首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During the last two decades bacterial strains associated with necrotic leaf spots of pepper and tomato fruit spots were collected in Serbia. Twenty-eight strains isolated from pepper and six from tomato were characterized. A study of their physiological and pathological characteristics, and fatty acid composition analysis revealed that all of the strains belong to Xanthomonas campestris pv. vesicatoria. Being non-amylolytic and non-pectolytic, pathogenic on pepper but not on tomato, containing lower amounts of fatty acid 15 : 0 ante–iso, the pepper strains were designated as members of the A group of X. campestris pv. vesicatoria. However, the tomato strains hydrolyzed starch and pectate, caused compatible reactions on tomato but not on pepper, had higher percent of 15 : 0 ante–iso fatty acid, and were classified into B phenotypic group and identified as X. vesicatoria. PCR primers were developed which amplified conserved DNA regions related to the hrp genes of different strains of X. campestris pv. vesicatoria associated with pepper and tomato. Restriction analysis of the PCR product resulted in different patterns and enabled grouping of the strains into four groups. When xanthomonads isolated from pepper and tomato in Serbia were analyzed, they clustered into two groups corresponding to the grouping based on their physiological and pathological characteristics. According to the reaction of pepper and tomato differential varieties, the strains from pepper belong to races P7 and P8 and tomato strains belong to the race T2. All strains were sensitive to copper and streptomycin. Advantages and disadvantages of various bacterial spot management practices are discussed.  相似文献   

2.
The development of a rapid detection method for Xanthomonas campestris pv. campestris (Xcc) in crucifer seeds and plants is essential for high-throughput certification purposes. Here we describe a diagnostic protocol for the identification/detection of Xcc by PCR amplification of fragments from the pathogenicity-associated gene hrcC. Under stringent conditions of amplification, a PCR product of 519 bp from hrcC was obtained from a collection of 46 isolates of Xcc, with the exception of two isolates from radish. No amplicons were obtained from 39 pure cultures of the phytopathogenic bacteria Xanthomonas campestris pv. cerealicola, X. campestris pv. juglandis, X. campestris pv. pelargonii, X. campestris pv. vitians, X. arboricola pv. pruni, X. axonopodis pv. phaseoli, X. axonopodis pv. vesicatoria, X. vesicatoria, Pseudomonas syringae pv. phaseolicola, P. syringae pv. syringae, P. syringae pv. tomato, P. fluorescens, P. marginalis, Pectobacterium atrosepticum, P. carotovorum subsp. carotovorum. In addition, PCR reactions were negative for fifty unidentified environmental isolates purified from the surface of crucifers. The PCR fragment was obtained from four strains previously classified as X. campestris pv. aberrans, X. campestris pv. armorociae, X. campestris pv. barbarae and X. campestris pv. incanae using pathogenicity assays. Our PCR protocol specifically detected Xcc in inoculated leaves, seeds and naturally infected leaves of crucifers.  相似文献   

3.
Novel primers for rep-PCR were developed with the original software and based on `ancient diverged periodical sequences'. Rep-PCR with these primers was applied to study genetic relationships among 51 Xanthomonas campestris strains. The strains were collected from different countries including Russia, Japan, UK, Germany and Hungary. Reference strains of three X. campestrispathovars and five other Xanthomonas species were included. Based on qualitative differences in amplification profiles, the strains were divided into four major groups. Two subgroups recognised within X. campestrispopulation were similar to RFLP haplotypes. The third subgroup included strains of two other pathovariants and Japanese isolates of X. campestris pv. campestriswhile the fourth group comprised the other species of Xanthomonas. The analysis of the diversity within X. campestris resulted in the conclusion that isolates belong to distinct clonal populations (subgroups). The differences between the subgroups of X. campestris were only slightly smaller than between species of Xanthomonas. A PCR fragment about 600 bp amplified by primer KRPN2 was found in nearly all tested strains of X. campestris.SCAR primers designed for this marker produced a single specific band for strains of X. campestris, but not for other Xanthomonas, Pseudomonas and Erwiniastrains tested. Application of the new primer set for rep-PCR offers a rapid, simple and reproducible method for identification of bacterial strains. The X. campestris-specific SCAR primers may be used in diagnostics of this important plant pathogen.  相似文献   

