首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
东部白松SRAP反应体系的建立和优化   总被引:1,自引:1,他引:0  
以东部白松针叶DNA为模板,采取正交实验设计L16(45)对SRAP-PCR反应体系的5个因素(Taq酶,Mg2+,dNTPs,模板DNA,引物)在4个水平上进行优化试验。结果表明:确定东部白松SRAP-PCR最佳反应体系(20μL):Taq酶0.5 U,Mg2+1.5 mmol/L,dNTPs 0.15mmol/L,模板DNA 50 ng,引物0.1μmol/L。  相似文献   

2.
利用正交实验设计L16(45)对番茄SRAP-PCR反应体系的5个因素(Mg2+、dNTPs、引物、Taq DNA聚合酶和模板DNA)在4个水平上进行优化试验研究。结果表明:各因素水平变化对反应体系影响的大小依次为:Mg2+dNTPs引物Taq DNA聚合酶模板DNA;建立的番茄SRAP-PCR最佳体系(25μL)为:Mg2+2.5mmol/L、Taq DNA聚合酶0.5U、dNTPs0.25mmol/L、引物0.4μmol/L、模板DNA 80ng。  相似文献   

3.
以牡丹品种"云芳"基因组DNA为模板,采用正交实验设计L25(55)对影响牡丹RAPD-PCR反应的5因素(模板DNA、引物、Mg2+、dNTPs、Taq酶)在5个水平上进行优化试验。结果表明:最佳的RAPD-PCR的反应体系为:20μL体系中含有25 ng的模板DNA,0.2μmol/L的引物,Mg2+1.0 mmol/L,1×buffer反应缓冲液,DNTPs各为0.2 mmol/L,1.0 U的TaqDNA聚合酶。  相似文献   

4.
以小干松针叶基因组DNA为模板,采用L16(45)正交实验设计,对SRAP-PCR反应体系中的Taq酶、Mg2+、dNTPs、模板DNA和引物5个因素在4个水平上进行优化.结果表明:小干松SRAP-PCR 20 μL反应体系最佳组合为:Taq酶0.5U,Mg2+浓度2.5mmol/L,dNTPs浓度0.15 mmol/L,模板DNA含量60 ng,引物0.2μmol/L.使用12对SRAP引物,采用优化后的体系进行SRAP-PCR反应,表明优化的体系很好地满足了小干松基因组DNA进行SRAP的扩增要求.  相似文献   

5.
用单因素设计法对影响杨桃SCoT-PCR反应体系的主要因素Mg2+、dNTPs、引物、Taq DNA聚合酶及DNA模板浓度进行优化。结果表明,20μL反应体系中,含Mg2+2.5 mmol/L,dNTPs 0.3mmol/L,模板DNA 30mg/L,引物1.00μmol/L和Taq DNA聚合酶0.4U为最佳反应体系。用不同引物及杨桃DNA对该体系进行验证,扩增条带清晰,结果稳定可靠,证明该反应体系适用于杨桃SCoT-PCR扩增。  相似文献   

6.
以山梨为试材,提取基因组DNA,运用5因素5水平正交实验设计,对SSR反应体系中的DNA模板、Mg2+、Taq酶、dNTPs和引物用量进行优化试验,确立适宜的SSR反应体系。结果表明:20μL反应体系中,模板DNA 10ng、Mg2+(20mmol/L)2.5μL、Taq酶1.25U、dNTPs(10mmol/L)1.0μL、引物(10μmol/L)1.5μL、10×PCR buffer 2.0μL;应用该SSR体系,在引物筛选试验及山梨×"幸水"后代群体中进行扩增,扩增效果较好,证实了该体系的适用性和稳定性。  相似文献   

7.
利用正交设计L16(45)对甘蔗SRAP-PCR反应体系的五大因素(Mg2+、dNTPs、引物、模板DNA、Taq酶)在4个水平上进行优化,得到如下结论:各因素水平变化对PCR反应的影响从大到小依次是:Mg^2+、dNTPs、引物、Taq酶和模板DNA;通过对各因素进行筛选,建立甘蔗SRAP-PCR反应的最佳体系(20μL)为:dNTPs 0.25 mmol/L、引物0.1μmol/L、Mg^2+2.5 mmol/L、Taq酶0.25U和模板DNA 60 ng。  相似文献   

8.
以7个彩色马蹄莲品种为研究对象,以品种Prafait DNA为模板,采用均匀设计法对影响彩色马蹄莲RAPD-PCR反应的4因素(模板DNA浓度、引物浓度、Mg2+浓度、dNTPs浓度)在3个水平上进行U12(34)优化试验。结果表明:最佳的彩色马蹄莲RAPD-PCR的反应体系为:20μL体系中含有25ng的模板DNA,0.125mmol/L dNTPs,1.5mmol/L Mg2+,1×buffer反应缓冲液,0.55mmol/L引物,1.0U的Taq DNA聚合酶。  相似文献   

