首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 546 毫秒
1.
玉米生长中的土壤呼吸及其受氮肥施用的影响   总被引:33,自引:2,他引:33       下载免费PDF全文
运用盆栽试验研究了玉米生长和施氮水平(N 150 mg kg-1和300 mg kg-1)对土壤呼吸的影响。结果表明种植玉米的土壤呼吸速率(C)的变化范围为19. 6 ~ 762. 1 mg m-2h-1,而裸土为4. 3 ~ 36mg m-2h-1。在玉米生长的条件下,苗期土壤呼吸最低,73%的土壤呼吸分配在拔节孕穗期和成熟期。玉米生长中各阶段根际呼吸对土壤呼吸的贡献在58%~98%,苗期最小。施氮对裸土呼吸速率无显著影响;在玉米生长的条件下,施用高氮的土壤呼吸比施用低氮高28%,且两种施氮水平下土壤呼吸的差异主要发生在生长中后期。玉米生长的条件下土壤呼吸与温度的相关性不显著,而裸土下土壤呼吸速率与气温、表土温度、5 cm土壤温度均呈极显著的相关性;裸土施用高氮下的土壤呼吸与温度的相关性大于低氮。总之,玉米生长和土壤施氮不仅影响土壤呼吸速率和呼吸量,也影响土壤呼吸在各生长阶段的分配,还影响到土壤呼吸与温度的关系。  相似文献   

2.
不同施肥处理对黑土土壤呼吸的影响   总被引:23,自引:0,他引:23  
基于中国科学院海伦生态实验站的长期定位试验,采用静态箱式法研究了玉米生长期间不同施肥处理对黑土土壤呼吸的影响。结果表明,在玉米生长期间,土壤呼吸速率表现出明显的季节性变化,分别在出苗后23、37、50、63、87、110 d出现峰值,其中最大峰值出现在出苗后第87天,其后土壤呼吸速率呈下降趋势,直到玉米收获,而根际呼吸速率的季节性变化规律与土壤呼吸相似,土体呼吸速率则主要受气温变化影响;玉米生长显著影响土壤呼吸,土壤呼吸速率的变化基本与玉米生长规律相一致,随生长而增加,随衰老而减小;施肥对土壤呼吸速率、根际呼吸速率有明显的影响,但对土体呼吸速率影响较小,从整个玉米生长期来看,NPKOM处理的土壤呼吸速率和根际呼吸速率最高,其中NPKOM处理土壤呼吸速率为C 27.5~474 mg m-2h-1,NPK处理和NP处理变化范围相近,分别为C 25.9~339 mg m-2h-1和C 29.5~358 mg m-2h-1,NK处理与CK处理变化范围分别为C 28.4~208 mg m-2h-1和C 22.1~184 mg m-2h-1;施肥对土壤呼吸量和根际呼吸量有显著的影响,表现为NPKOM>NPK>NP>CK>NK;在整个玉米生育期中,土壤呼吸累积量在拔节孕穗期和乳熟期出现两个峰值,表现为双峰曲线的变化规律,而土体呼吸累积量只在拔节孕穗期出现峰值,呈抛物线型,根际呼吸量在苗期最低,乳熟期最高,乳熟期后,根际呼吸量下降。  相似文献   

3.
不同碳氮管理措施对春玉米农田土壤呼吸的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
基于山西省寿阳旱作试验区长期定位试验,以春玉米农田为研究对象,探讨了不同碳氮管理措施对春玉米农田土壤呼吸的影响及土壤呼吸与土壤温度的关系。结果表明:碳氮处理土壤呼吸高于无肥区,其中施用化肥105 kg·hm-2、秸秆3 000 kg·hm-2、有机肥3 000 kg·hm-2时,土壤呼吸速率最低,为2.24μmol·m-2·s-1,与无肥区差异不显著;施用化肥31 kg·hm-2、秸秆5 121 kg·hm-2、有机肥4 500 kg·hm-2时,土壤呼吸速率最高,达3.51μmol·m-2·s-1,高出无肥区72.0%。化肥、秸秆、牛粪编码值与土壤呼吸速率满足关系式y=2.2-0.1 x1+0.2 x2-0.2 x1x3+0.2 x12+0.1 x22+0.1 x32,当化肥、秸秆、牛粪用量分别为131、1 500、3 750 kg·hm-2时,土壤呼吸速率达到最小值2.075μmol·m-2·s-1,该施肥配方可为当地春玉米生产施肥管理提供参考依据。土壤呼吸与土壤温度间存在y=a Tb显著相关关系,可解释两者间变异的46.9%~81.2%,Q10变化范围为1.86~4.71。综上可知,合理的碳氮管理措施可有效控制CO2的排放,并影响土壤呼吸对土壤温度的敏感性。  相似文献   

