science (New York, N.Y.)》2012,335(6075):1480-1483
The lithosphere-asthenosphere boundary (LAB) beneath ocean basins separates the upper thermal boundary layer of rigid, conductively cooling plates from the underlying ductile, convecting mantle. The origin of a seismic discontinuity associated with this interface, known as the Gutenberg discontinuity (G), remains enigmatic. High-frequency SS precursors sampling below the Pacific plate intermittently detect the G as a sharp, negative velocity contrast at 40- to 75-kilometer depth. These observations lie near the depth of the LAB in regions associated with recent surface volcanism and mantle melt production and are consistent with an intermittent layer of asthenospheric partial melt residing at the lithospheric base. I propose that the G reflectivity is regionally enhanced by dynamical processes that produce melt, including hot mantle upwellings, small-scale convection, and fluid release during subduction.  相似文献   

17.
Many volcanic arcs display fast seismic shear-wave velocities parallel to the strike of the trench. This pattern of anisotropy is inconsistent with simple models of corner flow in the mantle wedge. Although several models, including slab rollback, oblique subduction, and deformation of water-rich olivine, have been proposed to explain trench-parallel anisotropy, none of these mechanisms are consistent with all observations. Instead, small-scale convection driven by the foundering of dense arc lower crust provides an explanation for the trench-parallel anisotropy, even in settings with orthogonal convergence and no slab rollback.  相似文献   

18.
Mineral inclusions encapsulated in diamonds are the oldest, deepest, and most pristine samples of Earth's mantle. They provide age and chemical information over a period of 3.5 billion years--a span that includes continental crustal growth, atmospheric evolution, and the initiation of plate tectonics. We compiled isotopic and bulk chemical data of silicate and sulfide inclusions and found that a compositional change occurred 3.0 billion years ago (Ga). Before 3.2 Ga, only diamonds with peridotitic compositions formed, whereas after 3.0 Ga, eclogitic diamonds became prevalent. We suggest that this resulted from the capture of eclogite and diamond-forming fluids in subcontinental mantle via subduction and continental collision, marking the onset of the Wilson cycle of plate tectonics.  相似文献   

19.
Laboratory experiments suggest that a convective regime characterized by two length scales of motion is a reasonable model for circulations in the earth's upper mantle. The flows of largest horizontal scale represent a likely plate-driving mechanism, required by some theories of plate tectonics. It is also suggested that the small-scale circulations could influence the chemical evolution of the mantle by extracting primitive mantle material that is otherwise entrained in the large-scale flow.  相似文献   

20.
Paleomagnetic data from the Mid-Cretaceous Mountains suggest that Pacific plate motion during the Early to mid-Cretaceous was slow, less than 0.3 degree per year, resembling the polar standstill observed in coeval rocks of Eurasia and North America. There is little evidence for a change in plate motion that could have precipitated the major volcanic episode of the early Aptian that is marked by the formation of the Ontong Java Plateau. During the volcanism, oceanic plates bordering the Pacific plate moved rapidly. Large-scale northward motion of the Pacific plate began after volcanism ceased. This pattern suggests that mantle plume volcanism exerted control on plate tectonics in the Cretaceous Pacific basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号