9.
以玫瑰为试材,采用L16(45)正交设计和单因素试验2种方法,研究模板DNA、Mg2+、dNTPs、引物和Taq酶5个因素对玫瑰SCoT-PCR反应体系的影响,建立最优化的反应体系并筛选合适引物。结果表明:模板DNA浓度为1.50ng/μL,Mg2+浓度为2.00mmol/L,dNTPs浓度为0.35mmol/L,引物浓度为0.70μmol/L,Taq酶用量为0.50U时,可建立玫瑰SCoT-PCR最佳反应体系,并筛选出20条扩增条带清晰、多态性丰富的SCoT引物。反应体系的优化及引物的筛选,为日后利用SCoT分子标记技术对玫瑰进行相关研究提供理论依据和技术支持。  相似文献   

10.
以温郁金为试材,运用L25(56)正交设计在5个水平上对影响温郁金SCoT-PCR反应的模板DNA、Mg2+、dNTPs、Taq酶和引物5个因素进行优化试验,对PCR结果进行极差分析。建立并优化温郁金的目标起始密码子多态性-聚合酶链式反应(SCoT-PCR)体系,以期为温郁金的遗传多样性分析及分子鉴定等研究提供技术支持。结果表明:建立了温郁金SCoT-PCR的最佳反应体系(20μL):引物0.8μmol/L,dNTPs 0.4mmol/L,Mg2+1.5mmol/L,Taq酶0.5U,模板DNA 40ng,且确定各因素对温郁金SCoT-PCR反应效果的影响大小依次为:dNTPsTaq酶引物Mg2+模板DNA,其中dNTPs对体系影响最大。优化的温郁金SCoT-PCR反应体系在多个温郁金品种遗传多样性研究中得到了验证,结果表现出良好的稳定性、重复性和多态性丰富等特点,可用于今后温郁金品种遗传多样性分析、系统发育分析、遗传图谱构建、基因定位和分子标记辅助育种等研究。  相似文献   

11.
均匀设计优化澳洲坚果SRAP反应体系   总被引:3,自引:0,他引:3  
以澳洲坚果部分种质为试材,采用U25(55)均匀设计表,对SRAP-PCR反应体系中Taq DNA聚合酶、模板DNA、dNTPs、Mg2+、引物5个组分的浓度进行优化。结果表明澳洲坚果25μL的SRAP反应体系的最佳组分包括2.5μL10×PCR buffer、1 UTaq DNA聚合酶、40 ng模板DNA、0.2 mmol/LdNTPs、0.2μmol/L引物和3.0 mmol/LMg2+。利用所确立的体系对部分澳洲坚果种质进行扩增的结果清晰可靠,多态性好。  相似文献   

12.
核桃SSR反应体系的优化   总被引:14,自引:1,他引:14  
以清香、香铃、爱米格为试材,利用CTAB法提取基因组DNA,将PCR体系的主要成分设定5个梯度,根据每个成分的变化引起的PCR-SSR的效果差异,探讨了核桃SSR技术中PCR体系的主要成分对扩增结果的影响,并对引物WGA321的适宜退火温度进行优化。最终确定了引物WGA321的最适退火温度为48~52℃,PCR反应体系的最佳条件为:15μL体系中,Mg2+1.0mmol/L,dNTPs浓度0.40mmol/L,TaqE用量为0.5U,DNA模板1.0ng/μL,引物浓度为0.4μmol/L。利用此反应体系对部分核桃品种进行PCR扩增并电泳检测,扩增结果清晰且有较高的多态性,表明该体系适合核桃的亲缘关系分析。  相似文献   

13.
为探索适宜枇杷的SSR反应体系,利用正交设计对Mg2+、dNTPs、引物、Taq酶和模板DNA等5种因素4个水平进行筛选和优化。结果表明:20uL反应体系中,Mg2+、dNTPs和引物的最适浓度分别为1.5mmol.L-1、0.15mmol·L-1、0.2umol·L-1,Taq酶最适用量为1U,模板DNA最适用量为20ng;引物的最佳退火温度为51.0~60.0℃。利用该反应体系对17份枇杷种质进行扩增,电泳结果显示,不同品种间DNA谱带多态性丰富,证实该体系稳定可靠。  相似文献   

14.
苹果SSR反应体系的建立   总被引:15,自引:1,他引:15  
为摸索适宜苹果的SSR反应体系,以金冠苹果为试验材料,研究了苹果SSR技术中PCR反应体系的主要成分对SSR扩增结果的影响。对SSR反应体系中的Mg2+浓度、引物浓度、dNTP浓度、TaqDNA聚合酶浓度、模板浓度以及退火温度进行了探索,确立了适合苹果的SSR反应体系为:在20μL反应体系中,Mg2+、引物和dNTP的最适浓度分别为2.5mmol/L、0.8μmol/L、0.10mmol/L;反应体系中TaqDNA聚合酶宜加入1U,模板DNA应加入15-30ng;引物的最佳退火温度为48.5-52.0℃。并利用该反应体系对10个苹果代表品种进行SSR反应,用8%的非变性聚丙烯酰胺凝胶电泳检测,不同品种间DNA谱带多态性丰富,证实该体系稳定可靠。  相似文献   

