首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 640 毫秒
1.
为探明甘蓝型油菜含油量和产量相关性状的遗传机理,利用Sollux/ Gaoyou DH群体株系间随机交配构建了包括134个组合的永久F2群体(immortalized F2 population)。采用QTL Network 20软件对含油量、千粒重和角果粒数进行了4个环境下的联合QTL定位,分析QTL的加性、显性以及相关的上位性效应。结果在7条连锁群上检测到控制上述3个性状相关QTL共 8个。除qSWC6和qSPA2,1个含油量,4个千粒重和1个角果粒数QTL与多环境下SG\|DH群体定位结果区间重叠,加性效应方向一致,效应值相仿;主效含油量QTL qOILA7和3个千粒重QTL qSWA7,qSWC2, qSWC4无显性效应;qSWC6兼具加性和显性效应,qSWC8加性为主,微效显性,显性效应均呈负向;但两个角果粒数QTL qSPA2 和qSPA6除加性主效外,还存在正向显性效应;4对上位互作QTL中,除qOILA7,其余7个位点均只有微弱互作效应。并对qOILA7和qSWA7/qSWC8连锁标记辅助选育提高油菜含油量和千粒重的育种策略进行了探讨。结果表明:油菜种子含油量和千粒重性状的遗传控制体系以加性效应为主,F1代无杂种优势,因而欲提高杂交油菜种子含油量和增加千粒重,需要培育高含油量和大粒亲本材料;而控制角果粒数基因同时具有较强的加性和正向显性效应,利用F1杂交种可望获得超双亲的杂种优势。  相似文献   

2.
大豆二粒荚长、宽相关QTL间上位效应和QE互作效应分析   总被引:1,自引:0,他引:1  
【目的】定位大豆二粒荚长、宽QTL,并分析QTL间的上位效应和与环境(QTL-by-environment, QE)的互作效应。【方法】利用Charleston×东农594重组自交系及其F2:14-F2:18代的重组自交系的147个株系为试验材料,164个SSR引物经亲本筛选后用于群体扩增构建的SSR遗传图谱,利用混合区间作图法,对2006-2010年连续5年一个地点的大豆二粒荚长、宽进行QTL定位,并作加性效应、加性×加性上位互作效应及环境互作效应分析。【结果】检测到8对有加性效应的二粒荚长QTL,加性效应的总贡献率27.2%,与环境互作总贡献率达到10.19%;6对有加性效应的二粒荚宽QTL,加性效应的总贡献率16.27%,与环境互作总贡献率达到12.18%。9对影响二粒荚长的加性×加性上位互作效应的QTL,可解释该性状总变异的9.02%;8对影响二粒荚宽的加性×加性上位互作效应的QTL,可解释该性状总变异的8.81%。【结论】上位效应和环境效应在二粒荚长、宽性状的遗传中起了重要作用,因此,在分子标记辅助育种中应该考虑对效应起主要作用的QTL和上位性QTL,又要考虑微效多基因的聚合。  相似文献   

3.
 【目的】分析面团吹泡特性的遗传基础。【方法】以小麦品种花培3号、豫麦57构建的DH群体的168个株系为材料,利用含有323个位点的分子遗传图谱和3个环境的表型数据,对面团韧性(P)、延展性(L)、面团强度(W)、面团膨胀系数(G)和弹性指数(Ie)等5个吹泡性状进行QTL定位分析。【结果】共检测到17个加性效应位点和7对上位效应位点,分别位于1B、2B、3B、4B、1D、7D和5A染色体上。4B染色体Xwmc48—Xbarc1096区段上,同时检测到控制面团韧性(P)、延展性(L)和吹泡膨胀系数(G)的QTL位点(QDten4B、QDext4B和QSin4B),但遗传效应方向不同。在1D染色体Xwmc93—GluD1区段,检测到控制面团膨胀系数(G)、面团强度(W)和弹性指数(Ie)的位点,分别为QSin1D、QDstren1D和QEin1D,遗传贡献率分别为3.19%、17.74%和28.28%,且遗传效应方向相同,增效等位基因均来源于豫麦57。7对上位性效应遗传贡献率较小,无环境互作效应。【结论】小麦面团吹泡品质相关性状的遗传主要受加性效应控制,同时也受上位性效应控制。在某些染色体区段存在着影响不同吹泡性状的共同QTL,表现出一因多效或紧密连锁。  相似文献   