4.
Black rot, caused by Xanthomonas campestris pv. campestris (Xcc), is a major disease constraint to cabbage production by smallholder farmers in Africa. Variability exists within the pathogen, and yet differentiation of Xcc strains from other closely-related xanthomonads attacking crucifers is often difficult. The Biolog system, fatty acid methyl ester analysis using microbial identification system (MIS), rep-PCR and pathogenicity tests were used to identify and characterise Xcc strains from Tanzania. Great diversity was observed among Xcc strains in their Biolog and rep-PCR profiles. Specific rep-PCR genomic fingerprints were linked to some geographical areas in the country. Most of the Xcc strains were clustered in two groups based on their fatty acid profiles and symptom expression in cabbage although some deviant strains were found. Each of the methods allowed a degree of identification from species, pathovar to the strain level. Biolog and MIS identified all Xcc strains at least to the genus level. Additionally, Biolog identified 47% of Xcc strains to the pathovar and 43% to strain level, whereas MIS identified 43% of the strains to pathovar level. In the absence of a database, the utility of rep-PCR for routine diagnosis of strains was limited, although the procedure was good for delineation of Xcc to the strain level. These findings indicate the existence of Xcc strains in Tanzania that are distinct from those included in Biolog and MIS databases. The limitations noticed warrant continued improvement of databases and inclusion of pathogenicity testing, using universally susceptible cultivars, as an integral part of strain identification.  相似文献   

5.
Polyclonal and monoclonal antibodies (PCAs and MCAs), produced to whole cells and flagellar extracts ofXanthomonas campestris pv.campestris (Xcc), respectively, were tested for specificity. In immunofluorescence microscopy (IF) the three PCAs tested, reacted at low dilutions with all Xcc strains, some other xanthomonads and non-xanthomonads. At higher dilutions most cross-reactivity with non-xanthomonad strains disappeared. However, the cross-reactivity with strains ofX. c. pv.vesicatoria (Xcv),X. c. pv.amoraciae (Xca) andX. c. pv.phaseoli var. fuscans (Xcpf) remained.Six MCA-producing cell clones viz. 20H6, 2F4, 18G12, 10C5, 17C12 and 16B5 were selected for specificity tests with an enzyme immunoassay (EIA), IF and a dot-blot immunoassay (DBI). None of the MCAs reacted with all Xcc strains in IF and EIA. In DBI, only MCAs 17C12 and 16B5 reacted with all Xcc strains. All six MCAs tested, cross-reacted in one of either tests with other pathovars ofX. campestris, such as Xcv or Xca. The MCAs were also tested in immunoblotting experiments using total bacterial extracts, cell envelope and flagellar extracts. MCAs 20H6, 2F4, 18G12 and 10C5 reacted with the lipopolysaccharide (LPS) of Xcc. MCAs 16B5 and 17C12 reacted with a 39 kilodalton and a 29 kilodalton protein, respectively.It is concluded that the PCAs and MCAs discussed in this study may be used for routine identification and differentiation of (a group of) Xcc strains. The significance of the cross-reactions with other pathovars ofX. campestris needs to be determined by testing seed lots.  相似文献   

6.
A specific and rapid diagnostic tool has been developed to detect Xanthomonas campestris pv. musacearum, the causal agent of bacterial wilt of banana. PCR primers were developed from intergenic regions of X. campestris pv. musacearum following its partial sequence. A total of 48 primers were tested for specificity to X. campestris pv. musacearum strains collected from various regions in Uganda. These were also tested for specificity against related Xanthomonas species from the vasicola group, Xanthomonas species pathogenic to other crops, and against those existing saprophytically on banana plants. Seven primer sets (Xcm12, Xcm35, Xcm36, Xcm38, Xcm44, Xcm47 and Xcm48) were found to be very specific to X. campestris pv. musacearum. These primer sets directed the amplification of the expected product for all 52 strains of X. campestris pv. musacearum collected from different locations in Uganda. No amplification products were obtained with unrelated phytopathogenic bacteria or endophytic/epiphytic bacteria from banana. A detection limit of 103 CFU mL?1 corresponding to about four cells per PCR reaction was observed when X. campestris pv. musacearum cells were used for all the seven primer sets. The DNA samples from symptomless plant tissues also tested positive with primer set Xcm38. The specific PCR method described here is a valuable diagnostic tool which can be used to detect the pathogen at early stages of infection and monitor disease.  相似文献   

