首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 593 毫秒
1.
控制地下水位减少节水灌溉稻田氮素淋失   总被引:8,自引:5,他引:3  
为探讨高效的稻田灌排管理模式,降低稻田氮素淋失风险,该文利用装配有地下水位自动控制系统的蒸渗仪,研究地下水位调控对节水灌溉稻田氮素淋失的影响。结果表明,稻田排水控制限的提高可减少控制灌溉稻田地下排水量,控制地下水位处理1稻田地下排水量为179.4mm,分别较控制地下水位处理2(195.9mm)和控制地下水位处理3(285.8mm)稻田减少8.4%和37.2%。随稻田排水控制限的提高,控制灌溉稻田地下排水中铵态氮(NH4+–N)浓度增加,硝态氮(NO3-–N)浓度下降。与控制地下水位处理2和控制地下水位处理3稻田相比,控制地下水位处理1稻田地下排水中NH4+–N质量浓度均值分别增加9.3%和27.3%,地下排水中NO3-–N质量浓度均值分别减少32.6%和1.8%。稻田排水控制限的提高显著减少了控制灌溉稻田NO3-–N淋失量(P0.05),控制地下水位处理1稻田NO3-–N淋失量为0.27kg/hm2,分别较控制地下水位处理2(0.43kg/hm2)和控制地下水位处理3(0.88kg/hm2)稻田显著减少0.16和0.61kg/hm2(P0.05),控制地下水位处理2稻田NO3-–N淋失量较控制地下水位处理3稻田显著减少0.45kg/hm2(P0.05)。采用控制排水技术,适当提高控制灌溉稻田的排水控制限,可有效降低稻田NO3-–N淋失对地下水污染的风险。该研究可为制定满足控污减排需求的稻田灌排管理模式提供指导。  相似文献   

2.
利用自流式农田地下淋溶收集装置,研究设施蔬菜有机种植中有机肥与水的不同管理模式下氮素淋洗的变化特征,并对土壤-作物体系的氮素表观平衡进行评估。结果表明,有机肥施肥量对淋洗液中NO3--N浓度有明显影响,并在施肥后60 d左右出现峰值,种植期间的淋溶液中NO3--N的平均浓度最高达到61.57 mg/L。施肥量明显影响氮素累积淋洗量,常规水肥管理(施有机肥N量718.2 kg/hm2,灌溉量1 200 mm)下氮素淋失量最大,为17.32 kg/hm2;而水肥减量管理(施有机肥N量359.1 kg/hm2,灌溉量700 mm)下,氮素淋失量明显降低,为10.78 kg/hm2。在0~90 cm的作物-土壤体系中,常规施肥管理下的氮素平衡值超过300 kg/hm2,而减半量施肥的平衡值在15.0 kg/hm2以下,有效地维持了系统氮素平衡。  相似文献   

3.
王志敏  林青  王松禄  徐绍辉 《土壤》2015,47(3):496-502
以青岛市大沽河下游地区冬小麦–夏玉米轮作农田为对象,通过田间试验和室内分析,研究了不同深度土壤和地下水中NO3–-N在一个轮作周期内的动态变化特征,探讨了不同氮肥施用量和灌溉量对土壤-地下水系统中NO3–-N时空分布的影响,并基于土壤水动力学和溶质运移理论对土壤中NO3–-N运移过程进行了数值模拟。模拟结果表明:小麦季施氮(N)量达到380 kg/hm2,玉米季施氮量达到290 kg/hm2时,季末剖面深度130~160 cm土壤NO3–-N含量超过10 mg/kg;由地下水NO3–-N月累计量估算模型得出,NO3–-N在6月和8月向浅部地下水的淋失量最大,分别为7.20、7.67 mg/L。  相似文献   

