首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
热解温度对玉米秸秆炭产率及理化特性的影响   总被引:2,自引:0,他引:2  
【目的】通过对不同热解温度条件下玉米秸秆炭理化特性的分析,探索玉米秸秆炭具有较高利用价值的炭化温度。【方法】以玉米秸秆为原料,采用低氧升温炭化法,在不同热解温度下 (100℃、200℃、300℃、400℃、500℃、600℃、700℃、800℃) 分别炭化2 h,制备生物炭,收集并测定了固体产物生物炭产率及特性。【结果】生物炭的产率随热解温度的升高逐渐降低。生物炭全碳含量和碳氮比随热解温度升高而升高,全氮含量在400℃以后随热解温度升高而降低。阳离子交换量 (CEC) 在400℃~600℃达到较高水平,为70.87~83.48 cmol/kg。随热解温度升高,玉米秸秆炭表面碱性含氧官能团增加、酸性含氧官能团减少,pH随着热解温度的升高逐渐增加,当温度达到400℃及400℃以上时呈碱性甚至强碱性。红外光谱分析表明,热解温度达到500℃时,纤维素和半纤维素已经完全分解;高温热解使玉米秸秆中–CH3、–CH2、–OH、–C=O间发生缔合或消除,促进芳香基团的形成。随着热解温度的升高,玉米秸秆炭的比表面积和比孔容均是先变大后变小,孔径先变小后变大,在400℃~600℃条件下,玉米秸秆炭的孔隙相对较为丰富,不同热解温度下玉米秸秆炭的比表面积和比孔容呈极显著正相关关系(P < 0.01)。【结论】综合各项指标,玉米秸秆的最佳热解温度为400℃~500℃,此温度下制备的生物炭产出率相对较高,氮、碳养分损失少,生物炭的理化性能和养分利用均达到最优。  相似文献   

2.
分别以柚皮和杏壳为原料经磁改性热解制备生物炭,考察磁改性处理在不同温度下(300~600℃)对材料理化特性的影响。结果表明:磁改性生物炭中铁主要以Fe3O4的形式存在,少量与铝、镁等形成复杂矿质氧化物。磁改性处理生物炭灰分与挥发分增加,而固定碳和热值均明显降低,且这种增加/降低的效应随温度升高而加剧。比表面积和总孔容均增大,而平均孔径减小。磁改性处理对2种原料生物炭的pH值影响不同:磁改性杏壳生物炭的pH值整体较原生生物炭降低;而在400~600℃温度范围,磁改性柚皮生物炭的pH值明显升高。FTIR分析表明磁改性杏壳400与600℃热解炭含氧基团(酚羟基伸缩振动)特征峰明显增强,这也解释了其较原生生物炭灰分增加而pH值却降低的现象。  相似文献   

3.
皇竹草生物炭的结构特征及其对()的吸附性能   总被引:1,自引:0,他引:1  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、pH呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

4.
炭化温度和时间与棉杆炭特性及元素组成的相关关系   总被引:13,自引:5,他引:8  
为了揭示炭化温度和时间对生物质炭特性及元素组成的影响,以棉花秸秆为生物质炭制作原料,对比研究不同炭化温度(300、450、600℃)和时间(0.5、1、2、4、6 h)制备的棉秆炭的pH值、阳离子交换量(CEC)、电导率等特性及有机碳、氮和矿质元素含量及其间的相互关系。结果表明:棉秆炭化出炭率、棉秆炭有机碳含量随炭化温度的升高和时间的延长而降低(出炭率: 48.66%(300℃)>35.39%(450℃)>31.06%(600℃),有机碳:564.02 g/kg(300℃)>405.94 g/kg(450℃)>259.36 g/kg(600℃);在300℃下,pH值随着时间的延长而增大,450℃和600℃下基本保持在10.5左右;电导率随炭化温度的升高而增加,在炭化时间内变化不明显,且炭化温度300~450℃对棉秆炭的电导率影响相对较小,600℃影响较大;CEC随炭化温度的升高而降低,在300℃下随炭化时间的延长而增大,450和600℃下则降低。棉秆炭中全磷,全钾,速效钾,钙,镁含量随着温度的升高和时间的延长逐渐增加,全氮和碱解氮则相反,速效磷含量则表现出90.07 mg/kg(450℃)>60.72 mg/kg(600℃)>20.18 mg/kg(300℃)的变化趋势。炭化温度和时间与棉秆炭指标间相关分析表明,炭化温度和时间与出炭率、CEC、有机碳、全氮和碱解氮间呈负相关,与pH值、全磷、全钾、速效磷、速效钾、钙和镁含量呈正相关。综合分析,低温短时间(300℃,1~2h)制备的棉秆炭对农业利用预期效应较好,该研究结论为新疆棉秆炭的制备和农业利用提供理论依据和数据支撑。  相似文献   

