首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A field study was conducted aimed at (i) evaluating the practicability of a fixed‐time insemination regime for medium‐sized dairy operations of north‐western Germany, representative for many regions of Central Europe and (ii) substituting hCG for GnRH as ovulation‐inducing agent at the end of a presynch or ovsynch protocol in an attempt to reduce the incidence of premature luteal regression. Cows of two herds synchronized by presynch and two herds synchronized by ovsynch protocol were randomly allotted to three subgroups; in one group ovulation was induced by the GnRH analog buserelin, in another by hCG, whereas a third group remained untreated. The synchronized groups were fixed‐time inseminated; the untreated group bred to observed oestrus. Relative to untreated herd mates, pregnancy rate in cows subjected to a presynch protocol with buserelin as ovulation‐inducing agent was 74%; for hCG it was 60%. In cows subjected to an ovsynch protocol, the corresponding relative pregnancy rates reached 138% in the case of buserelin and 95% in the case of hCG. Average service interval was shortened by 1 week in the presynch and delayed by 2 weeks in the ovsynch group. It may be concluded that fixed‐time insemination of cows synchronized via ovsynch protocol with buserelin as ovulation‐inducing agent is practicable and may help improve efficiency and reduce the work load involved with herd management in medium‐sized dairy operations. The substitution of hCG for buserelin was found to be not advisable.  相似文献   

2.
The effects of gonadotrophin releasing hormone (GnRH) on the reproductive performance of dairy cows with retained placenta were studied. Three hundred and seventy-eight cows diagnosed as having retained placenta received intramuscular injections of either 2 mL sterile water or 200 micrograms of GnRH in 2 mL sterile water between day 8 and day 14 postpartum. Rectal palpation was performed at the time of treatment and ten to 20 days after treatment in order to determine the rate of uterine involution. Thereafter, monthly rectal examinations were carried out until insemination. Pregnancy diagnosis was made by rectal palpation at 40 days or more after breeding. Using the entire experimental population, there were no significant differences between GnRH-treated and control cows for the rate of uterine involution, the occurrence of reproductive problems, the interval from parturition to first observed estrus, the interval from parturition to first insemination, the interval from parturition to conception, the number of services per conception, the total number of services per cow regardless of conception and the incidence of culling for infertility. When the data for herds in which breeding began earlier in the postpartum period (herds having a mean less than or equal to 80 days from parturition to first service for retained placenta cows) were considered, the GnRH treatment resulted in a significantly shorter (p less than or equal to 0.01) calving to conception interval as compared to control cows. Also, there was a significant reduction (p less than or equal to 0.05) in the total number of services per cow regardless of conception and a significant reduction in the interval from parturition to first service.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
OBJECTIVE: To compare performance of the Ovsynch program on reproductive performance between cycling and non cycling cows in seasonally-calving herds. PROCEDURE: An Ovsynch mating program (100 mg Gonadorelin on day 1 and day 9, 500 mg of Cloprostenol on day 7 with fixed time artificial insemination on day 10) was administered to 3,559 cows from 14 herds in Australia and New Zealand. Cycling status before planned start of mating was determined. All cows were treated and artificial insemination continued for at least 25 days after fixed time artificial insemination. Pregnancy testing was performed 75 to 100 days after fixed time artificial insemination. Multivariable modelling examined the impact of the Ovsynch program and other risk factors upon reproductive performance. RESULTS: Thirty percent of cows were classified as no visible oestrous (NVO). Odds of being NVO increased significantly for cows that were young, recently calved, and in low body condition. The fixed time artificial insemination conception rate was 35.7% and 33.2%, 21-day pregnancy rate was 54.5% and 48.4% and 42-day pregnancy rate was 69.7% and 62.6% for cycling and NVO cows respectively. Odds of pregnancy increased significantly for cows calved more than 40 days by planned start of mating, in greater body condition, and cycling, and there was a significant interaction between body condition and cycling status in both models. The return-to-service rates by 24-days were 67.6% and 55.9% and by the end of the AI period were 86.9% and 81.5% for cycling and NVO cows respectively. Odds of return to service increased significantly for cows in greater condition score in both models. Odds of return were increased for cycling cows in the 24-day multivariable model. CONCLUSION: The Ovsynch program may provide a useful treatment option for NVO cows within seasonally-calving pasture-based dairy herds.  相似文献   