4.
  【目的】  当前华北平原冬小麦–夏玉米生产中,存在氮肥投入量大、氮肥利用效率低等问题,在滴灌水肥一体化条件下研究施氮量对冬小麦–夏玉米周年产量、氮素利用效率和土壤全氮含量、硝态氮残留的影响,以期为该地区小麦–玉米节肥、高产高效的栽培模式提供理论依据。  【方法】  于2018—2020年在青岛农业大学胶州现代农业示范园开展小麦、玉米滴灌施肥田间试验。设冬小麦/夏玉米生长季不施氮(N0)和施氮 150/150 kg/hm2 (N1)、210/225 kg/hm2 (N2) 和270/300 kg/hm2 (N3) 4个水平,以传统施肥方式和常规施氮量240/240 kg/hm2为对照(CK)。分析冬小麦和夏玉米产量、氮素吸收量和土壤氮素残留量。  【结果】  N2处理冬小麦、夏玉米产量最高,与N3处理无显著差异,但显著高于N0、N1和CK处理;N3处理冬小麦、夏玉米的干物质积累量、氮素吸收量最高,与N2处理差异较小,而显著高于N0、N1和CK处理。冬小麦、夏玉米氮肥偏生产力随着施氮量的提高而降低;冬小麦季氮素利用效率随着施氮量的提高而降低;夏玉米季,N2、N1和N0处理的氮素利用效率显著高于N3和CK处理,且N0、N1和N2处理间无显著差异;冬小麦、夏玉米氮肥农学利用率均随着施氮量的提高而降低,N2施氮水平下,氮素利用效率和氮肥农学利用率均表现较优。随着施氮量的增加,0—100 cm土层土壤全氮含量和硝态氮含量呈增加的趋势,全氮积累主要集中在0—40 cm土层,N3、N2和CK处理0—100 cm土层土壤全氮含量与N0和N1处理之间的差异随着轮作年数的增加而逐渐增大,N2处理较N3和CK处理有效抑制了硝态氮在表层土壤的积累和向深层土壤的迁移,降低了硝态氮淋失风险。  【结论】  冬小麦季施氮210 kg/hm2和夏玉米季施氮225 kg/hm2 (N2)可实现周年作物增产高效,提高氮素利用效率,显著降低硝态氮向深层土壤迁移,降低硝态氮淋失风险,是滴灌水肥一体化下华北平原麦玉周年轮作适宜的施氮量。  相似文献   

5.
水分调控降低盐分对夏玉米的影响   总被引:1,自引:1,他引:0  
环渤海低平原冬小麦夏玉米一年两作种植系统中,冬小麦季微咸水灌溉造成土壤含盐量增加,影响下茬玉米正常出苗。通过水分调控消减根层土壤盐分是有效可行的途径,并利于冬小麦夏玉米一年两作的微咸水安全利用。该研究通过盆栽与田间试验相结合的方法,研究玉米出苗对土壤水盐阈值的响应以及玉米播后灌水对出苗、生长、根层水盐和产量的影响。盆栽试验结果表明:1)玉米在低土壤盐分含量(全盐含量0.8g·kg–1)下,60%田间持水量即可达到正常出苗;2)在高土壤盐分含量(全盐含量3.5 g·kg–1)下,出苗时间延长,出苗率降低;3)土壤盐分对出苗的影响,随着土壤含水量降低而越趋严重。因此在较高的盐分条件下,维持出苗期间一定土壤含水量,更利于缓解土壤盐分对玉米出苗的影响。大田试验中灌溉水盐分梯度为淡水(对照)、3g·L–1、4 g·L–1和5 g·L–1。田间试验结果表明:1)随着灌溉水盐分浓度增加冬小麦收获时0~20 cm土壤盐分含量明显增加;2)淡水、3 g·L–1、4 g·L–1和5 g·L–1灌溉冬小麦,收获期0~20 cm土壤盐分含量分别为1.0 g·kg–1、1.3g·kg–1、1.6 g·kg–1、2.0 g·kg–1;3)夏玉米播种后立即灌溉一次75 mm淡水,玉米出苗期耕层土壤含水量维持在田间持水量的70%以上,土壤含盐量下降到1.0 g·kg–1左右,夏玉米生长进程和产量不受影响。2年(2015年和2016年)淡水、3 g·L–1、4 g·L–1和5 g·L–1微咸水拔节期灌溉冬小麦,下茬夏玉米产量分别为9 510.4 kg·hm–2、9 913.6 kg·hm–2、9 910.6 kg·hm–2、9 986.0 kg·hm–2和9 621.8 kg·hm–2、9 455.3 kg·hm–2、9 460.2 kg·hm–2、9 221.4kg·hm–2,产量差异不显著。考虑该地区降水的时间分布,与玉米生长同期的充足夏季降水的淋洗作用,微咸水灌溉小麦的积盐可得到很好淋洗。因此,该地区在冬小麦生长季实施不超过5 g·L–1微咸水灌溉,利用冬小麦夏玉米关键生育期水分调控,可消减微咸水灌溉土壤盐分积累对玉米出苗影响,结合夏玉米出苗水管理和雨季淋盐,实现周年稳产和水盐平衡,根层土壤不积盐。  相似文献   