5.
以玉米秸秆为原料,在300、450℃和600℃下裂解得到3种生物炭,通过批处理实验讨论了溶液初始pH值和裂解温度对玉米秸秆及其生物炭吸附Cr(Ⅵ)的影响,并用吸附动力学模型和等温吸附模型对实验结果进行拟合。结果表明:对于同种吸附材料而言,溶液初始pH值越低,玉米秸秆及其生物炭对Cr(Ⅵ)的吸附量越大;当溶液初始pH值为3或5时,对Cr(Ⅵ)的吸附性能大小顺序为:玉米秸秆生物炭300℃生物炭450℃生物炭600℃;当溶液初始pH=1时,对Cr(Ⅵ)的吸附性能大小顺序为:生物炭300℃玉米秸秆生物炭450℃生物炭600℃,且生物炭300℃对Cr(Ⅵ)的最大吸附量约为141.24 mg·g~(-1)。可见,溶液初始pH值越低,生物炭的裂解温度越低,越有利于生物炭对Cr(Ⅵ)的吸附。  相似文献   

6.
季雅岚  索龙  解鈺  王小淇  方雅各  杨霖  赵伶茹  孟磊 《土壤》2017,49(4):1172-1178
制备温度及原料影响生物质炭性质,相应影响土壤N2O的排放,为筛选适宜于海南砖红壤的生物质炭类型,利用室内培养试验,研究海南4种禾本科植物材料在300℃、500℃、700℃ 三种热解温度下制备的12种生物质炭对砖红壤性质及N2O排放的影响。结果表明:所有生物质炭都能显著增加土壤有机碳、有效磷和速效钾含量,提高土壤pH,加速土壤硝化作用进行;300℃下制备的生物质炭能促进土壤N2O排放,500℃和700℃下制备的生物质炭则对土壤N2O排放有明显抑制作用;所有材料中,高温热解温度下由甘蔗渣制备的生物质炭处理土壤的N2O排放量最低,可能由于甘蔗在榨糖后剩下的甘蔗渣以较稳定的碳水化合物为主。综合分析,推荐500℃热解温度下生成的甘蔗渣生物质炭实施土壤改良,更有利于N2O减排。  相似文献   

7.
不同热解温度制备的水稻秸秆生物炭理化特性分析   总被引:1,自引:0,他引:1  
《土壤通报》2020,(1):136-143
以不同热解温度(100~800℃)制备的水稻秸秆生物炭为研究对象,研究在不同热解温度下制成的生物炭的理化特性。结果表明,热解温度为100~300℃制成的水稻秸秆生物炭呈弱酸性,400℃以上时呈碱性;水稻秸秆生物炭表面碱性含氧官能团数量随着热解温度的升高而增加、酸性含氧官能团则减少;水稻秸秆生物炭中的官能团C=C、C-O-C、-OH和-C=O在较高的热解温度下发生缔合或消除,促进了芳香基团的形成;随着热解温度的升高,水稻秸秆生物炭的阳离子交换量(CEC)、比表面积、孔径、比孔容、氮气吸附量和颗粒表面的分型维数(D1)均先增加后降低,阳离子交换量(CEC)在300~500℃时、其它性状在400~600℃之间达到最大值;以不同热解温度制成的水稻秸秆生物炭颗粒的孔隙结构均以孔隙宽度2~50 nm的中孔为主。随热解温度的升高,水稻秸秆生物炭的产率逐渐降低;400~500℃炭化2 h,生物炭产率最高,其孔隙结构最为复杂,所以可以认为400~500℃是水稻秸秆炭化的最佳温度。  相似文献   

