首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sarcocystis neurona is the most important cause of a neurologic disease of horses, equine protozoal myeloencephalitis (EPM). Cats and other carnivores can act as its intermediate hosts and horses are aberrant hosts. Little is known of the sero-epidemiology of S. neurona infections in cats. In the present study, antibodies to S. neurona were evaluated by the S. neurona agglutination test (SAT). Cats fed sporocysts from the feces of naturally infected opossums or inoculated intramuscularly with S. neurona merozoites developed high levels (> or =1:4000) of SAT antibodies. Antibodies to S. neurona were not found in a cat inoculated with merozoites of the closely related parasite, Sarcocystis falcatula. These results should be useful in studying sero-epidemiology of S. neurona infections in cats.  相似文献   

2.
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease in the horse most commonly caused by Sarcocystis neurona. The domestic cat (Felis domesticus) is an intermediate host for S. neurona. In the present study, nine farms, known to have prior clinically diagnosed cases of EPM and a resident cat population were identified and sampled accordingly. In addition to the farm cats sampled, samples were also collected from a mobile spay and neuter clinic. Overall, serum samples were collected in 2001 from 310 cats, with samples including barn, feral and inside/outside cats. Of these 310 samples, 35 were from nine horse farms. Horse serum samples were also collected and traps were set for opossums at each of the farms. The S. neurona direct agglutination test (SAT) was used for both the horse and cat serum samples (1:25 dilution). Fourteen of 35 (40%) cats sampled from horse farms had circulating S. neurona agglutinating antibodies. Twenty-seven of the 275 (10%) cats from the spay/neuter clinic also had detectable S. neurona antibodies. Overall, 115 of 123 (93%) horses tested positive for anti-S. neurona antibodies, with each farm having greater than a 75% exposure rate among sampled horses. Twenty-one opossums were trapped on seven of the nine farms. Eleven opossums had Sarcocystis sp. sporocysts, six of them were identified as S. neurona sporocysts based on bioassays in gamma-interferon gene knockout mice with each opossum representing a different farm. Demonstration of S. neurona agglutinating antibodies in domestic and feral cats corroborates previous research demonstrating feral cats to be naturally infected, and also suggests that cats can be frequently infected with S. neurona and serve as one of several natural intermediate hosts for S. neurona.  相似文献   

3.
Neurologic disease in horses caused by Sarcocystis neurona is difficult to diagnose, treat, or prevent, due to the lack of knowledge about the pathogenesis of the disease. This in turn is confounded by the lack of a reliable equine model of equine protozoal myeloencephalitis (EPM). Epidemiologic studies have implicated stress as a risk factor for this disease, thus, the role of transport stress was evaluated for incorporation into an equine model for EPM. Sporocysts from feral opossums were bioassayed in interferon-gamma gene knockout (KO) mice to determine minimum number of viable S. neurona sporocysts in the inoculum. A minimum of 80,000 viable S. neurona sporocysts were fed to each of the nine horses. A total of 12 S. neurona antibody negative horses were divided into four groups (1-4). Three horses (group 1) were fed sporocysts on the day of arrival at the study site, three horses were fed sporocysts 14 days after acclimatization (group 2), three horses were given sporocysts and dexamethasone 14 days after acclimatization (group 3) and three horses were controls (group 4). All horses fed sporocysts in the study developed antibodies to S. neurona in serum and cerebrospinal fluid (CSF) and developed clinical signs of neurologic disease. The most severe clinical signs were in horses in group 1 subjected to transport stress. The least severe neurologic signs were in horses treated with dexamethasone (group 3). Clinical signs improved in four horses from two treatment groups by the time of euthanasia (group 1, day 44; group 3, day 47). Post-mortem examinations, and tissues that were collected for light microscopy, immunohistochemistry, tissue cultures, and bioassay in KO mice, revealed no direct evidence of S. neurona infection. However, there were lesions compatible with S. neurona infection in horses. The results of this investigation suggest that stress can play a role in the pathogenesis of EPM. There is also evidence to suggest that horses in nature may clear the organism routinely, which may explain the relatively high number of normal horses with CSF antibodies to S. neurona compared to the prevalence of EPM.  相似文献   