6.
氮素损失对农业生产造成的影响已成为当前研究的热点,模型是对氮素损失影响评价及定量化研究的有效手段。利用华北典型农田冬小麦-夏玉米轮作种植模式的作物产量、氮素淋失量等田间观测数据对DNDC模型进行了验证,并采用验证后的DNDC模型对该种植模式的氮素损失进行了定量评价,提出了综合考虑作物产量、氮素淋失量、N2O排放量以及NH3挥发损失的综合调控途径。结果表明,DNDC模型较好地模拟了冬小麦-夏玉米轮作系统作物的产量、氮素淋失的动态变化规律,以及土壤中NO3--N和NH4+-N的残留量,说明DNDC已具备模拟农田生态系统中土壤氮素生物地球化学过程的能力。模型模拟结果表明,在传统农业管理措施下,氮素通过淋失、N2O排放以及NH3挥发损失的量分别达到49.4 kg(N).hm-2.a-1、17.71kg(N).hm-2.a-1和144.8 kg(N).hm-2.a-1。综合考虑氮素损失途径,提出了适合当地农业生产条件的最优化管理措施,即减小当前常规施氮量到340 kg(N).hm-2.a-1,提高玉米秸秆还田率到100%,并保持灌溉量不变。相比常规管理措施,最优化管理措施氮素淋失量为14.1 kg(N).hm-2.a-1,降低71.5%,N2O排放量为14.91kg(N).hm-2.a-1,降低15.8%,NH3挥发损失量为117.2 kg(N).hm-2.a-1,降低19.1%,而对作物产量基本不造成明显影响。该评价结果可直接用于农业生产实践。  相似文献   

7.
太行山前平原农田生态系统氮素循环与平衡研究   总被引:17,自引:0,他引:17  
在中国科学院栾城生态农业试验站1公顷小麦玉米轮作农田,运用乙炔抑制原状土柱培育法、微气象学法和陶土头多孔杯水量平衡法分别定量测定了氮素硝化反硝化损失、氨挥发、NO3--N淋溶损失等氮素循环转化途径。研究结果表明,每年因氨挥发而造成的肥料氮损失量为N.60.kg/hm2,占施入肥料氮的15%;NO3--N淋溶损失量为N.68~4.kg/hm2,占肥料施用量的1.4%2~0.3%;每年因硝化反硝化过程造成的肥料损失量为N.2.021~0.49.kg/hm2,占肥料施入量的0.51%1~.37%。氨挥发、NO3--N淋溶和硝化反硝化损失主要发生在施肥灌溉/降雨之后,玉米季肥料损失明显高于小麦生长季节。氨挥发和NO3--N淋溶损失是本区域农田氮素损失的主要途径,是氮肥利用率低的重要原因。在当地农民所采用的常规农业管理措施下,小麦玉米轮作农田氮素平衡处于盈余状态,小麦季盈余N+115.5~+124.5.kg/hm2,明显高于玉米季;由于玉米季氮素损失严重,氮素盈余较少,甚至出现亏缺,玉米季氮素平衡状况为-54.6~+14.3.kg/hm2。  相似文献   

8.
长期施肥对Lou土硝态氮分布、累积和移动的影响   总被引:8,自引:0,他引:8  
利用18年长期定位试验研究了冬小麦-夏玉米轮作制度下,有机-无机肥配合施用对娄土剖面NO3-N的分布累积和阶段性移动的影响,结果表明,土壤剖面中NO3-N的总量与氮肥施用量直接相关,而作物对化肥氮的利用率与施肥晨呈相反趋势,低氮处理(75kg/hm2)及其与有机肥配合施用,NO3-N主要累积在0-100cm土层内,高氮处理(120kg/km2)及其与有机肥配合施用,NO3-N在剖面出现2个累积峰,且在400厘米土层处NO3-N的含量接近或超过10mg/kg。适宜的氮肥用量,施用有机肥及合理的有机-无机肥料配比是减少NO3-N在土壤剖面中的累积和淋失的有效措施。  相似文献   