4.
The objective of this experiment was to determine the effect of sequential treatment with buserelin (a GnRH agonist) and cloprostenol (a prostaglandin F2 alpha analog) on estrous response and fertility in beef cattle with different ovarian conditions. On d 0 (1st d of treatment), the control group (n = 52, 10 heifers and 42 cows) and the GnRH group (n = 48, 10 heifers and 38 cows) received 2 mL of saline or 2 mL of Receptal (8 micrograms of buserelin), respectively. On d 6, all cows that had not exhibited spontaneous estrus were given i.m. 500 micrograms of cloprostenol (PGF). Ultrasonography on d 0 and assays of progesterone in blood on d -11, 0, and 6 were used to identify follicular and luteal status of animals. Cattle were observed for estrus from d 0 to 10. Cows showing estrus were bred artificially 12 h after onset of estrus. Over the 10-d period, the number of cows detected in estrus and pregnancy and conception rates were identical for the two groups. However, between d 0 and 6, the proportion of cows exhibiting estrus was lower (P less than .01) in the GnRH group than in the control group. Between d 6 and 10, the synchronization rate and precision of estrus were greater (P less than .01) in the buserelin-treated group than in the control group. Conception rate and interval from PGF injection to onset of estrus were not different between the two treatment groups. Presence of a large (greater than 10 mm) follicle on d 0 enhanced synchronization rate and precision of estrus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
This is a review of the physiology and endocrinology of the estrous cycle and how ovarian physiology can be manipulated and controlled for timed artificial insemination (TAI) in beef and dairy cattle. Estrus detection is required for artificial insemination (AI), but it is done poorly in dairy cattle and it is difficult in beef cattle. Protocols that synchronize follicle growth, corpus luteum regression and ovulation, allowing for TAI, result in improved reproductive performance, because all animals are inseminated whether they show estrus or not. As result, TAI programs have become an integral part of reproductive management in many dairy herds and offer beef producers the opportunity to incorporate AI into their herds. Gonadotropin-releasing hormone-based protocols are commonly used in North America for estrus synchronization as part of a TAI program. Protocols that increase pregnancy rates in lactating dairy cows and suckling beef cows have been developed. Protocols that improve pregnancy rates in heifers, acyclic beef cows, and resynchronized lactating dairy cows are also discussed.  相似文献   

6.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2𝛂 (PG) or progesterone (P4) and oestradiol benzoate (ODB).

METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or >2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 𝛍g of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 𝛍g of gonadorelin. Cows were artificially inseminated 16–24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35–40 days after the initial insemination and twice again at 6–8 week intervals thereafter.

RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21days;p>0.1).

CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

7.
AIM: To compare 2 treatments for anovulatory anoestrus (AA) in postpartum dairy cows. The treatments were combinations of gonadotropin-releasing hormone (GnRH) and prostaglandin F2 (PG) or progesterone (P4) and oestradiol benzoate (ODB). METHODS: Forty AA cows from each of 5 herds were blocked by age (2 or 2 years old) and randomly assigned to 1 of 2 treatments. The first group (GPG) were treated with 250 mug of a GnRH analogue, gonadorelin, followed 7 days later by 15 mg of the PG analogue, luprostiol. Two days later the cows were injected with 250 mug of gonadorelin. Cows were artificially inseminated 16-24 h after the second GnRH injection. The second group (P4+ODB) were treated with an intravaginal P4 releasing device for 6 days, followed 24 h after device removal by injection of 1 mg of ODB. Cows were pregnancy tested 35-40 days after the initial insemination and twice again at 6-8 week intervals thereafter. RESULTS: There was no significant difference between P4+ODB and GPG groups in the percentage of cows submitted for insemination in the first 7 days (94.0% vs 100% for P4+ODB vs GPG, respectively; p>0.3), in conception rate to first insemination within the first 7 days (43.6% vs 35.0% for P4+ODB vs GPG, respectively; p>0.2), in the percentage of cows conceiving in the first 28 days of the breeding period (68.0% vs 58.3%, P4+ODB vs GPG, respectively; p>0.1), or in median interval from the end of treatment to conception (20 vs 21 days; p>0.1). CONCLUSIONS: No differences in the reproductive performance of AA cows treated with either P4+ODB or GPG were detected. However, given the small number of animals enrolled, further data are required before the GPG protocol can be recommended for treatment of AA cows.  相似文献   