4.
水稻籼粳交DH群体产量相关性状的QTL定位和上位性分析   总被引:3,自引:0,他引:3  
利用籼粳交组合Nanjing 11号×Balilla创建的F1代DH群体,应用Joinmap 3.0作图软件构建一张含有136个标记(10个STS、22个CAPs和104个SSR)的连锁图,检测产量相关性状的具有加性和上位性效应的数量性状位点(QTL)。考察132个DH株系产量相关的6个性状,通过基于混合线性模型的软件QTLmapper 1.0,共检测到分布在12条染色体上的50个数量性状位点(QTL),其中7个QTL仅具有加性效应,3个QTL既有加性效应又参与上位性效应的形成,40个QTL仅具有上位性效应。在加性和上位性效应中,各QTL贡献率差异较大,变幅为3.87%~24.62%。结果表明:贡献率较大的QTL在不同群体和环境中能够稳定表达,相关性状QTL的位置往往集中在染色体上相同或相近的区域,呈成簇分布。  相似文献   

5.
普通小麦白粉病成株抗性的QTL分析   总被引:1,自引:0,他引:1  
【目的】以普通小麦加倍单倍体(doubled haploid,DH)群体(旱选10号×鲁麦14)的150个株系为材料,鉴定其白粉病成株抗性并进行QTL定位,以期发掘具有显著效应以及不同环境中稳定表达的主效QTL,为改良小麦白粉病成株抗性提供理论依据及分子标记。【方法】运用基于混合线性模型的复合区间作图法,对DH群体在4种单一环境条件下及基因型与环境互作情况下白粉病成株抗性进行QTL定位。【结果】4种单一环境条件下共检测到15个控制白粉病成株抗性的加性效应QTL,对白粉病成株抗性表型变异的贡献率为3.8%~21.0%;考虑基因型与环境互作的情况下检测到9个加性QTL,分别与单一环境下检测到的加性QTL位于相同的标记区间,位于染色体2A、2B、3A、5A、5B、6B、7A、7B和7D上。4种单一环境下检测到17对上位性效应QTL,对白粉病成株抗性表型变异的贡献率为1.1%~28.4%;考虑基因型与环境互作情况下检测到19对上位性QTL,其中7对与单一环境下的上位性QTL位于相同的标记区间。控制白粉病成株抗性的QTL来自于双亲,DH群体中有白粉病成株抗性超亲的株系存在。【结论】白粉病成株抗性受加性和上位性QTL的共同作用;在基因型与4种环境互作情况下检测到的QTL中,分别有9个加性QTL和7对上位性QTL与单一环境下的QTL位于相同的标记区间,这些在不同环境条件下重复出现的QTL具有较好的稳定性;通过分子标记辅助选择等方法重组、聚合目标QTL,将能够选育出白粉病抗性强的小麦品种。  相似文献   

6.
小麦灌浆期耐热性QTL定位分析   总被引:3,自引:0,他引:3  
【目的】以普通小麦加倍单倍体(DH)群体(旱选10号×鲁麦14)的150个株系为材料,鉴定其灌浆期耐热相关生理性状及千粒重耐热指数,并进行QTL定位,以期发掘具有显著效应以及不同环境中稳定表达的主效QTL,为改良小麦耐热性提供理论依据及分子标记。【方法】运用基于混合线性模型的复合区间作图法,以耐热指数为耐热性指标,对DH群体在田间雨养和灌溉2种土壤水分条件下的耐热性进行QTL定位。【结果】2种土壤水分条件下共检测到12个控制不同性状耐热指数的加性效应QTL,对表型变异的贡献率范围为2.64%—11.41%,其中,9个QTL与环境存在互作效应,对耐热指数表型变异的贡献率为1.41%—4.66%;检测到17对上位性效应QTL,对表型变异的贡献率为2.45%—8.84%,其中,仅4对与环境有互作效应,对表型变异的贡献率为0.62%—2.32%。控制耐热性的QTL来自双亲,DH群体中有耐热性超亲的株系存在。【结论】评价小麦灌浆期的耐热性,千粒重耐热指数是最直接的指标,生理性状指标为耐热性鉴定的间接辅助指标,其中,旱地条件下选用旗叶相对含水量耐热指数作为间接指标较好,而灌溉条件下选用气冠温差耐热指数较好。染色体1B、2D、5A、5B、6A、6B和7A对灌浆期耐热性贡献较大。千粒重耐热指数和旗叶叶绿素含量耐热指数的遗传以加性效应为主,叶绿素荧光参数耐热指数和气冠温差耐热指数的遗传以上位性效应为主,而叶片相对含水量耐热指数的遗传加性效应与上位性效应都重要。  相似文献   