4.
农田土壤呼吸特征及根呼吸贡献的模拟分析   总被引:17,自引:8,他引:17  
采用静态箱法研究了黄淮海平原典型农田土壤CO2排放通量的日变化、季节变化特征,分析了土壤温度、水分对土壤呼吸的影响;并利用反硝化一分解(DNDC)模型定量化研究了根呼吸对土壤总呼吸的贡献.结果表明,在作物生长季节内棉花地、休闲地和冬小麦/夏玉米地土壤CO2排放均表现出明显的季节变化规律.土壤CO2排放季节变化的总体趋势是夏季高、其他季节低,与对应气温的动态变化基本一致.冬小麦/夏玉米地土壤CO2排放通量高峰值为2324 mg·m-2·h-1,棉花地为1111.9 mg·m-2·h-,休闲地为436.07 mg·m-2·h-1.土壤CO2季节性排放受温度的影响最大,其中与5 cm地温的相关性最好,与土壤湿度的相关性不太明显.同一种种植模式施氮量高的处理CO2平均排放通量大于低的处理.同时根据DNDC模型估算,玉米根际呼吸对土壤呼吸的贡献最大,为91%~95%,棉花和冬小麦根际呼吸比例分别约为70%和80%.施氮不仅影响土壤微生物的呼吸而且还影响到根系呼吸.  相似文献   

5.
生物炭对干旱区绿洲农田土壤呼吸的影响   总被引:2,自引:0,他引:2  
为探究不同粒径秸秆生物炭添加对绿洲农田土壤CO2排放及Q10的影响,以新疆典型绿洲农田土壤灰漠土为供试材料,采用室内土柱培养的方法,研究添加>5、1~5、0.25~1和<0.25mm共4种粒径棉花秸秆生物炭和葡萄藤生物炭对农田土壤CO2释放的影响。结果表明:(1)试验周期内(0~85d),添加生物炭处理土壤呼吸速率呈先增加后降低的趋势,前10d土壤呼吸增速较高;添加生物炭的土壤呼吸速率(1.27μmol·m-2·s-1)高于不添加生物炭的对照处理(1.01μmol·m-2·s-1),棉花秸秆生物炭处理土壤呼吸速率(1.43μmol·m-2·s-1)高于添加葡萄藤生物炭处理(1.08μmol·m-2·s-1)。培养期内土壤CO2累积过程符合一级反应动力学方程,生物炭添加改变了土壤CO2潜在排放量、周转速率和半周转期。(2)添加棉花秸秆和葡萄藤两种生物炭处理与土壤CO2累积排放量(y)分别符合y=7.51x+88.53和y=2.68x+75.85的线性关系(x为生物炭粒径)。(3)添加生物炭处理土壤呼吸速率与空气温度和土壤温度显著相关,棉花秸秆生物炭处理土壤呼吸速率与温度的相关性高于葡萄藤生物炭处理,土壤温度敏感系数随粒径的减小而增加。综合土壤呼吸速率和温度敏感系数考虑,建议绿洲农田施用1~5mm中等粒径生物炭。  相似文献   