8.
Nonlactating Bos indicus x Bos taurus cows were used in three herds to determine the efficacy of different PGF2alpha treatments in combination with GnRH and melengestrol acetate (MGA) for a timed artificial insemination protocol. The start of the experiment was designated as d 0, at which time cows were assigned a body condition score and received 100 microg of GnRH. Cows were fed MGA (0.5 x mg x cow(-1) x d(-1)) on d 1 to 7. On d 7, cows received either a single injection of PGF2alpha (Lutalyse sterile solution; 25 mg; n = 297), a single injection of cloprostenol sodium (Estrumate; 500 microg; n = 297), or half the recommended dose of PGF2alpha (12.5 mg; n = 275) on d 7 and 8. On d 10, all cows were artificially inseminated and received 100 microg of GnRH. Pregnancy rates to the timed artificial insemination (39%) were not affected by treatment, herd, or treatment x herd. There was an effect (P < 0.01) of artificial insemination sire on timed artificial insemination pregnancy rate for one herd, but not the other two herds. Herd influenced (P < 0.05) 30-d pregnancy rates, but there were no treatment or treatment x herd effects as 72.3% of the cows became pregnant during the first 30 d of the breeding season. Results indicate that the type of PGF2alpha treatment administered 7 d after GnRH did not influence timed artificial insemination pregnancy rates in nonlactating Bos indicus x Bos taurus cows.  相似文献   

9.
Economic and sensitivity analysis methods were used to evaluate financial returns from use of gonadotropin-releasing hormone (GnRH) at the time of insemination to enhance fertility of dairy cows. A computer spread sheet was used to determine the best service(s) for GnRH treatment, the increase in conception rate required for economic benefit from treatment, and how profits from GnRH treatment are affected by drug cost, herd reproductive efficiency, and production costs. Financial returns increased from use of GnRH at insemination under most herd conditions. Herds with conception rates less than or equal to 45% benefited from GnRH treatment at any 1 or 2 inseminations. Herds with conception rates greater than or equal to 60% benefited from GnRH treatment only at second or later services. Selection of second and/or third insemination as the GnRH treatment service usually resulted in the greatest total return. The enhancement of fertility necessary to achieve the break-even point with GnRH treatment at third service was 2% for low- and 5% for high-conception-rate herds. Base-line herd conception rates, estrus detection efficiency, replacement costs, value of excess days not pregnant, and cost of treatment had the greatest effect on returns from treatment. Herds with high conception rates and low replacement costs were likely to realize the least benefit from GnRH treatment at insemination. On the basis of our findings, we concluded that GnRH treatment at insemination is a profitable procedure under most herd conditions. Optimal treatment regimens for specific herds may best be determined by using herd performance and management data for calculating returns.  相似文献   

10.
OBJECTIVE: To assess the effectiveness of a gonadotrophin-releasing hormone (GnRH) / prostaglandin program (GnRH-PG-GnRH, Ovsynch) on conception rates and time to conception of lactating dairy cows compared with a PG program (double prostaglandin injection). DESIGN: A randomised multi-centre cohort study was conducted with 778 cows from nine dairy herds. Cows at different stages of lactation were randomly assigned, after matching for days open at the time of treatment, to either the PG or Ovsynch program. PROCEDURE: Cows on the PG program received two intramuscular injections of prostaglandin (2 mL, Prosolvin) 11 days apart. The Ovsynch program consisted of two intramuscular injections of GnRH (1 mL, Fertagyl) 9 days apart, separated by one injection of prostaglandin 40 h before the second GnRH injection. Milk samples were taken at the time of artificial insemination and assayed for progesterone by radioimmunoassay. RESULTS: The Ovsynch program was not significantly different to PG in achieving conception, with overall conception rates of 37.6% and 41.4%, respectively, for each program. There was, however, a significant interaction between the effects of parity and treatment (P = 0.03), because conception rates were higher in older cows (parity 5 or more) on the PG program than for older cows on the Ovsynch program. There was no significant effect of treatment (P > 0.5) on time to conception after treatment, but older cows were slower to conceive (P < 0.0001). Conception rates differed (P < 0.0001) among herds. CONCLUSION: The median days to conception for both groups was 22 and mean days from treatment to conception were 36.3 +/- 3.3 and 31.6 +/- 2.7 for the Ovsynch and PG programs respectively, indicating that reproductive performance of cows was not significantly different with Ovsynch program or PG program. There appears to be a need to evaluate causes of reproductive failure in older cows.  相似文献   