8.
梁桓  索全义  侯建伟  刘常涛 《土壤》2015,47(5):886-891
掌握不同生物炭材料的结构特征和化学特性是合理利用生物炭的基础。通过无氧炭化法制备了不同炭化温度下的玉米秸秆生物炭和沙蒿生物炭,对比了不同材料和不同炭化温度下生物炭性质的差异。结果表明:炭化温度低于400℃时,两种材料生物炭的孔隙结构保存完整,600℃以上时,两种材料生物炭的蜂窝状结构均遭到破坏,玉米秸秆生物炭被破坏得更严重;同一炭化温度下,玉米秸秆生物炭的比表面积及总孔容和平均孔径均大于沙蒿生物炭,两种生物炭的比表面积随炭化温度的升高均增大,总孔容呈"V"形变化;两种材料的生物炭均呈碱性,炭化温度越高,pH越大,400℃~800℃,每升高10℃,玉米秸秆生物炭和沙蒿生物炭的pH均以0.02的幅度增加,同一温度下,玉米秸秆生物炭的pH大于沙蒿生物炭,在400℃、600℃和800℃下分别比沙蒿生物炭高0.31、0.35和0.29单位;随炭化温度的升高,玉米秸秆生物炭和沙蒿生物炭的C、P、K和灰分含量增加,400℃~800℃,玉米秸秆生物炭的C、P、K含量以炭化温度每升高10℃分别增加2.94、0.11、0.20 g/kg的幅度变化,沙蒿生物炭也以4.35、0.07、0.24 g/kg的幅度增加,与此同时,玉米秸秆生物炭的N、H含量以每升高10℃分别以0.13 g/kg和0.86 g/kg的幅度降低,沙蒿生物炭的N、H含量分别以0.04 g/kg和0.82 g/kg的幅度下降,S含量无明显变化,C/N和C/H增大,且不同材料生物炭的元素含量差异显著;两种材料生物炭的N、P、K有效性随炭化温度的升高均下降,400℃~600℃,玉米秸秆生物炭和沙蒿生物炭的速效N含量分别下降了57.89%和19.05%,800℃时两种生物炭的速效N均接近0 mg/kg,400℃~800℃玉米秸秆生物炭和沙蒿生物炭的速效P含量分别降低了67.41%和52.36%,此时速效K含量也分别降低了45.62%和90.16%。总之,不同材料和炭化温度对生物炭的物理特征和化学特性都有较大影响。  相似文献   

9.
《土壤》2017,(6)
制备温度及原料影响生物质炭性质,相应影响土壤N_2O的排放,为筛选适宜于海南砖红壤的生物质炭类型,利用室内培养试验,研究海南4种禾本科植物材料在300、500、700℃三种热解温度下制备的12种生物质炭对砖红壤性质及N_2O排放的影响。结果表明:所有生物质炭都能显著增加土壤有机碳、有效磷和速效钾含量,提高土壤pH,加速土壤硝化作用进行;300℃下制备的生物质炭能促进土壤N_2O排放,500℃和700℃下制备的生物质炭则对土壤N_2O排放有明显抑制作用;所有材料中,高温热解温度下由甘蔗渣制备的生物质炭处理土壤的N_2O排放量最低,可能由于甘蔗榨糖后剩下的甘蔗渣以较稳定的碳水化合物为主。综合分析,推荐500℃热解温度下生成的甘蔗渣生物质炭实施土壤改良,更有利于N_2O减排。  相似文献   

10.
不同温度玉米秸秆生物炭对萘的吸附动力学特征与机理   总被引:2,自引:0,他引:2  
通过批平衡实验,研究不同剂量热解温度(300、400、500、600℃,记作C300、C400、C500、C600)玉米秸秆生物炭对萘的吸附动力学特征与机理。同一热解温度下生物炭投加剂量为10 mg时对萘的平衡吸附量大于50 mg。热解温度对生物炭吸附萘的影响也不同,投加剂量为10 mg时,萘的平衡吸附量为C400C300C600C500;剂量为50 mg时,C300、C400和C600的平衡吸附量相近,而C500的平衡吸附量最低。生物炭对萘的吸附动力学数据随时间的变化可以用假二级动力学方程很好地拟合,表明生物炭对萘的吸附是复杂的,并不是单一的单层吸附。用颗粒内扩散模型和Boyd模型分析,发现液膜扩散以及颗粒内扩散均影响吸附过程,且液膜扩散为限速因素。  相似文献   