7.
 【目的】分析稻米垩白率加性效应、上位性效应及其环境互作效应,探讨稻米垩白率的遗传特点和不同群体检测QTL的效率。【方法】利用由粳稻品种越光和籼稻品种Kasalath杂交衍生的BIL群体和以越光为背景、Kasalath为供体的CSSL群体,对2005年和2006年南京的稻米垩白率QTL及其互作效应进行了分析。【结果】 CSSL群体检测到5个垩白率QTL和2对具有上位性效应的QTL;BIL群体检测到3个QTL和4对具有上位性效应的QTL。其中,qPGWC-6a在2个群体中重复出现,1对具有上位性效应的QTL在CSSL群体中2年均被检测到,在BIL群体中,所有QTL与环境存在显著互作(P<0.01)。在第3和4染色体上检测到2个新的垩白率QTL。【结论】上位性效应和加性效应在垩白率遗传中同样重要。垩白率QTL和具有上位性效应的QTL与环境的互作普遍存在,但效应小于相应的加性效应和上位性效应。利用不同群体分析垩白率QTL,有利于全面揭示稻米垩白率的遗传互作网络。  相似文献   

8.
普通小麦(T.aestivum L.)不同作图群体抽穗期QTL分析   总被引:7,自引:0,他引:7  
 【目的】对小麦抽穗期进行数量性状位点(QTL)分析。【方法】以旱选10号/鲁麦14和温麦6号/山红麦两个作图群体为材料,在大田及温室条件下,观察小麦抽穗期等性状。利用混合线性模型,进行QTL分析。【结果】抽穗期在两个作图群体中均呈现连续分布,表现为多基因控制的数量性状;共检测到9个 QTL位点,分别位于染色体2D、3B(2个)、3D、4A、5B、6B、6D和7D上,对抽穗期的贡献率在3.97%~22.91%之间;有15组QTL位点之间存在基因互作效应,互作的加性效应大小范围为0.77~2.16 d,互作效应对性状的贡献率在4.35%~21.44%之间。【结论】抽穗期QTL的检测受环境影响较大;抽穗期QTL位点在染色体上的分布较多;不同染色体间则存在基因互作现象。  相似文献   

9.
小麦幼苗根系性状的QTL分析   总被引:25,自引:7,他引:25  
 以小麦DH群体(旱选10号×鲁麦14)为材料,在水分胁迫及非胁迫两种条件下考察水培幼苗的单株根数、最大根长、根鲜重、根干重、根茎鲜重比及根茎干重比等根系性状。应用基于混合线性模型的复合区间作图法分析幼苗根系性状的QTL,以及基因与环境的互作。共检测到11个加性效应QTL和15对上位性互作QTL,分布在除5A、4B、2D、6D和7D以外的所有染色体上。其中3个加性效应QTL和2对上位性效应QTL控制根数;3个加性效应QTL和3对上位性效应QTL控制最大根长;2个加性效应QTL和2对上位性效应QTL控制根鲜重;2个加性效应QTL和3对上位性效应QTL影响根干重;2对上位性效应QTL控制根茎鲜重比;1个加性效应QTL和3对上位性效应QTL与根茎干重比有关。同时还分别检测到1个加性效应QTL、3对上位性效应QTL与水分环境的互作效应。对应用分子标记辅助选择幼苗抗旱优良根系性状的可能性进行了讨论。  相似文献   