9.
采用田间小区试验,研究了太湖地区设施菜地一年三季作物(番茄-莴苣-芹菜)氮素淋失特征。结果表明:太湖地区设施菜地氮淋失以NO3--N为主,氮素淋洗量受施氮量的直接影响,以农民习惯施氮量(N5)处理下的淋洗总量最高,全年TN淋失总量高达193.6 kg.hm-2。在N5基础上减施N 40%(N3)可分别减少番茄、莴苣和芹菜季TN淋洗损失40.4%、49.2%和57.5%,同时可分别增产15.1%、39.0%和27.8%。设施菜地氮素淋洗高峰发生在揭棚期(7—11月),其中包括揭棚休闲期和莴苣生长前期。揭棚期淋洗液TN平均浓度为51.1 mg.L-1,是盖棚期TN浓度的1.7倍;TN淋洗量为129.2 kg.hm-2,约占全年总氮淋洗量的66.7%。  相似文献   

10.
油菜生长季氮素在紫色土中的淋失   总被引:11,自引:0,他引:11  
利用原状回填土渗漏池研究了油菜生长季节氮素在紫色土中的移动特点和淋洗损失以及影响氮素移动和淋失的因素。结果表明.油菜生长期间氮素的渗漏淋失星波浪式的变化.在移栽后的第10天、40天、90天和110天左右出现了4次淋洗峰;油菜季各处理氮素淋失总量变动在1.81~5.43kg/hm^2.平均为3.35kg/hm^2;油菜季氮素淋失量,前期(移栽后0~50天):中期(51~100天);后期(101天~收获)约为3:1:2。降雨量、氮肥用量、肥料品种和土壤性质影响了NO3^- -N在紫色土中的移动和淋失。  相似文献   

11.
李本银  刘月娟  汪金舫 《土壤》2005,37(5):551-554
采用不同灌溉水量和施N量,研究了尿素在潮土中的淋溶和转化特征。结果表明,在小麦返青期结合灌溉施尿素后,NH4 -N在40cm以上土层中积累,不会产生深层淋溶。而土层中NO3--N含量有较大变化,相同灌溉水量下,施N量越大,NO3--N向下层淋溶越深;相同施N量下,灌溉水量越大,NO3--N也有淋溶越深的趋势。在麦季,即使在超过当地的施N量(N180kg/hm2)和灌溉水量(750m3/hm2)条件下,收获时所有处理的NO3--N主要积累在130cm以上的土层中,NO3--N淋溶深度不超过130cm,不会产生对地下水的污染。  相似文献   

12.
滴灌和施用秸秆降低日光温室番茄地氮素淋溶损失   总被引:3,自引:1,他引:2  
以一年两季设施番茄为对象,利用渗漏池收集渗漏液,研究了设施菜地不同灌溉模式(滴灌、漫灌)和施用有机物料(单施鸡粪M、鸡粪配施玉米秸秆M+C、鸡粪配施小麦秸秆M+W)对土壤矿质态氮、可溶性有机氮淋溶损失的影响。结果表明,日光温室栽培条件下,氮素的淋溶损失主要发生于秋冬季,滴灌和漫灌模式下,该季可溶性总氮淋失量占全年淋失量的56.8%和71.1%。漫灌模式下,冬春季和秋冬季可溶性总氮淋失量分别为114.3和281.1kg/hm~2,占单季氮投入量的12.5%和29.3%。与漫灌相比,滴灌使全年番茄产量和氮素吸收量分别显著提高15.6%和21.4%,氮素利用率(氮素吸收量/氮素投入量)显著提高47.5%,同时使全年矿质态氮(铵态氮+硝态氮)和可溶性有机氮淋失量分别降低68.6和47.4 kg/hm~2,降幅分别为33.1%和39.6%。与单施鸡粪相比,鸡粪配施秸秆(玉米或小麦)对番茄产量无影响,但显著降低灌溉水渗漏量和氮素淋溶损失量,使全年灌溉水渗漏损失量平均降低24.3%,全年矿质态氮和可溶性有机氮淋失量分别平均降低26.6%和33.7%。综上,可溶性有机氮在氮素淋溶损失中不可忽视,滴灌模式通过降低渗漏液中氮的浓度,配施秸秆通过减少灌溉水的渗漏损失,进而降低可溶性氮的淋溶损失。  相似文献   