11.
This experiment compared the reproductive performance of synchronised anoestrous dairy cows that were treated initially with a combination of progesterone and oestradiol benzoate and then with either gonadotrophin-releasing hormone (GnRH) or oestradiol benzoate to resynchronise returns to service. It was hypothesised that injecting anoestrous dairy cows with GnRH 12-15 days after insemination and coinciding with the time of insertion of a controlled intravaginal progesterone-releasing (CIDR) device would increase conception rates to the preceding 1st insemination compared with oestradiol benzoate treated cows; both GnRH and oestradiol benzoate would resynchronising the returns to service of those cows that did not conceive to the preceding insemination. Groups of cows in 11 herds were presented for a veterinary examination after they had not been seen in oestrus postpartum. Those cows diagnosed with anovulatory anoestrus (n = 1112) by manual rectal palpation and/or ultrasonography were enrolled in the trial. Each enrolled cow was injected with 2 mg oestradiol benzoate i.m. on Day -10, (where Day 0 was the 1st day of the planned insemination) concurrently with vaginal insertion of a CIDR device. The device inserted was withdrawn on Day -2 and then each cow injected i.m. with 1 mg of oestradiol benzoate on Day -1 unless it was in oestrus. Observation for oestrus preceded each insemination. Every cow that had been inseminated on Days -1,0,1 or 2 was presented for treatment for resynchrony on Day 14 (n = 891). They were divided into 2 groups; those with an even number were each injected i.m. with 250 microg of a GnRH agonist (Treatment group n = 477); each of the cows with an odd number injected i.m. with 1 mg of oestradiol benzoate (control group, n = 414). Each GnRH or oestradiol benzoate injection preceded reinsertion of a CIDR device previously inserted from Days -10 to -2. It was withdrawn on Day 22, 24 hours before injecting 1 mg oestradiol benzoate. Cows observed in oestrus were submitted for a 2nd insemination. Every enrolled cow still present in the herd was pregnancy tested by palpation of uterine contents per rectum about 6 weeks later and again at the end of a herd's seasonal breeding programme. The alternative use of GnRH instead of oestradiol benzoate did not affect the percentage of cows conceiving within 3 days of the mating start date (MSD) (35.6 % vs 35.3 %, P = 0.90), resubmission rates for a 2nd insemination among cows not pregnant to the 1st insemination (81.6 % vs 83.5 %, P = 0.41), 6-week pregnancy rate (59.3 % vs 60.6 %, P = 0.65), 21-weekpregnancy rate (86.6 vs 85.0, P = 0.36), mean interval from MSD to conception (32.5 +/- 1.8 days vs 29.9 +/- 1.8 days, P = 0.26) or conception rate of cows reinseminated by Day 28 (43.3 % vs 38.8 %, P = 0.39). When GnRH was compared with oestradiol benzoate, it did not increase conception rates to the 1st service; it was as effective as oestradiol benzoate in synchronising returns to service in previously treated anoestrous cows that did not conceive to the 1st service. Its use affected neither conception rates to the preceding 1st inseminations nor to the following 2nd inseminations.  相似文献   