6.
长期施肥下红壤旱地土壤CO2排放及碳平衡特征   总被引:2,自引:0,他引:2  
在国家肥力网红壤旱地长期定位试验地上,采用静态箱/气相色谱法测定土壤CO2排放速率,同时利用根去除法区分根系对土壤呼吸的贡献,通过计算净生态系统生产力(NEP),判断长期不同施肥下红壤旱地农田碳汇强度。结果表明,小麦、玉米生长季各处理的土壤和土体呼吸速率随着作物生长、温度升高均呈现明显的季节变化规律;玉米生长季土壤和土体累积呼吸量大于小麦生长季,小麦、玉米生长季均以NPKM处理土壤和土体呼吸累积呼吸量最大,且显著高于其它处理(P0.05),NP和NPK处理次之,CK和NK处理最小(P0.05);小麦、玉米生长季各处理根际呼吸占土壤呼吸的比例分别为7.6 %~17.4 %、4.7%~16.6 %,均以NPKM处理根际呼吸贡献率最大;小麦季NPKM处理、玉米季CK和NPKM处理的NEP值为负,是大气CO2的汇,且NPKM处理的净初级生产力与土壤呼吸的比值(NPP/Rs)最大,其它处理NEP值均为正,是大气CO2的源。有机无机肥配施(NPKM)相比其它处理具有较强的碳汇功能,是红壤旱地比较合理的施肥措施。  相似文献   

7.
陆森  孟平  张劲松  高峻  黄辉  孙守家 《中国农业气象》2012,33(2):174-177,184
不同作物覆被下的土壤呼吸研究是农田生态系统碳循环的重要研究内容.基于气体红外分析技术,2006年对华北低山丘陵区绿豆和玉米农田的土壤呼吸进行观测,并分析两种农田生态系统土壤呼吸的日动态和季节变化特征及其影响机制.结果表明,绿豆全生育期(7月15日-10月3日)的平均土壤呼吸速率为2.11 μmol·m-2·s-1,显著大于玉米的1.90μmol·m-2·s-1(P<0.05).两种植被覆盖下的土壤呼吸均呈现明显的季节变化规律,最大值均出现在8月9日,玉米土壤呼吸的季节变化振幅大于绿豆.统计分析表明,土壤温度是绿豆和玉米生态系统土壤呼吸动态变化的主要影响因子,van't Hoff模型和Arrhenius模型模拟的决定系数均超过0.73,土壤呼吸与土壤水分的相关关系不明显.绿豆和玉米土壤呼吸的温度敏感性指数Q10分别为3.31和2.16,Arrhenius模型模拟效果略优于van't Hoff模型,玉米土壤的活化能(79.41kJ·mo1-1)大于绿豆土壤(55.72kJ·mol-1).  相似文献   

8.
从2008年1月至12月,对华西雨屏区光皮桦(Betula luminifera)林进行了模拟氮沉降试验,应用LI-8100土壤碳通量分析系统和气压过程分离(Barometric Process Separation,BaPS)技术分别研究了4个氮沉降水平0(CK)、5(L)、15(M)、30(H)g N.m^-2.a^-1下土壤呼吸的日变化和月动态。结果表明,土壤呼吸具有明显的季节动态,各处理土壤呼吸最高值均出现在7月份;氮沉降初期,各处理土壤呼吸差异不明显,5月份以后各氮沉降处理土壤呼吸开始表现出抑制效应,随着施氮浓度的增加,抑制效应愈加明显(CK〉L〉M〉H);土壤呼吸日变化基本呈现单峰曲线,呼吸速率最高值一般出现在14:00—16:00。随着氮沉降的增加,对土壤呼吸产生的抑制效应增强,这可能与光皮桦林土壤本身的氮素状态有关。各处理土壤呼吸速率与土壤温度呈极显著指数正相关关系,对土壤呼吸与土壤温度和湿度的偏相关分析得出,温度能解释土壤呼吸的大部分变异(50.1%-79.8%),是影响光皮桦林土壤呼吸的主导因子。随着氮沉降浓度的增加,土壤呼吸的Q10值减小,表明氮沉降可能降低了土壤呼吸的温度敏感性。  相似文献   