11.
生物炭能有效减少稻田温室气体(CH_4、N_2O)排放,不同裂解温度下生物炭对稻田土壤CH_4、N_2O排放的影响及机制需进一步探究。本研究利用两个原料产地(哈尔滨、丹阳)水稻秸秆生物炭,以江苏省丹阳典型稻麦轮作田为研究区,研究施加不同裂解温度水稻秸秆生物炭对土壤CH_4、N_2O排放的影响。结果表明:(1)相比常规施肥,施加300℃、500℃、700℃裂解的丹阳和哈尔滨水稻秸秆生物炭CH_4累积排放量分别减少10.38%、21.09%、13.28%和42.83%、65.29%、55.44%,N_2O累积排放量分别减少42.77%、53.54%、51.19%和45.34%、48.51%、48.40%;(2)通过温室气体排放强度公式计算得出,施加500℃裂解的丹阳和哈尔滨水稻秸秆生物炭分别比300℃、700℃减少27.09%、25.85%和40.54%、8.09%;(3)分析得出500℃裂解温度的生物炭减排效果优于300℃、700℃,主要原因是施加三种裂解生物炭后,土壤产甲烷古菌丰度值降低,且500℃低于300℃、700℃生物炭,平均降低48.33%、29.35%。同时施加500℃生物炭土壤硝化细菌丰度低于施加300℃、700℃生物炭。  相似文献   

12.
不同热解温度制备的烟秆生物炭理化特征分析   总被引:2,自引:1,他引:1  
分别对100~800℃下于马弗炉中低氧炭化制备的烟秆生物炭进行研究,分析其基础理化性质的变化.结果表明,烟草秸秆生物炭微量元素含量在热解温度为100~400℃时呈逐渐上升的趋势,在400~500℃时较为稳定;大量元素含量增加;C含量和N元素含量在100~300℃时逐渐增加,在400~800℃时先增加后下降,C/N在30...  相似文献   

13.
  目的  探明不同原材料、炭化温度生物炭对酸化棕壤的改良效果,明确生物炭对油菜生长和土壤有机碳矿化的影响,获得可用于酸化棕壤改良的高效材料。  方法  以胶东半岛酸化棕壤为研究对象,选用果树枝、花生壳、牛粪3种有机物料在不同炭化温度(300 ℃、450 ℃和600 ℃)下制备生物炭,采用盆栽试验与培养试验相结合方法,研究施加不同种类生物炭对酸化棕壤的改良、油菜生长以及土壤有机碳矿化的影响。  结果  生物炭施用显著提高了土壤pH值(8.10% ~ 40.99%),降低了交换性酸(61.57% ~ 88.43%)、交换性铝(42.71% ~ 85.83%)和交换性氢(78.03% ~ 94.02%)含量,降低了油菜叶片的丙二醛(MDA)和谷胱甘肽(GSH)含量、超氧化物歧化酶(SOD)和谷胱甘肽还原酶(GR)活性,促进油菜生长,油菜株高、叶面积和产量分别提高了18.09% ~ 44.61%、7.87% ~ 77.13%和37.50% ~ 159.68%。生物炭施用降低了土壤有机碳累积矿化率,提高了矿物结合有机碳所占比例,炭化温度450 ℃和600 ℃生物炭对土壤有机碳累积矿化率的降低作用大于300 ℃生物炭的降低作用。  结论  果树枝生物炭和牛粪生物炭对油菜土壤酸度的缓解作用和有机碳矿化作用要强于花生壳生物炭,且受到炭化温度的影响,450 ℃和600 ℃生物炭强于300 ℃生物炭。总体来看,以450 ℃牛粪生物炭对酸化棕壤的改良效果最佳,促进了土壤有机碳矿化。  相似文献   