12.
Pregnancy rate to the Ovsynch protocol can be improved if cows are presynchronized (i.e., two PGF(2alpha) injections given 14 days apart and the second injection of PGF(2alpha) given 12 days prior to the first GnRH of the Ovsynch program) so that a greater proportion of cows during the Ovsynch protocol ovulate to the first GnRH injection and have a CL at PGF(2alpha) injection. Pregnancy rates were normal in anestrous cows (39.6%) if they ovulated to both injections of GnRH. Estradiol cypionate (ECP) can be used to replace GnRH to induce ovulation as a modification of the Presync-Ovsynch program (i.e., Presync-Heatsynch). Pregnancy rates after TI were 37.1+/-5.8% for Presync-Ovsynch compared to 35.1+5.0% for Presync-Heatsynch. Use of ECP to induce ovulation was an alternative to GnRH in which greater uterine tone, ease of insemination and occurrence of estrus, improved acceptance by inseminators. A GnRH agonist (Deslorelin; 750 microg) implant inserted at 48 h after injection of PGF(2alpha), as a component of the Ovsynch protocol, induced ovulation, development of a normal CL and delayed follicular growth until 24 d after implant insertion. Utilization of Deslorelin implants (450 microg and 750 microg) to induce ovulation compared to GnRH (100 microg) within the Ovsynch protocol resulted in 27 d pregnancy rates (GnRH 100 microg, 39%; Deslorelin implants 450 microg, 40% and 750 microg, 27.5%) with 12.7%, 5.0% and 9.5% embryonic losses by 41 d of pregnancy, respectively. Induction of an accessory CL with injection of hCG on day 5 after insemination improved conception rates by 7.1%. Bovine somatotrophin injected at first insemination following a Presync-Ovsynch program in cycling-lactating dairy cows increased 74 days pregnancy rates (57.1%>42.6%).  相似文献   

13.
Holstein-Friesian cows (n=204) were given saline solution or 200 microgram of gonadotropin-releasing hormone (GnRH) by intramuscular injection at 8 to 23 days after parturition. Of cows culled, fewer GnRH-treated cows were culled for infertility, compared with number of cows given saline solution (26 vs 57%; P less than 0.05). Frequency of ovarian follicular cysts was reduced from 15.2% in controls to 5.7% for cows given GnRH (P less than 0.01). The interval to 1st insemination, interval to conception, and inseminations per conception did not differ among saline solution or GnRH-treated cows which remained in the herds. These data provide evidence for reduction in infertility and reproductive disorders in early postpartum dairy cows given GnRH as a prophylactic.  相似文献   

14.
The objectives of this observational study were to document ovarian and endocrine responses associated with the treatment of cystic ovarian follicles (COFs) in dairy cows, using gonadotropin releasing hormone (GnRH) and prostaglandin F2alpha (PGF) with or without exogenous progesterone. A secondary objective was to determine pregnancy establishment following synchronization of ovulation and timed insemination in cows diagnosed with COFs. In trial I, 18 Holstein cows diagnosed with COFs received 2 injections of 100 microg GnRH, 9 d apart, with 25 mg PGF given 7 d after the 1st GnRH. A new follicle developed in all 18 cows after the 1st GnRH, and 83% of cows ovulated following the 2nd GnRH. Cows were inseminated 16 h after the 2nd GnRH. Of the 17 cows available for pregnancy diagnosis, 7 were confirmed pregnant. In trial II, 8 cows with COFs received GnRH and an intravaginal progesterone device (CIDR) concurrently, then PGF 7 d later. The CIDR was removed 2 d after PGF administration. Plasma estradiol concentrations declined following CIDR insertion. In all cows, a new follicle developed following GnRH treatment; estradiol-surge and estrus occurred spontaneously after CIDR-removal. Seven of 8 cows ovulated the new follicle. In dairy cows diagnosed with COFs, treatment with GnRH followed by PGF 7 d later, with or without exogenous progesterone, resulted in the recruitment of a healthy new follicle; synchronization of ovulation and timed insemination resulted in a 41% pregnancy rate.  相似文献   

15.
In order to evaluate an artificial insemination programme and reproductive efficiency of dairy herds in Uruguay, a survey was conducted with five dairy farms, utilizing a total of 768 lactating Holstein cows. Precision of oestrous detection was assessed by one milk progesterone sample taken on day of breeding and was 11.1%. Two additional samples taken at day 10 and 23 were used to confirm ovulation and early pregnancy. Accuracy of pregnancy estimation by milk progesterone was 70.4%. Reproductive efficiency was determined by the analysis of records. Average intervals from calving to first service were 101 days and to conception 132 days and these were affected by parity, body weight and body condition at calving, but not at breeding, or by milk production. Oestrous detection rates and pregnancy rates were 37.5 and 15.6%, respectively. It was concluded that losses in reproductive efficiency in dairy farms of Uruguay in a seasonal artificial insemination programme were mainly due to unobserved heats, rather than incorrect oestrous detection.  相似文献   