13.
规模化畜禽养殖废弃物已成为当前重要的污染来源,为有效控制畜禽养殖污水面源污染,将处理后的养殖肥水作为水、氮资源进行农田灌溉,在华北冬小麦–夏玉米轮作灌溉区,连续3 a进行牛场肥水灌溉田间定位试验,研究冬小麦季牛场肥水灌溉对作物产量、氮表观利用率、土壤无机氮残留及轮作体系氮平衡的影响。结果表明,肥水灌溉能显著提高作物产量,肥水灌溉处理(冬小麦生育期内肥水灌溉带入氮为160、240和320 kg/hm2)冬小麦和夏玉米3 a产量平均增幅分别为36.78%和40.82%。随着牛场肥水灌溉年限的推移作物增产效果逐渐明显,冬小麦–夏玉米轮作体系作物累计氮利用率逐年升高,6季作物收获后氮累计利用率达47.87%~67.63%,肥水氮后效明显。肥水灌溉增加了100 cm土体内无机氮残留,NO3--N残留量显著高于NH4+-N。对冬小麦–夏玉米轮作体系氮平衡分析表明,随牛场肥水灌溉带入氮量增加,作物氮累计吸收增加,在冬小麦生育期内肥水氮带入量为160 kg/hm2夏玉米生育期内不施氮处理(T1),氮表观利用率显著高于其他肥水灌溉处理(T2和T3),100 cm土体无机氮残留率和氮表观损失率均显著低于T3处理,与T2处理差异不显著。该试验条件下,综合产量、氮累计利用率及土壤无机氮残留考虑,冬小麦–夏玉米轮作体系肥水灌溉适宜氮带入量为160~240 kg/hm2。适量牛场肥水灌溉冬小麦–夏玉米能够增加作物产量,增加作物对肥水氮的利用率,减少氮在土壤中的积累。  相似文献   

14.
【目的】本研究利用田间小区试验,研究牛场肥水灌溉对冬小麦产量、 氮利用效率及土壤硝态氮的影响,以期为提高灌溉肥水中氮利用效率,降低养殖肥水灌溉的氮损失提供理论依据。【方法】通过田间小区定位试验,以华北平原典型冬小麦种植系统为研究对象,定量研究牛场肥水灌溉对冬小麦产量、 氮素积累、 氮效率及土壤硝态氮的影响。试验共设5个处理,分别为: 不施肥、 小麦各生育期进行清水灌溉(CK); 在冬小麦生育期内进行2次牛场肥水灌溉(越冬期和灌浆期,肥水灌溉带入氮量为160 kg/hm2),其他生育期清水灌溉(T1); 在冬小麦生育期内进行3次牛场肥水灌溉(越冬期、 拔节期、 灌浆期,肥水灌溉带入氮量为240 kg/hm2),其他生育期清水灌溉(T2); 在冬小麦生育期进行4次牛场肥水灌溉(越冬期、 拔节期、 抽穗期和灌浆期,肥水灌溉带入氮量为320 kg/hm2),不进行清水灌溉(T3); 农民习惯施肥,冬小麦播种时施复合肥(15-21-6)375 kg/hm2、 拔节期追肥尿素600 kg/hm2(氮投入量为332 kg/hm2),全生育期灌溉清水(CF)。每个处理重复3次,冬小麦全生育期灌水4次,灌水定额为830 m3/hm2,灌水量用超声波流量计计量。【结果】牛场肥水灌溉对冬小麦产量和氮的影响主要有以下几个方面: 1)连续三年冬小麦产量均随牛场肥水灌溉次数的增加表现为先增加后降低的趋势,肥水灌溉带入氮为240 kg/hm2(灌溉3次)时,冬小麦产量最高。2)牛场肥水灌溉显著增加冬小麦植株地上部氮积累量。2011年和2012年肥水灌溉的三个处理之间及与习惯施肥处理之间差异不显著,2013年T2和T3处理植株氮吸收量显著高于T1处理和习惯施肥处理。3)冬小麦肥水氮利用率和农学效率随肥水灌溉带入氮量的增加而降低。三年均以T1最高,分别为48.57%和37.15 kg/kg。4)每季冬小麦收获后,随着灌溉带入氮量的增加,0100 cm土层NO-3-N积累量增加。肥水灌溉带入氮为320 kg/hm2时,0100 cm剖面NO-3-N积累量显著高于肥水灌溉带入氮为160~240 kg/hm2处理。【结论】牛场肥水灌溉显著增加冬小麦产量,随肥水灌溉带入氮的增加冬小麦产量呈先增加后降低的趋势。冬小麦肥水氮表观利用率和农学效率均随肥水灌溉带入氮量的增加而降低,肥水灌溉带入氮为320 kg/hm2,80100 cm土层有大量NO-3-N累积,且有向下淋溶的趋势。本试验条件下,综合产量、 冬小麦植株氮积累量及氮效率等方面考虑,牛场肥水灌溉冬小麦适宜氮带入量为160~240 kg/hm2。  相似文献   