4.
Equine protozoal myeloencephalitis (EPM) is a serious neurologic disease of horses caused primarily by the protozoal parasite Sarcocystis neurona. Currently available antemortem diagnostic testing has low specificity. The hypothesis of this study was that serum and cerebrospinal fluid (CSF) of horses experimentally challenged with S neurona would have an increased S neurona-specific IgM (Sn-IgM) concentration after infection, as determined by an IgM capture enzyme linked immunoassay (ELISA). The ELISA was based on the S neurona low molecular weight protein SNUCD-1 antigen and the monoclonal antibody 2G5 labeled with horseradish peroxidase. The test was evaluated using serum and CSF from 12 horses experimentally infected with 1.5 million S neurona sporocysts and 16 horses experimentally infected with varying doses (100 to 100,000) of S neurona sporocysts, for which results of histopathologic examination of the central nervous system were available. For horses challenged with 1.5 million sporocysts, there was a significant increase in serum Sn-IgM concentrations compared with values before infection at weeks 2-6 after inoculation (P < .0001). For horses inoculated with lower doses of S neurona, there were significant increases in serum Sn-IgM concentration at various points in time after inoculation, depending on the challenge dose (P < .01). In addition, there was a significant increase between the CSF Sn-IgM concentrations before and after inoculation (P < .0001). These results support further evaluation of the assay as a diagnostic test during the acute phase of EPM.  相似文献   

5.
OBJECTIVE: To evaluate the effect of intermittent oral administration of ponazuril on immunoconversion against Sarcocystis neurona in horses inoculated intragastrically with S neurona sporocysts. ANIMALS: 20 healthy horses that were seronegative for S neurona-specific IgG. PROCEDURES: 5 control horses were neither inoculated with sporocysts nor treated. Other horses (5 horses/group) each received 612,500 S neurona sporocysts via nasogastric tube (day 0) and were not treated or were administered ponazuril (20 mg/kg, PO) every 7 days (beginning on day 5) or every 14 days (beginning on day 12) for 12 weeks. Blood and CSF samples were collected on day - 1 and then every 14 days after challenge for western blot assessment of immunoconversion. Clinical signs of equine protozoal myeloencephalitis (EPM) were monitored, and tissues were examined histologically after euthanasia. Results: Sera from all challenged horses yielded positive western blot results within 56 days. Immunoconversion in CSF was detected in only 2 of 5 horses that were treated weekly; all other challenged horses immunoconverted within 84 days. Weekly administration of ponazuril significantly reduced the antibody response against the S neurona 17-kd antigen in CSF. Neurologic signs consistent with EPM did not develop in any group; likewise, histologic examination of CNS tissue did not reveal protozoa or consistent degenerative or inflammatory changes. CONCLUSIONS AND CLINICAL RELEVANCE: Administration of ponazuril every 7 days, but not every 14 days, significantly decreased intrathecal anti-S neurona antibody responses in horses inoculated with S neurona sporocysts. Protocols involving intermittent administration of ponazuril may have application in prevention of EPM.  相似文献   