7.
The ability of acibenzolar-S-methyl to induce resistance in pepper plants against Xanthomonas campestris pv. vesicatoria was investigated in both growth chamber and open field conditions. Growth chamber experiments showed that acibenzolar-S-methyl (300M) treatment protects pepper plants systemically and locally against X. campestris pv. vesicatoria. Evidence for this was a reduction in the number and diameter of bacterial spots and bacterial growth in planta. Systemic protection was also exerted by the acibenzolar-S-methyl acid derivative, CGA 210007, which may be produced by hydrolysis in the plant. The efficacy of acibenzolar-S-methyl was also found in open field conditions, where both leaves and fruit were protected from the disease. The highest efficacy (about 67%) was obtained by spraying the plants 6–7 times every 8–12 days with a mixture of acibenzolar-S-methyl and copper hydroxide (2.5 + 40ghl–1 active ingredient). Persistence and translocation data obtained from the growth chamber experiments revealed a persistence of acibenzolar-S-methyl lasting five days after treatment with rapid translocation and negligible levels of acid derivative formation. Since the protection exerted by acibenzolar-S-methyl against bacterial spot disease was observed when the inducer was completely degraded, it would appear to be due to SAR activation.  相似文献   

8.

Black rot of crucifers is one of the most important diseases of wild rocket (Diplotaxis tenuifolia L. (D.C.)) caused by the seedborne pathogen Xanthomonas campestris pv. campestris. From 2005, it frequently affected this cultivation in the south of Italy, leading to heavy crop losses. In the present work, we aimed to describe the physiological and molecular characteristics of twenty X. campestris pv. campestris strains isolated from plants and seeds. Ten Xanthomonas spp. strains contaminating seeds were identified on the basis of molecular characterization and in vivo pathogenicity on a discriminating host range. Some of seed-borne isolates were ascribed to the species Xanthomonas campestris pv. raphani and X. campestris pv. incanae, indicating the occurrence of non-host pathogenic Xanthomonas on wild rocket seeds. As well as the presence of pathogenic bacteria, even non-pathogenic Xanthomonas spp. strains were detected on the seeds, underlying the importance of identifying them to evaluate the suitability of lots intended for sowing. A phylogeny using 69 Gyrase B (gyrB) sequences retrieved from the literature, was also carried out, highlighting species relatedness. Overall, this study provides a comprehensive framework for Xanthomonas species affecting wild rocket in Southern Italy.

  相似文献   

9.
Fifty-five strains of Xanthomonas axonopodis pv. vignicola, isolated from blight and pustule symptoms of cowpea leaves, originating from 11 countries, were characterized for their carbon-source metabolization pattern using the Biolog GN microplate system. Great variation was found between strains according to origin. Dextrin, glycogen and succinamic acid were not used by strains from Benin, Uganda or Thailand, but by all the other strains (excluding two strains from Mozambique), whereas N-acetyl-D-glucosamine and malonic acid were used by the strains from Benin, Uganda and Thailand, but generally not by the other strains. The strains from Benin, Uganda and Thailand, as well as strains from Venezuela, Brazil and Mozambique, clustered separately from the others in multivariate analysis. Nineteen substrates were used by all the strains, 47 not by any strain and 29 only by some strains. No considerable differences were found between strains isolated from blight symptoms and from pustules. Virulence of strains was not related to the metabolic pattern. The Biolog database was not representative of the diversity of X. axonopodis pv. vignicola, since all strains were identified as Xanthomonas campestris, although belonging to eight pathovars, while only eight of nine strains from Benin and both strains from Thailand were identified as X. campestris pv. vignicola. The Biolog system appeared to be useful for characterizing the diversity of X. axonopodis pv. vignicola strains. A set of representative strains based on metabolic and molecular diversity, virulence and geographic origin is suggested for screening for resistant cowpea cultivars.  相似文献   