10.
【目的】挖掘水稻粒型相关QTL位点可为水稻的粒型遗传机制研究和优质化分子育种提供理论基础。【方法】以广西普通野生稻高代自交系材料ZY03为父本,栽培稻品种日本晴为母本,通过常规杂交获得包含160个单株的F_2分离群体,并开展粒长、粒宽及粒长宽比等粒型性状的调查。利用分布于水稻12条染色体上的184个SSR标记对F_2群体单株进行分子检测。应用MAPMAKER EXP 3.0软件进行数据分析,构建分子标记连锁图。应用QTLmapping3.0软件,采用复合区间作图法(composite interval mapping,CIM),以LOD=2.5为阈值检测控制粒长、粒宽和粒长宽比等性状的QTL。【结果】在F_2群体中,目标性状呈现连续变异,有明显的双向超亲分离现象。共检测到与粒型相关的QTL 3个,其中1个粒长QTL位于第5染色体RM405~RM548区间内,被命名为qGL5.1,表型贡献率为10.68%,加性效应为0.02;在第1染色体RM5501~RM486区间内检测到1个控制粒宽的QTL,被命名为qGW1.1,表型贡献率为10.56%,加性效应为0.34;在第5号染色体RM405~RM548区间检测到1个控制粒长宽比的QTL,被命名为qLWR5.1,表型贡献率为14.77%,加性效应为0.12。上述所有QTL的增效等位基因均来自于亲本ZY03。其中,粒长QTL qGL5.1与粒长宽比QTL qLWR5.1位于同一标记区间内。【结论】从野栽分离群体挖掘到3个野生稻的粒型QTL位点,定位结果可用于下一步主效QTL的精细定位和分子标记辅助选择育种。  相似文献   

11.
 【目的】阐明影响小麦籽粒淀粉基因/QTL的时空表达和动态变化情况,为运用条件QTL更好地揭示小麦籽粒淀粉动态积累的基因表达提供参考。【方法】本研究以小麦品种花培3号和豫麦57构建的168个双单倍体(doubled haploid, DH)群体为材料,在6个不同的环境下种植,分别在花后12 d、17 d、22 d、27 d和32 d取样,对小麦籽粒淀粉含量(GSC)积累的条件和非条件QTL进行分析。【结果】在籽粒灌浆的5个时期,一共检测到7个非条件QTL和4个条件QTL,没有一个条件QTL能在测定的5个时期都有效应。7个非条件QTL分别分布在2A、3A、3B、4A、5D染色体上,其中QGsc4A在整个灌浆过程都能表达,5个时期的表型变异贡献率分别为13.57%、16.57%、21.96%、22.53%、22.90%。4个条件QTL中,QGsc4A在花后12 d、17 d、32 d均能检测到,总贡献率为21.80%,对籽粒淀粉积累的净增长量起主要作用。其它非条件QTL和条件QTL只在一个或几个阶段出现且效应值较小,花后27 d没有检测到条件QTL。【结论】控制GSC积累的数量性状基因以一定的时空方式表达,小麦籽粒淀粉积累的QTL动态分析,可以了解小麦籽粒淀粉积累的遗传规律及其对小麦籽粒发育的影响,为小麦产量和品质形成的分子基础的深入研究提供参考。  相似文献   

12.
小麦籽粒蛋白质含量的动态QTL定位   总被引:2,自引:1,他引:1  
 【目的】检测灌浆过程中控制小麦籽粒蛋白质含量(GPC)的条件及非条件QTL,阐明不同时期及不同时段内QTL的表达方式,揭示籽粒蛋白质积累的分子遗传机理。【方法】以花培3号×豫麦57的168个双单倍体(doubled haploid,DH)群体为材料,于6个不同的环境下种植,在籽粒灌浆的5个时期取样,对小麦GPC进行动态QTL分析。【结果】共检测到影响GPC的9个非条件QTL和10个条件QTL。QGpc3A为整个灌浆过程都能表达的非条件QTL,其余条件和非条件QTL只在几个或单独一个时期表达。花后12 d,控制GPC的基因表达活跃,非条件QTL和条件QTL总共能解释表型变异贡献率的42.62%;花后22 d,条件QTL和非条件QTL总共可解释表型变异的贡献率较低,仅为17.43%,GPC降到“低谷”。 QGpc4A-1对GPC前期积累有重要意义,QGpc1D和QGpc4A-2对GPC灌浆中后期积累有重要意义。【结论】GPC呈现出“高-低-高”的变化规律,控制GPC的基因在灌浆过程中以一定的时空方式表达。  相似文献   