9.
氮肥与有机肥配施对设施土壤呼吸的影响   总被引:3,自引:1,他引:2  
《土壤通报》2017,(1):146-154
依托设施番茄栽培连续3年田间施肥定位试验,利用田间原位土壤呼吸测定法,研究了施氮量0、187.5、375.0、562.5 kg hm~(-2)(N0、N1、N2、N3)及氮肥与有机肥(M:75000 kg hm~(-2))配施(MN0、MN1、MN2、MN3)对土壤日呼吸速率的动态变化和累积呼吸量的影响,并分析了影响土壤呼吸的因素。结果表明:在番茄生长期内,各处理土壤日呼吸速率的动态变化趋势基本一致,番茄生长前期,各施肥处理土壤日呼吸速率较小且变动较小,生长64 d后,各施肥处理土壤日呼吸速率随生长天数的延长呈快速增加趋势,82 d时达最大峰值,之后则呈现下降趋势,但仍维持较高的数值;与单施氮肥处理相比,氮肥与有机肥配施可提高土壤日呼吸速率,并极显著提高土壤呼吸累积量(P<0.01),在施氮处理中,N1处理土壤呼吸累积量显著高于其它4个处理,而氮肥与有机肥配施处理中,施氮量对土壤呼吸累积量影响不显著。各处理5 cm、10 cm、15 cm处土壤温度与土壤日呼吸速率之间均呈显著指数相关性(P<0.05或P<0.01),敏感系数Q10值均随土层深度的增加呈增大趋势,其中,N1(187.5 kg hm~(-2))和MN1处理土壤日呼吸速率对温度的敏感性较强;表层(0~10 cm)土壤容重、pH值和有机碳含量与土壤呼吸累积量之间均有显著线性关系(P<0.05)。本试验条件下,连续有机肥与氮肥配施,可显著提高土壤呼吸,促进CO2排放。  相似文献   

10.
黄土区夏闲期土壤呼吸变化特征及其影响因素   总被引:5,自引:0,他引:5  
车升国  郭胜利  张芳  李泽  夏雪 《土壤学报》2010,47(6):1159-1169
本文以1984年设立在黄土旱塬区长期田间定位试验为平台,于2009年采用动态密闭气室法(Li-8100,USA),监测了不同施肥措施下旱地冬麦种植系统中休闲期(7月至9月)土壤呼吸、10cm土层的温度和含水量变化,研究了休闲期土壤呼吸变化特征及其与环境因子的关系。结果表明:黄土旱塬农田休闲期土壤呼吸速率变化剧烈,最大值为5.05μmol m-2s-1,最小值为0.06μmol m-2s-1,平均值为2.00μmol m-2s-1,变异系数为116.5%;整个休闲期不同施肥处理的土壤呼吸速率大小为:化肥有机肥配施处理(NMP)有机肥处理(M)化肥氮磷处理(NP)化肥氮处理(N)和不施肥处理(CK);2009年7月7日至9月11日间NPM、M、NP、N和CK处理土壤CO2-C排放量分别为2.0、1.6、1.2、0.8和0.8 Mg hm-2;土壤呼吸与土壤水分为极显著抛物线关系(p0.01),可解释55%以上的土壤呼吸变异性;土壤呼吸与土壤温度呈显著线性相关(p0.01),但仅能解释呼吸作用变异性的19%~39%;土壤呼吸对耕作的响应强度与微生物量碳极显著线性正相关(p0.01),与土壤有机碳显著线性正相关(p0.05),与全氮、可溶性碳无明显关系(p0.05);降雨对土壤呼吸的促进或抑制主要取决于降雨前的土壤水分状况。长期水分亏缺降雨,降雨可明显促进土壤呼吸,而土壤水分充足时,降雨抑制土壤呼吸,其影响大小与土壤有机碳、全氮、土壤可溶性碳和微生物量碳密切相关。休闲期土壤呼吸受土壤水分、土壤干湿变化、土壤温度、翻耕及土壤有机碳水平等因素的影响。  相似文献   

11.

Purpose

The aim of this study was to understand the effect of nitrogen fertilization on soil respiration and native soil organic carbon (SOC) decomposition and to identify the key factor affecting soil respiration in a cultivated black soil.

Materials and methods

A field experiment was conducted at the Harbin State Key Agroecological Experimental Station, China. The study consisted of four treatments: unplanted and N-unfertilized soil (U0), unplanted soil treated with 225?kg?N?ha?1 (UN), maize planted and N-unfertilized soil (P0), and planted soil fertilized with 225?kg?N?ha?1 (PN). Soil CO2 and N2O fluxes were measured using the static closed chamber method.