10.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

11.
12.
More than 120 Xanthomonas campestris strains pathogenic for grasses and cereals were compared by polyacrylamide gel electrophoresis (SDS-PAGE) of their whole-cell proteins. Genotypic relationships between representative strains of the electrophoretic groups were determined by DNA:DNA hybridizations. Two major groups of bacteria were delineated. The first included X. campestris pv. graminis, pv. arrhenatheri and some isolates from Bromus, which could be differentiated from each other by their protein fingerprints, and also the following pathovars which it was impossible to differentiate by SDS-PAGE: cerealis, hordei, poae, secalis, translucens and undulosa. DNA:DNA hybridizations indicated that significant degrees of DNA-binding (>60% D) exist between all these pathovars. In the second group, strains of X. campestris pv. holcicola, pv. vasculorum and pv. oryzae were related at 40–45% DNA-binding, while strains of pv. oryzae and pv. oryzicola were genotypically highly related (85% D). All the pathovars of this second group could be differentiated from each other by their protein electrophoretic fingerprints.  相似文献   

13.
Xanthomonas campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans, the causal agents of the common and fuscous bacterial blight of beans, appear to be phenotypically identical except that the latter can produce a melanin-like pigment in culture. Ten isolates of X. campestris pv. phaseoli and 12 isolates of X. campestris pv. phaseoli var. fuscans were examined using pulsed-field gel electrophoresis (PFGE) and restriction fragment length polymorphism (RFLP). The average genome sizes for X. campestris pv. phaseoli and X. campestris pv. phaseoli var. fuscans were 3850.6±48.9 and 3584.3±68.1kb respectively. The genetic relatedness of the isolates was determined from macrorestriction patterns generated using XbaI. Cluster analysis indicated that the non-fuscous and fuscous strains are distinct. RFLP results, based on the highly conserved hrp genes and a pectate lyase gene from Xanthomonas, also indicated that the two bacteria are genetically different. The results obtained in this study suggest that this pathovar can be segregated into two subgroups under a recently proposed reclassification of the Xanthomonas genus.  相似文献   

14.
15.
Xanthomonas arboricola pv. juglandis is the causal agent of walnut blight, one of the most important and widespread diseases of Persian (English) walnut (Juglans regiaL.), causing severe damage to leaves, twigs and nuts. To investigate the genomic variability of X. arboricolapv. juglandis, 66 isolates obtained from different countries (England, France, Italy, The Netherlands, Romania, Spain, USA, and New Zealand) were analysed using the Amplified Fragment Length Polymorphism (AFLP) technique. EcoRI and MseI were used as restriction endonucleases. Primers with a core sequence including endonuclease recognition sites and a 3prime-terminal cytosine selective base for MseI primer, or no selective base for EcoRI primer, were used. Data were analysed by means of a multiple correspondence analysis. A total of 76 amplified polymorphic DNA fragments were used to compute relationships among isolates. The AFLP profiles of X. arboricola pv. juglandis isolates appeared to be reliably distinguishable from X. arboricola pv. pruni and X. arboricola pv. corylina, and from other Xanthomonas species, i.e. X. campestris pv. campestris, X. fragariae, X. hortorum, X. axonopodis pv. vesicatoria. Though this pathogen is associated with one single host genus, a high level of genomic diversity was found. This diversity might be partly explained by the geographic origin. Nevertheless, isolates with different patterns were collected within one country, and similar molecular patterns were found in isolates collected at different sites. However, genetic diversity might be influenced by exchanging vegetative material from different countries. Mixing of X. arboricola pv. juglandis isolates might have partly concealed the influence of the geographic location from which the bacteria were isolated.  相似文献   

16.
ABSTRACT Bacterial leafspot of lettuce (BLS), caused by Xanthomonas campes-tris pv. vitians, has become more prevalent in many lettuce-growing areas of the world over the past decade. To gain insight into the nature of these outbreaks, the genetic variation in X. campestris pv. vitians strains from different geographical locations was examined. All strains were first tested for pathogenicity on lettuce plants, and then genetic diversity was assessed using (i) gas-chromatographic analysis of bacterial fatty acids, (ii) polymerase chain reaction analysis of repetitive DNA sequences (rep-PCR), (iii) DNA sequence analysis of the internal transcribed spacer region 1 (ITS1) of the ribosomal RNA, (iv) restriction fragment length polymorphism (RFLP) analysis of total genomic DNA with a repetitive DNA probe, and (v) detection and partial characterization of plasmid DNA. Fatty acid analysis identified all pathogenic strains as X. campestris, but did not consistently identify all the strains as X. campestris pv. vitians. The rep-PCR fingerprints and ITS1 sequences of all pathogenic X. campestris pv. vitians strains examined were identical, and distinct from those of the other X. campestris pathovars. Thus, these characteristics did not reveal genetic diversity among X. campestris pv. vitians strains, but did allow for differentiation of X. campestris pathovars. Genetic diversity among X. campestris pv. vitians strains was revealed by RFLP analysis with a repetitive DNA probe and by characterization of plasmid DNA. This diversity was greatest among strains from different geographical regions, although diversity among strains from the same location also was detected. The results of this study suggest that these X. campestris pv. vitians strains are not clonal, but comprise a relatively homogeneous group.  相似文献   