13.
利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析   总被引:1,自引:0,他引:1  
【目的】小麦遗传图谱是进行小麦染色体分析和研究表型变异的遗传基础。通过利用传统分子标记和现代基因芯片技术相结合,构建高密度遗传图谱,重点开展主要产量主要构成要素--粒重的初级基因定位,确定影响粒重的主效QTL位点,为开发粒重CAPS分子标记及在分子标记辅助育种提供依据和指导,并为利用小麦粒重次级群体进行精细定位和基因挖掘奠定基础。【方法】利用90 K小麦SNP基因芯片、DArt芯片技术及传统的分子标记技术,以包含173个家系的RIL群体(F9:10重组自交系)为材料,构建高密度遗传图谱,并利用QTL network2.0进行了3年共4环境粒重QTL分析。【结果】构建了覆盖小麦21条染色体的高密度遗传图谱,该图谱共含有6 244个多态性标记,其中SNP标记6 001个、DArT标记216个、SSR标记27个,覆盖染色体总长度4 875.29 cM,标记间平均距离0.78 cM。A、B、D染色体组分别有2 390、3 386和468个标记,分别占总标记数的38.3%、54.3%和7.5%;3个染色体组标记间平均距离分别为0.80、0.75和0.80 cM。用该分子遗传图谱对4个环境下粒重进行QTL分析,检测到位于1B、4B、5B、6A染色体上9个加性QTL,效应值大于10%的QTL位点有QGW4B-17QGW4B-5QGW4B-2QGW6A-344QGW6A-137;其中QGW4B-17在多个环境下检测到,其贡献率为16%-33.3%,可增加粒重效应值2.30-2.97g,该位点是稳定表达的主效QTL。9个QTL的加性效应均来自大粒母本山农01-35,单个QTL位点加性效应可增加千粒重1.09-2.97 g。【结论】构建的覆盖小麦21条染色体的分子遗传图谱共含有6 241个多态性标记,标记间平均距离为0.77 cM。利用该图谱检测到位于1B、4B、5B、6A染色体上9个控制粒重的加性QTL,其中QGW4B-17是稳定表达的主效QTL位点,贡献率为16.5%-33%,可增加粒重效应值2.30-2.97 g。  相似文献   

14.
小麦单株产量与株高的QTL分析   总被引:4,自引:2,他引:4  
 【目的】在QTL水平上揭示株高与产量的遗传关系及株高对产量的影响,为小麦高产育种株高的选择提供参考依据。【方法】利用分别包含229和485个家系的2个关联重组自交系群体(recombinant inbred lines,RIL)潍麦8号/烟农19(WY)和潍麦8号/济麦20(WJ),绘制2个较高密度遗传连锁图谱。在3个环境下对单株产量和株高性状进行测量评价及非条件和条件QTL分析,研究株高与产量QTL的相互关系及排除株高影响后单株产量QTL效应的变化,探讨群体大小对QTL定位精度和准确性的影响。【结果】在WY群体中检测到5个单株产量QTL和15个株高QTL,其中,8个QTL解释大于10%的表型变异,3个为一因多效QTL;条件QTL分析表明,3个单株产量QTL与株高QTL无关,2个单株产量QTL的效应完全或部分由株高QTL所贡献,1个单株产量QTL的效应被株高QTL抑制。在WJ群体中检测到7个单株产量QTL和11个株高QTL,其中1个主效株高QTL加性效应值为8.82 cm,可解释20.68%的表型变异;条件QTL分析表明,5个单株产量QTL与株高QTL无关,2个单株产量QTL的效应完全由株高QTL所贡献。大群体WJ检测到的QTL效应值比小群体WY小,但LOD值高。【结论】株高与产量的关系是多重因素共同作用的结果,包括一因多效或紧密连锁、株高QTL对产量QTL表达的贡献与抑制、环境效应以及与其它性状的互作等。不同遗传背景、不同生态环境下株高对产量的贡献是各个因素相协调的结果,高产育种中对株高的选择在不同背景下应该有所区别;与小群体相比,大群体检测QTL的精度和准确性更高。  相似文献   