Results and discussion

Cumulative CO2 emissions during the maize growing season with the U0, UN, P0, and PN treatments were 1.29, 1.04, 2.30 and 2.27?Mg?C?ha?1, respectively, indicating that N fertilization significantly reduced the decomposition of native SOC. However, no marked effect on soil respiration in planted soil was observed because the increase of rhizosphere respiration caused by N addition was counteracted by the reduction of native SOC decomposition. Soil CO2 fluxes were significantly affected by soil temperature but not by soil moisture. The temperature sensitivity (Q 10) of soil respiration was 2.16?C2.47 for unplanted soil but increased to 3.16?C3.44 in planted soil. N addition reduced the Q 10 of native SOC decomposition possibly due to low labile organic C but increased the Q 10 of soil respiration due to the stimulation of maize growth. The estimated annual CO2 emission in N-fertilized soil was 1.28?Mg?C?ha?1 and was replenished by the residual stubble, roots, and exudates. In contrast, the lost C (1.53?Mg?C?ha?1) in N-unfertilized soil was not completely supplemented by maize residues, resulting in a reduction of SOC. Although N fertilization significantly increased N2O emissions, the global warming potential of N2O and CO2 emissions in N-fertilized soil was significantly lower than in N-unfertilized soil.

Conclusions

The stimulatory or inhibitory effect of N fertilization on soil respiration and basal respiration may depend on labile organic C concentration in soil. The inhibitory effect of N fertilization on native SOC decomposition was mainly associated with low labile organic C in tested black soil. N application could reduce the global warming potential of CO2 and N2O emissions in black soil.  相似文献   

12.
基于自2006年在广西喀斯特峰丛洼地区开展的长期玉米/大豆套作定位施肥试验,选择2010—2014年监测数据,探讨等氮量投入条件下,不同比例有机肥替代无机氮肥对喀斯特峰丛洼地玉米/大豆套作系统作物产量及土壤养分的影响,为喀斯特峰丛洼地农田作物高效施肥及提高土壤肥力提供理论依据。试验选取4个处理:对照(不施肥,CK)、平衡施用化肥(NPK)、有机粪肥替代30%化肥氮(C7M3,按氮素计算,不足30%的PK用无机肥补充,肥料总量与NPK处理相同,有机粪肥为牛粪,下同)、有机粪肥替代60%化肥氮(C4M6,按氮素计算,不足60%的PK用无机肥补充),每个处理4次重复。于2010年、2012年、2014年大豆收获后采集土壤样品,测定土壤养分状况。结果表明:1)施肥处理土壤有机质、全氮、速效磷及速效钾含量均高于CK处理,其中C4M6处理有机质含量显著高于NPK处理(P0.05),全氮、速效磷和速效钾含量随着有机粪肥施用量的增加而增加。2)长期不同施肥处理玉米和大豆产量分别是不施肥处理的4.15~4.36倍、2.47~2.58倍。不同施肥处理的增产效果为C4M6NPKC7M3,但施肥处理间差异不显著(P0.05)。3)长期不施肥CK处理玉米产量随着试验年限推移呈下降趋势,降幅为5.45 g·m~(-2)·a~(-1),大豆产量却表现出增加趋势,增幅为1.50 g·m~(-2)·a~(-1)。长期施肥处理中,玉米和大豆产量总体呈增加趋势。4)施肥处理中,玉米季表现为钾素亏缺(NPK处理除外),大豆季表现为氮素亏缺。综合两季作物,只有C4M6钾素表现亏缺,亏缺量为7.9 kg·hm~(-2)。磷素在各施肥处理中盈余量较大,分别为81.2 kg·hm~(-2)(NPK)、83.4 kg·hm~(-2)(C7M3)和74.8 kg·hm~(-2)(C4M6)。综上,在喀斯特峰丛洼地玉米/大豆套作制度下,基于作物产量及土壤养分表观平衡特征提出有机粪肥可以代替部分化肥施用,在玉米季适当"减氮、稳磷和增钾",大豆季"稳氮、减磷和减钾"的施肥措施。  相似文献   