15.
不同水氮管理对日光温室番茄产量及土壤无机氮的影响   总被引:6,自引:0,他引:6  
以传统水氮管理为对照,分别采用氮素实时监控技术对保护地番茄主要生育期进行氮素追施优化管理,同时结合小管出流的灌溉方式及夏季休闲季添加小麦秸秆-氰氨化钙的优化水氮管理处理并根据课题组同一地区多年的番茄氮素优化管理经验得出的推荐水氮管理处理,即将氮素追施量定为N 300 kg/hm2,在番茄第一、三、五穗果实膨大期各追施N100 kg/hm2,比较研究了不同水氮管理措施对保护地番茄产量及土壤无机氮的影响。结果表明:与传统水氮管理相比,在保证番茄产量的前提下,优化水氮管理和推荐水氮管理两季番茄分别减少了63.5%和50%的氮肥追施量,优化水氮管理处理两季番茄分别减少了44%和39%的灌溉用水。此外,优化水氮管理处理还显著提高了番茄全年的总产量,增产约10%。传统的氮素投入使番茄生育期内的土壤无机氮含量保持较高水平,试验结束时,传统水氮管理处理在0-180 cm各土层无机氮残留量均在N 200 kg/hm2以上,其0-180 cm土层无机氮残留总量已超过N 1 500 kg/hm2;而优化水氮管理和推荐水氮管理处理在改进水氮管理措施后,0-180 cm各土层无机氮残留量显著降低,仅为传统水氮管理的1/2,大幅度降低了土壤氮素的淋洗风险,减轻了由于不合理的水氮管理而对环境造成的影响。  相似文献   

16.
在中国科学院栾城农业生态系统试验站的潮褐土上,通过水、肥2因子3水平的完全方案,研究冬小麦-夏玉米轮作下,水、肥对土壤矿质氮分布及作物产量的影响。试验表明,NO3--N在土壤剖面中的分布除受水、肥作用外,还与土壤质地,作物及雨季降水有关;NO3--N在土壤剖面中的累积则受水肥二因素的共同制约。高水高肥处理,在收获2季作物后,土壤剖面中NO3--N明显积累;当水分或肥料不足,NO3--N的积累量减少;冬小麦全生育期旱作,不仅影响当季NO3--N的形成转化和冬小麦对N素吸收,而且直接影响后季夏玉米的产量以及土壤NO3--N的积累。土壤NO3--N的累积量与土壤水分含量存在明显的耦合作用。NH4+-N在土壤中所占比例很小,不同水、肥组合处理对其分布和累积无明显影响。肥料和水分都是冬小麦产量的限制因素,尤其水分不足,对当季和后季作物都有直接影响。针对该区地下水紧缺的矛盾,在有限水分供应时,应首先保证冬小麦季灌足底墒水和拔节水,每水至少灌60mm,施肥量不宜太高,否则会造成NO3--N在土壤中积累或淋失。本试验条件下该区适宜的水肥处理应为W2MF。  相似文献   