14.
生物炭对水稻土Olsen-P的影响   总被引:4,自引:1,他引:4  
巢军委  王建国  戴敏  沈明星  陆长婴 《土壤》2015,47(4):670-674
生物炭如何影响土壤磷素的有效性目前尚不清楚。本研究以稻草和白杨树枝为原料,采用室内培养方法,研究了300℃、450℃和600℃制备的生物炭在5、15和40g/kg施用量下对水稻土Olsen-P的影响。与树枝炭相比,稻草炭显著提高了水稻土Olsen-P含量;3种温度制备的稻草炭对水稻土Olsen-P的影响不存在显著差异;3种施用量稻草炭均显著提高了水稻土Olsen-P含量。生物炭制备原料和施用量均显著影响土壤磷素的有效性,不同温度制备的生物炭对土壤磷素的有效性影响不显著。  相似文献   

15.
小麦秸秆生物炭对高氯代苯的吸附过程与机制研究   总被引:1,自引:0,他引:1  
李洋  宋洋  王芳  卞永荣  蒋新 《土壤学报》2015,52(5):1096-1105
以小麦秸秆为原料,分别在三种温度(400℃、500℃、600℃)下制备小麦秸秆生物炭,并标记为WSB400、WSB500、WSB600。分析了秸秆炭的元素组成,表征了其结构和表面特征,研究了秸秆炭对五氯苯和六氯苯的吸附动力学和吸附等温线。结果表明,升温热解使得小麦秸秆有机组分炭化、极性官能团消除,炭化程度增强;三种秸秆炭均可快速高效地吸附高氯代苯,且对六氯苯的吸附要快于五氯苯,假二级动力学方程能更好地拟合秸秆炭对氯苯的吸附动力学过程;不同秸秆炭对氯苯的饱和吸附量大小顺序为WSB400WSB500WSB600;对吸附等温线进行分析可得,随着秸秆炭制备温度的升高,其对氯苯的吸附等温曲线由线性变为非线性,吸附机理则由以分配作用为主过渡到分配作用与表面吸附共同作用。  相似文献   

16.
制炭温度对玉米和小麦生物质炭理化性质的影响   总被引:9,自引:2,他引:9  
许燕萍  谢祖彬  朱建国  刘钢  刘琦 《土壤》2013,45(1):73-78
通过缓慢高温裂解方式生产不同温度的小麦和玉米生物质炭,并对其性质进行分析.结果显示,生物质炭性质受裂解温度和生物质种类的影响而表现出差异.当裂解温度从300℃升高到500℃时,小麦生物质炭产率从44.3%降低到38.4%,其生物质炭碳含量从617.9 g/kg升高到674.0 g/kg;玉米生物质炭产率从42.8%(300℃)降低到29.7%(500℃),其生物质炭碳含量从574.8 g/kg(300℃)升高到651.1 g/kg(500℃).生物质炭pH、灰分含量、全磷含量等也随制炭温度升高而升高,小麦生物质炭pH从7.59(300℃)上升到10.51(500℃),灰分含量从186.1 g/kg(300℃)升高到268.2 g/kg(500℃),全磷含量从0.70 g/kg(300℃)升高到1.10 g/kg(500℃);玉米生物质炭pH从9.35(300℃)升高到10.12(500℃),全磷含量从2.34 g/kg(300℃)升高到4.37 g/kg(500℃).说明制炭温度和生物质种类对生物质炭理化性质具有决定性作用.  相似文献   

17.
项目研究了重金属修复基地水稻、玉米、油菜、高粱4种修复材料秸秆的热重反应,并首次探讨了重金属修复材料在制备生物炭过程中,不同生物炭制备条件对重金属在生物炭中留存的影响。结果表明:四种秸秆热重反应变化趋势基本一致,失重主要发生在200~400℃之间,而在400~600℃区间,基本保持恒重。水稻秸秆失重率90%明显高于其他三种秸秆失重率75%。在不同终点温度条件下(350~550℃),重金属在生物炭中浓度有增加趋势,其百分比例均随温度的升高而降低,原料利用热值则在400℃最高。在不同升温速率和保温时间下,重金属在生物炭中的含量随升温速率升高和保温时间的延长而升高,生物炭得率和秸秆综合利用热值却随之下降。因此,秸秆生物炭制备过程中为获得较低重金属含量和高热值的生物炭,建议以400℃为终点温度,升温速率不宜过快,保温时间不宜过长,分别在1℃min-1和1 h左右即可。  相似文献   