13.
不同生物质炭输入水平下旱作农田温室气体排放研究   总被引:4,自引:0,他引:4  
在陇中黄土高原干旱半干旱区,采用小区定位试验,对不同生物质炭输入水平下春小麦农田土壤温室气体(CO_2、N_2O和CH_4)的排放通量进行全生育期连续观测,并分析其影响因子。结果表明:6个生物质炭输入水平处理下[0 t·hm~(-2)(CK)、10 t·hm~(-2)、20 t·hm~(-2)、30 t·hm~(-2)、40 t·hm~(-2)、50 t·hm~(-2)],旱作农田土壤在春小麦全生育期内均表现为CH_4弱源、N_2O源和CO_2源。全生育期各处理CH_4平均排放通量依次为:0.005 7 mg·m~(-2)·h~(-1)、0.0047 mg·m~(-2)·h~(-1)、0.003 6 mg·m~(-2)·h~(-1)、0.003 3 mg·m~(-2)·h~(-1)、0.002 7 mg·m~(-2)·h~(-1)和0.000 4 mg·m~(-2)·h~(-1),N_2O平均排放通量依次为:0.230 5 mg·m~(-2)·h~(-1)、0.144 1 mg·m~(-2)·h~(-1)、0.135 3 mg·m~(-2)·h~(-1)、0.098 9 mg·m~(-2)·h~(-1)、0.125 0 mg·m~(-2)·h~(-1)和0.151 3mg·m~(-2)·h~(-1),CO_2平均排放通量依次为:0.449 2μmol·m~(-2)·s~(-1)、0.447 0μmol·m~(-2)·s~(-1)、0.430 3μmol·m~(-2)·s~(-1)、0.391 4μmol·m~(-2)·s~(-1)、0.408 0μmol·m~(-2)·s~(-1)和0.416 4μmol·m~(-2)·s~(-1)。土壤CH_4排放通量随生物质炭输入量的增加而减小;当生物质炭输入量小于30 t·hm~(-2)时,土壤N_2O、CO_2排放通量随其输入量增加而显著减小,但当其输入量超过30 t·hm~(-2)时,N_2O、CO_2排放通量则呈显著增大趋势。各处理在5~15 cm土层平均土壤温度差异显著(P0.05),在5~10 cm土层平均土壤含水量差异显著(P0.05),土壤温度及含水量受生物质炭影响明显;且CK处理不同土层的土壤温度及含水量波动最大,生物质炭输入可在一定程度上降低不同土层土壤的水热变化幅度;N_2O、CO_2排放通量与10~15 cm土层土壤温度呈显著性负相关,与20~25 cm土壤温度呈显著性正相关;CH_4平均排放通量与5~10 cm土层土壤温度呈显著性负相关,与其含水量呈显著性正相关;N_2O平均排放通量与15~20 cm土层土壤温度呈显著性正相关;CH_4、N_2O、CO_2平均排放通量与0~5 cm土层土壤水分呈显著性负相关。生物质炭的输入能够减小温室气体的排放,且会因其输入量的不同而异,因此适量应用生物质炭有利于旱作农田生育期内增汇减排。  相似文献   

14.
模拟增温增雨对克氏针茅草原土壤呼吸的影响   总被引:1,自引:0,他引:1  
利用开顶式生长室(OTC)于2011年7-9月和2012年5-9月两个植物生长季在以克氏针茅(Stipa krylovii)为主要建群种的典型草原进行模拟增温和增雨的控制试验,以探讨增温和增雨及其交互作用对内蒙古克氏针茅(S.krylovii)草原土壤呼吸的影响。结果表明:(1)土壤呼吸速率日内变化和逐日变化均呈单峰曲线趋势,全天15:00达到最高值(2.26μmol·m-2·s-1),生长季8月初达到最高值(5.51μmol·m-2·s-1)。9:00-11:00土壤呼吸速率能较好代表全天24h均值。(2)与对照相比,增温1.91℃使土壤呼吸速率降低19.0%,且白天降幅大于夜间。增雨20%使土壤呼吸速率较对照增加18.6%。而增温增雨(气温增加1.64℃,降雨量增加20%)处理下,土壤呼吸速率较对照增加13.0%。(3)土壤呼吸速率与土壤含水量、土壤温度均具有显著相关关系。约79%的土壤呼吸速率是由土壤温度和土壤含水量共同决定的,其中以土壤含水量为主(R2=0.797,P〈0.001)。气温升高使土壤含水量降低,间接导致土壤呼吸速率下降。研究结果可为典型草原科学应对气候变化和草地畜牧业可持续发展提供依据。  相似文献   