15.
苹果SRAP-PCR反应体系的建立   总被引:6,自引:1,他引:5  
以苹果(Malus domestica Borkh.)品种Telamon及Telamon×Fuji的F1代为试材,采用改良的CTAB法提取苹果叶片的DNA,利用正交设计L16(45)和直观分析以及方差分析相结合,探讨了Mg2+、dNTPs、Primer、Taq聚合酶、模板DNA用量对苹果SRAP-PCR反应的影响。建立了总体积为10μL的苹果SRAP-PCR反应体系,Mg2+浓度为2.0mmol.L-1,dNTPs浓度为0.8 mmol.L-1,Primer浓度为0.2μmol.L-1,Taq DNA聚合酶含量为0.6 U,DNA含量为60 ng,并含1μL 10×buffer(Mg2+free)。应用该反应体系,用不同的引物组合对48份苹果样品DNA进行SRAP-PCR扩增,结果显示反应体系具有较高的稳定性。  相似文献   

16.
正交设计优化果梅ISSR反应体系   总被引:16,自引:0,他引:16  
以果梅(PrunusmumeSieb.etZucc.)品种鸳鸯梅为试材,采用改良的CTAB法提取果梅嫩叶DNA,利用正交设计L16(45)探讨Mg2+、dNTPs、引物、TaqDNA聚合酶及模板DNA用量对果梅ISSR-PCR反应的影响,正交试验的结果采用直观分析和方差分析相结合。建立了果梅的ISSR-PCR优化反应体系,在20μL反应体系中含2μL10×Buffer,2.5mmol·L-1Mg2+,0.2mmol·L-1dNTPs,0.32μmol·L-1引物,20~80ng模板DNA,0.75UTaqDNA聚合酶。在此基础上探讨了引物UBC840的最适退火温度、最佳循环次数及延伸时间,引物UBC840的最适退火温度为50.6℃。应用该优化反应体系,用2个不同引物对19份果梅资源DNA进行ISSR-PCR扩增,结果显示优化的反应体系具有较高的稳定性。  相似文献   

17.
枇杷属植物ISSR反应体系的建立和优化   总被引:7,自引:1,他引:6  
首次通过正交实验,对影响枇杷属植物ISSR反应较大的Mg2+、Taq酶、dNTPs、引物、模板DNA浓度进行筛选,并对扩增反应程序进行优化。优化后的反应体系为:25μL反应体系中,含10×buffer2.5μL,Mg2+浓度2.0mmol·L-1,Taq酶1.5U,引物0.3μmol·L-1,模板DNA60ng,dNTPs0.15mmol·L-1。反应程序为94℃预变性5mim;94℃变性1mim,退火温度70s,72℃延伸1.5mim,40次循环;72℃延伸7mim,4℃保存。  相似文献   

18.
以番茄耐低温材料抗寒0号和不耐低温番青的F2为材料,利用正交试验设计对SRAP-PCR反应体系中的5因素(模板DNA、引物浓度、Mg2+浓度、dNTPs浓度、Taq DNA聚合酶)在4个水平上进行正交优化试验。结果表明:各因素水平变化对反应体系影响的大小依次为:引物>Taq DNA聚合酶>dNTPs>模板DNA>Mg2+。建立番茄耐低温SRAP-PCR的20 μL最佳反应体系为:模板DNA为15 ng、引物浓度0.75 μmol?L-1、Mg2+浓度2.0 mmol?L-1、dNTPs浓度0.125 mmol?L-1、Taq DNA聚合酶1.0 U。  相似文献   

19.
杏ISSR反应体系的优化和指纹图谱的构建   总被引:28,自引:1,他引:28  
以杏品种清密沙为试材,用引物UBC825〔序列为(AC)8T〕研究了PCR反应体系的主要成分及退火温度对杏ISSR扩增结果的影响。结果表明:Primer、Mg2+、Taq酶浓度对扩增效果有明显影响,而模板DNA和dNTPs含量对扩增结果影响不大。优化的反应体系为:20μL的反应体系中含10ng模板DNA、0.1mmol/LdNTP、0.25μmol/LPrimer、2.5mmol/LMg2+,0.5UTaqPolymerase。适宜退火温度为50-52.1℃。用引物UBC825和UBC868〔序列为(GAA)5〕在优化的反应条件下建立了5个种12份杏材料的ISSR指纹图谱。  相似文献   

20.
栗属植物cpSSR标记技术的建立与体系优化   总被引:2,自引:0,他引:2  
叶绿体微卫星标记是一种新的分子标记技术。用1对来源于拟南芥的cpSSR引物研究栗属资源,对栗属植物cpSSR反应体系的主要影响因子进行了优化筛选。结果表明,20μL反应体系各组分的最适浓度分别为:2.5mmol/LMg2+,0.5U Taq DNA聚合酶,0.25mmol/L dNTP,10mg/L的DNA模板,正向引物和反向引物都为0.1μmol/L,NTCP40最适退火温度为56℃。该体系已成功应用于栗属资源的遗传多样性研究中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号