18.
秸秆生物炭具有改善土壤生态环境、土壤蓄水保肥和减少温室气体排放等正效应,但其石灰效应会加大稻田氨挥发损失。为充分发挥生物炭吸铵特性,降低其石灰效应的不利影响,对不同热解温度(300、500、700℃)和酸化水平(pH值=5、7、9)稻草生物炭处理下的田面水NH_4~+-N浓度、氨挥发和水稻产量进行了研究。结果表明:偏酸性(pH值=5)、中性(p H值=7)生物炭处理在基肥期和分蘖肥期均能显著降低田面水NH_4~+-N峰值浓度(P0.05),降幅达16.90%~35.60%。全生育期稻田氨挥发损失占施氮量的15.14%~26.05%(2019年)、15.10%~19.00%(2020年)。稻田增施热解温度为700℃、酸化水平为5(p H值=5)的生物炭(C700P5)降氨效果最好,两年氨挥发分别显著降低22.93%、12.61%(P0.05)。高温热解配合偏酸性、中性生物炭(C700P5、C700P7)增产效果显著,增产率达9.92%~13.50%,结构方程模型表明,其增产原因是生物炭酸化处理降低了稻草生物炭的石灰效应,而热解温度调整提高了生物炭阳离子交换量(CationExchange Capacity,CEC),进而降低了田面水NH_4~+-N浓度和氨挥发损失,最终提高了水稻地上部氮素积累和水稻产量。研究可揭示不同热解温度和酸化水平制备的生物炭在稻田中的应用潜力,并为稻田合理施用生物炭和减少化肥施用量提供理论依据。  相似文献   

19.
以玉米秸秆为原料,在300、450益和600益下裂解得到3种生物炭,通过批处理实验讨论了溶液初始pH值和裂解温度对玉米秸秆及其生物炭吸附Cr(遇)的影响,并用吸附动力学模型和等温吸附模型对实验结果进行拟合。结果表明:对于同种吸附材料而言,溶液初始pH值越低,玉米秸秆及其生物炭对Cr(遇)的吸附量越大;当溶液初始pH值为3或5时,对Cr(遇)的吸附性能大小顺序为:玉米秸秆>生物炭300益>生物炭450益>生物炭600益;当溶液初始pH=1时,对Cr(遇)的吸附性能大小顺序为:生物炭300益>玉米秸秆>生物炭450益>生物炭600益,且生物炭300益对Cr(遇)的最大吸附量约为141.24 mg·g-1。可见,溶液初始pH值越低,生物炭的裂解温度越低,越有利于生物炭对Cr(遇)的吸附。  相似文献   

20.
不同类型生物炭理化特性及其对土壤持水性的影响   总被引:5,自引:0,他引:5  
[目的]对比分析不同原料制备的生物炭的理化性质及其对土壤持水性的影响,为选择合适的生物炭改良和修复土壤提供理论依据。[方法]以鸡粪、浒苔及稻草为原料,分高、中、低3种不同温度制备生物炭,运用元素分析、盆栽培养等试验研究其特性。[结果]稻草中C,H及灰分的含量较高,鸡粪中N含量较高,浒苔中C含量低,O含量较高;而在制备的生物炭中,鸡粪基生物炭C和N含量较高,浒苔基生物C含量却比较低。另外,3种类型生物炭的H/C摩尔比值随着热解温度的升高而逐渐降低,C/N比随着热解温度的升高而增大。不同原料制备的生物炭pH值随着热解温度的升高而增大,pH值从6.82~8.35升高至9.33~10.29;3种类型的生物炭pH值随着灰分含量的增大而增大,但增长速率不同,稻草基生物炭浒苔基生物炭鸡粪基生物炭。并且,随着热解温度的升高,鸡粪、浒苔及稻草基生物炭引起土壤持水性逐渐增强。[结论]在土壤提供营养成分方面,鸡粪基生物炭显然更具优势,而且在促进土壤持水性方面,鸡粪生物炭也相对更强一些。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号