15.
作为陆地生态系统碳通量的重要组成部分,土壤呼吸在维持全球碳循环及碳平衡中具有重要作用.以黄土丘陵区油松、沙棘人工林为研究对象,于2015年6月至2016年5月,采用LI-8100土壤碳通量测量系统,分别观测二者的土壤呼吸(Rs)、5 cm土壤温度(T)和水分(W),分析2种人工林Rs的动态特征及其对T和W的响应.结果表明:1)季节尺度油松、沙棘人工林Rs夏季(6-8月)最高(2.31和2.89 μmolCO2/m2·s),冬季(12-2月)最低(0.60和0.65μmolCO2/m2·s),年均值分别为1.51和1.92 μmolCO2/m2·s,年呼吸总量分别为18.90和22.81tCO2/hm2·a,冬季呼吸量占年呼吸总量比例分别为14.67%和12.65%;日尺度最高值出现在10:00-16:00,最低值均出现在6:00.2)季节尺度2种林分Rs与T均呈显著指数关系(P<0.01),与W则呈显著线性负相关(P<0.01),且沙棘林全年尺度土壤呼吸Q10值(1.40)显著高于油松林(1.34,P<0.01).3)日尺度上,油松、沙棘人工林W分别大于13%和12%时,T对Rs的解释量(R2)均有所提高.因此,在充分考虑温度和水分对土壤呼吸影响的同时,加强冬季土壤呼吸的观测,对未来气候变化条件下,区域碳循环估算模型的完善具有重要意义.  相似文献   

16.
利用长期定位试验研究了太湖地区不同施肥处理下油菜生长期间水稻土CO2排放通量,耕作方式为水稻-油菜轮作,并对CO2排放通量和土壤(5cm)温度、土壤水分含量进行了回归模拟。结果表明,不同施肥处理平均土壤呼吸CO2排放速率在49.37~85.97CO2-Cmg·m^-2·h^-1之间,与不施肥处理相比,长期施用肥料显著提高了土壤呼吸CO2排放速率,且在油菜的两个生育期,施肥对土壤呼吸释放CO2的促进作用,花角期显著高于角果发育成熟期。相关分析表明,土壤呼吸CO2排放强度与土壤水分、土壤温度有显著的正相关关系。通过计算Q10,无肥处理(NF)较其他肥料处理(CF、CFM、CFS)对土壤温度有更大的敏感性。  相似文献   

17.
农田土壤呼吸释放CO2过程加强是导致全球气候变暖的重要途径。通过大田原位实验,研究了雨养条件下垄作覆盖保护性耕作技术条件对土壤呼吸季节性和作物生育后期日变化的影响。结果表明,冬小麦从越冬期到灌浆期,不同处理的土壤呼吸值均以垄作覆盖值最高,平作覆盖次之,平作的值最小,平作处理与其他处理间均达到极显著差异。灌浆期各处理土壤呼吸值达到最大,分别为4.95、4.69、4.4、2.61μmol·m^-2·s^-1;成熟期各处理间大小顺序依次为:平作覆盖处理〉垄作覆盖处理〉垄作处理〉平作处理,平作覆盖与垄作覆盖分别与其他两个处理间达到极显著差异。玉米不同生育时期垄作覆盖处理土壤呼吸值均高于其他处理,平作处理的值最低,不同生育时期垄作覆盖与平作均达到极显著差异,不同处理在夏玉米抽雄期土壤呼吸值最高,成熟期最低。从冬小麦和夏玉米生长后期土壤温度(X)与土壤呼吸强度(Y)日变化看,两者呈显著线形关系,其直线回归方程分别为:Y=0.1704X-0.6372(R^2=0.882**),Y=0.1039X+1.2073(R^2=0.8802^**)。显然,同传统的种植模式相比,雨养条件下垄作秸秆覆盖保护性耕作技术模式增大了向大气环境释放CO2温室气体的数量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号