17.
Xanthomonas campestris pathovars are widely distributed throughout the globe and have a broad host range, causing severe economic losses in the food and ornamental crucifers markets. Using an approach based on multilocus sequence typing, phylogenetic diversity and population structure of a set of 75 Portuguese and other Xanthomonas campestris isolates from several cruciferous hosts were assessed. Although this population displayed a major clonal structure, neighbour‐net phylogenetic analysis highlighted the presence of recombinational events that may have driven the ecological specialization of X. campestris with different host ranges within the Brassicaceae family. A high level of genetic diversity within and among X. campestris pathovars was also revealed, through the establishment of 46 sequence types (STs). This approach provided a snapshot of the global X. campestris population structure in cruciferous host plants, correlating the existing pathovars with three distinct genetic lineages. Phylogenetic relationships between the founder genotype and remaining isolates that constitute the X. campestris pv. campestris population were further clarified using goeBURST algorithm. Identification of an intermediate link between X. campestris pv. campestris and X. campestris pv. raphani provided new insights into the mechanisms driving the differentiation of both pathovars. Wide geographic distribution of allelic variants suggests that evolution of X. campestris as a seedborne pathogen was not shaped by natural barriers. However, as Portuguese isolates encompass 26 unique STs and this country is an important centre of domestication of Brassica oleracea crops, a strong case is made for its role as a diversification reservoir, most probably through host–pathogen coevolution.  相似文献   

18.
The PCR-RFLP of the 16S-23S rDNA spacer region was used to differentiate Xanthomonas species pathogenic to sugarcane. Strains of X. albilineans, X. campestris pv. vasculorum Types A and B, X. sacchari and Xanthomonas sp. from Trinidad, South Africa and India were examined. The amplification products were digested with Alu I, Hae III, Hpa II and Mbo I and the results showed that the different groups of bacterial strains exhibited distinct RFLP patterns for each tested endonuclease, except X. albilineans and X. sacchari which could only be differentiated from each other by the digestion with Hpa II. The results also allowed the separation of X.c. pv. vasculorum Type A from X.c. pv. vasculorum Type B and strongly suggested that the analyzed Xanthomonas sp. strains belong to X. sacchari. Nine X. campestris (pv. not determined) strains included in this study showed identical profiles to X.c. pv. vasculorum Type A group and DNA–DNA hybridization experiments confirmed these results. PCR-RFLP of the 16S-23S rDNA spacer region could be applied as a reliable method for differentiating the xanthomonads pathogenic to sugarcane.  相似文献   

19.
Comparative analyses were undertaken to characterize Xanthomonas campestris pv. musacearum, the causal agent of a wilt of enset and banana, and to assess its relatedness to other xanthomonads by fatty acid methyl esters, genomic fingerprinting using rep-PCR and partial nucleotide sequencing of the gyrase B gene. The results from all three analyses indicated that strains of X. campestris pv. musacearum are homogeneous and very similar to X. vasicola strains isolated from sugarcane and maize from Africa. Pathogenicity studies indicated that strains of X. vasicola pv. holcicola and X. vasicola from sugarcane induced no symptoms on banana, whereas X. campestris pv . musacearum produced severe disease. These data will support a future proposed reclassification of X. campestris pv. musacearum as X. vasicola pv . musacearum when more data are available.  相似文献   

20.
Research on Xanthomonas oryzae pv. oryzae, the bacterial blight of rice pathogen, was initiated at the Institute of Agriculture and Animal Science (IAAS) with the main objective of assessing the population structure of X. o. pv. oryzae through the use of both conventional and molecular markers in combination with virulence typing. A high DNA polymorphism was detected in the pathogen populations using different DNA probes and rep-PCR primers. Most strains were avirulent to cultivars containing the bacterial blight resistance gene Xa-21, which suggested the strategy that targets gene deployment is feasible in Nepal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号