15.
不同氮磷钾处理大豆苗期主根长和侧根数的QTL定位分析   总被引:5,自引:2,他引:3  
【目的】主根长和侧根数是重要的根系性状。通过不同氮磷钾处理,发掘大豆苗期主根长和侧根数的基因资源、了解其遗传机制,定位其主效QTL,分析QTL间的上位性和环境互作效应,对生产提供理论指导。【方法】用以栽培大豆晋豆23为母本、山西农家品种灰布支黑豆(ZDD02315)为父本所衍生的447个RIL作为供试群体,取亲本及447个家系各30粒种子,用灭菌纸包裹后,2015年和2016年分别放置于CK(模拟种植不施肥)、NPK(模拟大田正常配施氮磷钾肥)和1.5NPK(模拟高肥田块)3种生长环境下进行水培试验,每组试验设置3次重复,环境温度20—28℃,幼苗长到V2期,对幼苗期相关根部性状数据进行测量。分别采用Win QTLCart 2.5和QTLNETwork 2.1 2种遗传模型检测QTL,分析QTL间的上位性和环境互作效应。【结果】基于复合区间作图(CIM)共检测到24个影响主根长和侧根数的QTL,分布于第2、3、5、6、7、8、9、10、11、12、13、14、16、17共14条染色体中,单个QTL的贡献率介于8.52%—43.62%,QTL主要表现为加性效应。基于混合线性模型(MCIM)检测到影响主根长和侧根数的QTL各1个,2个QTL均表现出加性效应和环境互作效应。另有2对主根长和2对侧根数均检测出加性×加性上位性互作QTL,主根长和侧根数各有1对表现出主效QTL与非主效QTL加性×加性上位性互作,各有1对表现出非主效QTL与非主效QTL加性×加性上位性互作,2对主根长互作QTL分别解释了1.53%和1.95%的表型变异率,2对侧根数互作QTL分别解释了2.47%和1.13%的表型变异率。2个QTL能在2种分析方法中同时检测到,9个QTL能在3种环境下同时检测到。第6染色体在2015年NPK、1.5NPK和2016年1.5NPK 3个环境下均检测到主根长QTL,第5染色体在2015年NPK和1.5NPK、2016年CK 3个环境下、第17染色体在2015年CK和NPK、2016年NPK 3个环境下均检测到侧根数QTL。【结论】苗期大豆主根长和侧根数对氮磷钾的吸收影响较少,生产中尽可能减少氮磷钾使用量。不同浓度氮磷钾处理苗期主根长和侧根数参数间既有共同的控制基因,也有各自独特的控制基因,多数QTL不能在多个环境下重复检测到,控制其表达的遗传机制较为复杂。加性效应、加性与环境互作和加性×加性上位性互作效应在主根长和侧根数的形成和遗传中发挥着重要作用。主根长和侧根数各有1个QTL能在2种分析方法中同时检测到,Satt442-Satt296和Satt521-GMABABR是共位标记区间。  相似文献   

16.
利用水、旱稻DH系定位产量性状的QTL及其环境互作分析   总被引:15,自引:1,他引:15  
 为研究水、旱栽培条件对水稻产量及其构成因素QTL表达的影响,以粳型陆稻IRAT109和粳型水稻越富杂交的116个株系的DH群体为材料,利用已构建的水稻分子连锁图(其中94个RFLP标记和71个SSR标记),在水田、旱田栽培条件下,定位了千粒重、结实率、有效穗数、穗粒数及单株产量等性状的QTL。结果表明,水田条件共检测到11个加性QTL和13对上位性QTL,旱田条件下检测到18个加性QTL和17对上位性QTL,其中控制千粒重的2个加性QTL和1对上位性QTL及控制有效穗数的1个加性QTL在水田、旱田条件下都检测到。 检测到11个控制产量性状QTL区域存在一因多效或紧密连锁,其中3个区域也是控制根系性状QTL的热点区。 发现8个加性QTL和8对上位性QTL对表型变异贡献率(以下简称贡献率)大于10%(其中4个加性QTL和5对上位性QTL为旱田条件下检测到),这些高贡献率QTL特别是旱田条件下的高贡献率QTL对旱稻产量性状分子育种具有一定的指导作用。  相似文献   

17.
In order to understand the genetic basis for Zeleny sedimentation value (ZSV) of wheat, a doubled haploid (DH) population Huapei 3 × Yumai 57 (Yumai 57 is superior to Huapei 3 for ZSV), and a linkage map consisting of 323 marker loci were used to search QTLs for ZSV. This program was based on mixed linear models and allowed simultaneous mapping of additive effect QTLs, epistatic QTLs, and QTL x environment interactions (QEs). The DH population and the parents were evaluated for ZSV in three field trials. Mapping analysis produced a total of 8 QTLs and 2 QEs for ZSV with a single QTL explaining 0.64-14.39% of phenotypic variations. Four additive QTLs, 4 pairs of epistatic QTLs, and two QEs collectively explained 46.11% of the phenotypic variation (PVE). This study provided a precise location of ZSV gene within the Xwmc 93 and GluD1 interval, which was designated as Qzsv-1D. The information obtained in this study should be useful for manipulating the QTLs for ZSV by marker assisted selection (MAS) in wheat breeding programs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号