16.
This field study investigated whether the administration of a single dose of gonadotropin‐releasing hormone (GnRH) to dairy cows without a corpus luteum (CL) 4 weeks after calving can improve reproductive performance. Holstein dairy cows underwent ultrasonography to assess the presence of ovarian structures at 29.2 ± 5.2 days post‐partum, and cows were divided into two main groups based on the presence (CL group, n = 230) or absence (non‐CL group, n = 460) of a CL. The non‐CL group was further randomly divided into two subgroups based on the administration of GnRH (non‐CL GnRH group, n = 230) or no GnRH (non‐CL control group, n = 230). Subsets of cows from non‐CL control (n = 166) and non‐CL GnRH (n = 175) groups received a second ultrasonography at 44.5 ± 5.4 days post‐partum to assess CL formation. The percentage of cows with CL at the second ultrasonography was greater in the non‐CL GnRH group (70.9%) than in the non‐CL control group (53.0%, p = 0.0006). The hazard of the first post‐partum insemination by 150 days in milk (DIM) was higher in the CL group than in the non‐CL control group (hazard ratio [HR]: 1.36, p = 0.001). The probability of a pregnancy to the first insemination was higher in non‐CL GnRH (odds ratio [OR]: 1.50, p = 0.04) and CL groups (OR: 1.55, p = 0.03) compared to the non‐CL control group. Furthermore, the hazard of pregnancy by 210 DIM was higher in non‐CL GnRH (HR: 1.30, p = 0.01) and CL (HR: 1.51, p = 0.0001) groups than in the non‐CL control group. In conclusion, administration of GnRH to dairy cows without a CL 4 weeks after calving was associated with an increase in ovulation and improved reproductive performance.  相似文献   

17.
The ability to synchronise onset of oestrus, and hence the time of breeding and calving, offers potential economic and management benefits to dairy farmers, especially in herds with seasonally concentrated calving patterns. A trial involving 2681 cows in 11 seasonal herds was conducted to evaluate the reproductive performance of lactating dairy cows following oestrus synchronisation with a combination of progesterone, oestradiol and prostaglandin. Cows were randomly assigned within herds to synchronised and control groups, balanced for age, date of calving, body condition and breed. Cows in the synchronised group were treated with an intravaginal progesterone-releasing device containing 1.9 g of progesterone and a gelatin capsule containing 10 mg of oestradiol benzoate 10 days prior to the planned start of the breeding season (Day 0). The device was removed 8 days later on Day -2 and a luteolytic dose of prostaglandin F2alpha was administered 2 days prior to removal of the progesterone-releasing device. Returns to service for cows in the synchronised group were synchronised by inserting a previously used intravaginal device during Days 16-21 after the start of the breeding season. Cows in the control group were left untreated. The percentage of cows being inseminated during the first 5 days was 89.0% for the synchronised group compared to 29.7% for the control group. Compared to cows in the control group, those in the synchronised group had a lower conception rate to the first insemination (52.9% v. 64.3%, p<0.001), a lower conception rate to the second insemination (51.8% v. 62.5%, p<0.001), a higher percentage of empty cows at the end of the breeding season (7.3% v. 5.1%, p<0.05), and more insemination services per pregnancy to artificial insemination (2.0 v. 1.6, p<0.001). There was no difference between the synchronised and control groups in the percentage of cows pregnant to artificial insemination (81.8% v. 85.5%, p>0.10). The mean day of conception from the start of the breeding season was advanced (p>0.0 1) by 1.3 days in synchronised cows (19.9 +/- 0.7 days; mean +/- SEM) compared to control cows (21.2 +/- 0.5 days). It is concluded that the oestrus synchronisation regime used in the present study caused a reduction in fertility, which reduced the potential gains from using such a programme to increase reproductive efficiency in dairy cows.  相似文献   