6.
Equine protozoal myeloencephalitis (EPM) is a neurological disease of horses and ponies caused by the apicomplexan protozoan parasite Sarcocystis neurona. The purposes of this study were to develop the most stringent criteria possible for a positive test result, to estimate the sensitivity and specificity of the EPM Western blot antibody test, and to assess the ability of bovine antibodies to Sarcocystis cruzi to act as a blocking agent to minimize false-positive results in the western blot test for S. neurona. Sarcocystis neurona merozoites harvested from equine dermal cell culture were heat denatured, and the proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in a 12-20% linear gradient gel. Separated proteins were electrophoretically transferred to polyvinylidene fluoride membranes and blocked in 1% bovine serum albumin and 0.5% Tween-Tris-buffered saline. Serum samples from 6 horses with S. neurona infections (confirmed by culture from neural tissue) and 57 horses without infections (horses from the Eastern Hemisphere, where S. neurona does not exist) were tested by Western blot. Horses from both groups had reactivity to the 62-, 30-, 16-, 13-, 11-, 10.5-, and 10-kD bands. Testing was repeated with another step. Blots were treated with bovine S. cruzi antibodies prior to loading the equine samples. After this modification of the Western blot test, positive infection status was significantly associated with reactivity to the 30- and 16-kD bands (P<0.001, Fisher's exact test). The S. cruzi antibody-blocked Western blot had a sample sensitivity of 100% and sample specificity of 98%. It is concluded that the specificity of the Western blot test is improved by blocking proteins not specific to S. neurona and using reactivity to the 30- and 16-kD bands as the criterion for a positive test.  相似文献   

7.
Sarcocystis neurona is the most important cause of equine protozoal myeloencephalitis (EPM) in horse in the Americas. The only known definitive host for this parasite in the United States is the opossum (Didelphis virginiana); however, despite the importance of the disease, the epidemiology of the parasite in the definitive host is poorly understood. To begin addressing these data gaps, potential risk factors were evaluated for their association with the presence of sporocysts of S. neurona in opossums live-trapped in March 1999 and November 1999 to May 2000. Sporocysts of S. neurona were found in 19 of the 72 animals examined. Potential risk factors evaluated were locality, trap date, age, gender, the presence of young in the pouch of females, and body condition score. Variables that were associated with the presence of S. neurona sporocysts were used in logistic regression analysis. Of the factors examined, season and body condition score were associated with increased odds of an animal harboring sporocysts.  相似文献   

8.
Fifteen gamma-interferon gene knockout mice were each orally inoculated with 5 x 10(3) Sarcocystis sporocysts derived from Virginia opossums (Didelphis virginiana) fed nine-banded armadillo (Dasypus novemcinctus) muscle containing sarcocysts. Three mice were inoculated with similarly obtained homogenates, but in which no sporocysts were detected. Mouse M8 was pregnant when inoculated and gave birth during the trial. Fifteen of 15 (100%) mice inoculated with sporocysts developed neurologic signs and/or died by day 30 d.p.i. One of 3 (33.3%) mice inoculated with homogenates in which no sporocysts were detected developed clinical signs and died at 34 d.p.i. All young of mouse M8 had maternally acquired antibodies to Sarcocystis neurona, but none developed clinical neurologic signs or had protozoal parasites in their tissues. All brains from mice that developed clinical signs contained merozoites that reacted positively to S. neurona antibodies using immunohistochemical techniques. Evidence from this study further supports the nine-banded armadillo being an intermediate host of S. neurona.  相似文献   

9.
Equine protozoal myeloencephalitis is a common neurologic disease of horses in the Americas usually caused by Sarcocystis neurona. To date, the disease has not been induced in horses using characterized sporocysts from Didelphis virginiana, the definitive host. S. neurona sporocysts from 15 naturally infected opossums were fed to horses seronegative for antibodies against S. neurona. Eight horses were given 5x10(5) sporocysts daily for 7 days. Horses were examined for abnormal clinical signs, and blood and cerebrospinal fluid were harvested at intervals for 90 days after the first day of challenge and analyzed both qualitatively (western blot) and quantitatively (anti-17kDa) for anti-S. neurona IgG. Four of the challenged horses were given dexamethasone (0.1mg/kg orally once daily) for the duration of the experiment. All challenged horses immunoconverted against S. neurona in blood within 32 days of challenge and in CSF within 61 days. There was a trend (P = 0.057) for horses given dexamethasone to immunoconvert earlier than horses that were not immunosuppressed. Anti-17kDa was detected in the CSF of all challenged horses by day 61. This response was statistically greater at day 32 in horses given dexamethasone. Control horses remained seronegative throughout the period in which all challenged horses converted. One control horse immunoconverted in blood at day 75 and in CSF at day 89. Signs of neurologic disease were mild to equivocal in challenged horses. Horses given dexamethasone had more severe signs of limb weakness than did horses not given dexamethasone; however, we could not determine whether these signs were due to spinal cord disease or to effects of systemic illness. At necropsy, mild-moderate multifocal gliosis and neurophagia were found histologically in the spinal cords of 7/8 challenged horses. No organisms were seen either in routinely processed sections or by immunohistochemistry. Although neurologic disease comparable to naturally occurring equine protozoal myeloencephalitis (EPM) was not produced, we had clear evidence of an immune response to challenge both systemically and in the CNS. Broad immunosuppression with dexamethasone did not increase the severity of histologic changes in the CNS of challenged horses. Future work must focus on defining the factors that govern progression of inapparent S. neurona infection to EPM.  相似文献   