17.
冬小麦-夏玉米轮作产量与氮素利用最佳水氮配置   总被引:2,自引:0,他引:2  
【目的】华北太行山前平原高产限水区冬小麦-夏玉米轮作体系中灌水施肥不合理的现象普遍存在,水资源浪费和农业面源污染严重。长期定位研究水氮配置对小麦玉米产量和氮素利用影响,可为该区优化水氮管理模式,充分发挥水氮协同增效作用提供依据。【方法】2006~2014年进行大田试验,采取裂区设计,灌水量为主区,施氮量为副区。小麦季灌水设春灌一次水(W1, 拔节水)和两次水(W2, 拔节水+开花水)两个处理; 玉米季在小麦灌一次水基础上设限水处理(WL),在两次水基础上设适水处理(WS),限水和适水的灌水次数根据降水年型而定。两种灌水条件均设置6个施氮水平,分别为0(N0)、 60(N60)、 120(N120)、 180(N180)、 240(N240)、 300(N300)kg/hm2。连续8年定位测定了小麦玉米产量、 植株吸氮量。【结果】小麦玉米产量和植株吸氮量年际间差异均较大,相对而言,W2(WS)产量和吸氮量的年际波动较小,一定程度上降低了不同年型气象因素的影响,达到稳产的效果。两种水分条件下N0 和N60处理的作物产量和吸氮量除个别年份外都显著低于其余施氮处理。本研究的产量水平下(冬小麦7000~9500 kg/hm2,夏玉米8500~11000 kg/hm2)小麦玉米产量与其吸氮量呈显著线性正相关。小麦玉米8年平均产量和吸氮量在一定施氮范围内均随施氮量的增加而显著增加,但施氮达到120 kg/hm2后产量不再显著增加,达到180 kg/hm2后吸氮量不再显著增加,同一施氮水平的作物产量和吸氮量都表现W2(WS)高于W1(WL)。两种水分条件下小麦玉米的氮肥偏生产力、 氮肥农学效率和氮素生产效率都随施氮量的增大而显著减小,但对同一施氮水平W2(WS)高于W1(WL)。冬小麦-夏玉米整个轮作体系氮肥累计表观利用率(一段时期内作物对肥料氮的累计吸收量与该时期施氮总量的比值)同样随施氮量的增加显著减小,一次水+限水条件下从N60+60的51.8%下降到N300+300的22.3%,两次水+适水从N60+60的57.4%下降到N300+300的24.6%。同一施氮水平的氮肥累计表观利用率两次水+适水都高于一次水+限水。【结论】冬小麦春灌两次水、 施用N 120 kg/hm2,夏玉米适水灌溉、 施N 120 kg/hm2的产量和吸氮量都达到最高水平,氮肥偏生产力、 农学效率、 累计表观利用率以及氮素生产效率也比较高,因此在一定时期内可作为当地小麦-玉米轮作体系适宜的水氮配置,周年产量可维持在16~19 t/hm2。  相似文献   

18.
华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制   总被引:1,自引:0,他引:1  
合理水氮管理可以实现作物目标产量和品质、维持土壤肥力和降低环境污染。然而,自20世纪90年代以来,我国农田过量施氮和大水漫灌等问题突出,引起农业面源污染日趋加重,地下水硝酸盐污染成为一个普遍现象。本文以华北潮土区冬小麦-夏玉米体系为研究对象,采用数据整合和文献分析的方法,阐明了典型农田硝态氮淋溶的时空特征及影响因素,研究了地表裂隙和土壤大孔隙对硝态氮淋溶的影响,定量了氮素在地表-根层-深层包气带-地下水的垂直迁移通量及过程。结果表明,农户常规管理的冬小麦-夏玉米轮作体系氮素盈余较高(299~358kg·hm~(-2)·a~(-1)),导致土壤根区和深层包气带累积了大量的硝态氮。冬小麦季硝态氮的迁移主要受灌溉影响,以非饱和流为主,且迁移距离较短;春季单次灌溉量低于60 mm,可以有效控制水和硝态氮淋溶出根区。冬小麦耕作和灌溉引起的地表裂隙对水氮运移的贡献不大。雨热同期的夏玉米季,土壤水分经常处于饱和状态,再降雨就可以导致硝态氮淋溶出根层进入深层包气带。夏玉米季极易发生硝态氮淋溶事件(占全年总淋溶事件的81%左右),硝态氮淋溶量占全年总淋溶量的80%左右,且单次淋溶事件的淋溶量较高。大孔隙优先流对夏玉米季根区硝态氮淋溶的贡献率在71%左右,这些硝态氮脱离了作物根系吸收范围,反硝化作用对硝态氮去除具有一定作用。在华北气候-土壤条件下,特别应注意冬小麦收获后土壤不应残留过多硝态氮,以避免夏玉米季降雨发生大量淋溶;夏玉米季需要注意施氮与作物需氮的匹配。由于夏玉米追肥困难,生产上提倡一次性施肥措施,控释肥应该能够发挥更大作用。未来气候变化,导致夏季极端高强度降雨事件的频率增加,将会加剧包气带累积硝态氮通过饱和流或优先流向地下水的迁移。合理的水氮管理是从源头上减少硝态氮向深层包气带和地下水迁移的主要措施。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号