18.
Two hundred and ninety two dairy cows received a subcutaneous injection of a 2.5 ml solution containing 10 microg GnRH-analogue (Receptal, Hoechst A.G.) 0-6 hours before insemination, while 284 cows acting as controls were injected with 2.5 ml of sterile pyrogen-free water at the same time. The two groups, the treated and the control, were formed by matching (pairing) each oestrous cow with another on the basis of interval from calving to first mating, condition score, and age on the day of first mating after calving. The cows were in 3 factory supply dairy herds, which were visited daily during the first 3 weeks of the mating season. All the cows presented for mating each day were inseminated by the same technician using 0.5 ml of ambient-temperature semen containing 2 million spermatozoa per insemination. The semen used on any particular day originated from one ejaculate of one bull (same batch number). The cows were manually examined for pregnancy 2 to 3 months after their first insemination. A similar response was seen in all three herds irrespective of the interval from calving to mating. First mating pregnancy rates were 9.3% higher in the Receptal-treated cows than in the control group (P = 0.025). It is suggested that Receptal may have a beneficial effect on the pregnancy rate of cows that have recently ovulated as well as on those having delayed ovulation.  相似文献   

19.
A re-evaluation of results from ten trials conducted in commercial dairy herds between 1974 and 1981 in which lactating dairy cows were injected once or twice with either of two forms of prostaglandin F2alpha (PGF) showed that: the variation in the post-injection interval to oestrus was influenced by the stage of the oestrous cycle at which treatment was administered; this variation was sufficient to reduce pregnancy rates to set-time inseminations; an accurate aid for oestrus detection, such as tail painting, should be used routinely with PGF; if PGF-treated cows were detected in oestrus before being inseminated, the pregnancy rates to first insemination were usually 10% higher than in untreated herd mates. The results show that PGF systems in dairy herds should not be used as au alternative to accurate oestrus detection. These systems can be used to condense the breeding programme and increase pregnancy rates to first insemination. The exploitation of this fertility effect justifies the reassessment of PGF usage in New Zealand dairy herds.  相似文献   

20.
OBJECTIVE: To compare the use of gonadotrophin releasing hormone (GnRH) and oestradiol benzoate (ODB) administered following a synchronised pro-oestrus on reproductive performance of lactating dairy cows and the submission rates of non-pregnant cows following resynchronisation. DESIGN: Cohort study. PROCEDURE: Lactating Holstein cows enrolled in a controlled breeding program were first treated with an intravaginal progesterone releasing insert (IVP4) for 8 days, 2.0 mg of ODB intramuscular (i.m.) at device insertion (Day 0), an analogue of PGF2alpha at device removal and either 1.0 mg of ODB i.m., 24 h after device removal (ODB group, n = 242), or 0.25 mg of a GnRH agonist (GnRH group, n = 152) injected i.m. approximately 34 h after device removal. Every cow was artificially inseminated between 49 and 56 h after removal of its insert (Day 10). Cows detected in oestrus 1 day after artificial insemination (AI) that were not detected in oestrus on the previous day were re-inseminated on that day. All cows treated on Day 0 were resynchronised for reinsemination by insertion of a used IVP4 device on Day 23. Oestradiol benzoate at a dose of 1.0 mg was administered i.m. at the time of device insertion. Inserts were removed 8 days later (Day 31) and 1.0 mg of ODB was injected i.m. 24 h later. Those cows detected in oestrus between Days 31 and 35 were artificially inseminated. On Day 46 these cows were resynchronised for a third round of AI by insertion of an IVP4 device, used previously to synchronise cows for the first and second rounds of AI, and administration of 1.0 mg of ODB i.m.. Eight days later inserts were removed. Cows detected in oestrus between Days 54 and 58 were artificially inseminated. Bulls were run with the herd between rounds of AI and removed after 21 weeks of mating. RESULTS: Treatment with ODB or GnRH at the first synchronised pro-oestrus did not significantly alter the reproductive performance over three rounds of AI or over a 21-week breeding period. Treatment also did not alter submission rates at the second round of AI or the proportion of non-pregnant and non-return cows ('phantom' cows) detected and did not result in significant differences in concentrations of progesterone in plasma 10 and 18 days after removal of inserts at the first round of AI. Treatment with GnRH reduced the proportion of cows detected in oestrus at the first round of AI (36.2 vs 97.5%; P < 0.001). CONCLUSION: Administration of GnRH compared to ODB at a synchronised pro-oestrus results in similar reproductive performance. Treatment with GnRH reduced the proportion of cows detected in oestrus following treatment. This may offer advantages to the way AI is managed by enabling insemination at a fixed-time and removing the need for the detection of oestrus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号