10.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in Americans. Most cases are attributed to infection of the central nervous system with Sarcocystis neurona. Parasitemia has not been demonstrated in immunocompetent horses, but has been documented in one immunocompromised foal. The objective of this study was to isolate viable S. neurona from the blood of immunocompetent horses. Horses used in this study received orally administered S. neurona sporocysts (strain SN 37-R) daily for 112 days at the following doses: 100/day for 28 days, followed by 500/day for 28 days, followed by 1000/day for 56 days. On day 98 of the study, six yearling colts were selected for attempted culture of S. neurona from blood, two testing positive, two testing suspect and two testing negative for antibodies against S. neurona on day 84 of the study. Two 10 ml tubes with EDTA were filled from each horse by jugular venipuncture and the plasma fraction rich in mononuclear cells was pipetted onto confluent equine dermal cell cultures. The cultures were monitored weekly for parasite growth for 12 weeks. Merozoites grown from cultures were harvested and tested using S. neurona-specific PCR with RFLP to confirm species identity. PCR products were sequenced and compared to known strains of S. neurona. After 38 days of in vitro incubation, one cell culture from a horse testing positive for antibodies against S. neurona was positive for parasite growth while the five remaining cultures remained negative for parasite growth for all 12 weeks. The Sarcocystis isolate recovered from cell culture was confirmed to be S. neurona by PCR with RFLP. Gene sequence analysis revealed that the isolate was identical to the challenge strain SN-37R and differed from two known strains UCD1 and MIH1. To our knowledge this is the first report of parasitemia with S. neurona in an immunocompetent horse.  相似文献   

11.
Equine protozoal myeloencephalitis (EPM) is a neurologic syndrome in horses from the Americas and is usually caused by infection with the apicomplexan parasite, Sarcocystis neurona. A horse model of EPM is needed to test the efficacy of chemotherapeutic agents and potential vaccines. Five horses that were negative for antibodies to S. neurona in their serum and cerebrospinal fluid (CSF) were injected in the subarachnoid space with living merozoites of the SN2 isolate of S. neurona. None of the horses developed clinical disease or died over a 132-day observation period. All five horses developed antibodies to S. neurona in their CSF and serum 3-4 weeks after injection. Two of the horses were examined at necropsy and no parasite induced lesions were observed in their tissues and no parasites were recovered from portions of their spinal cords inoculated on to cell cultures. Results of this study demonstrate that merozoites of the SN2 isolate of S. neurona will induce seroconversion but not clinical disease when inoculated directly into the CSF of nonimmune horses.  相似文献   

12.
OBJECTIVE: To estimate risk of exposure and age at first exposure to Sarcocystis neurona and Neospora hughesi and time to maternal antibody decay in foals. ANIMALS: 484 Thoroughbred and Warmblood foals from 4 farms in California. PROCEDURE: Serum was collected before and after colostrum ingestion and at 3-month intervals thereafter. Samples were tested by use of the indirect fluorescent antibody test; cutoff titers were > or = 40 and > or = 160 for S neurona and N hughesi, respectively. RESULTS: Risk of exposure to S neurona and N hughesi during the study were 8.2% and 3.1%, respectively. Annual rate of exposure was 3.1% for S neurona and 1.7% for N hughesi. There was a significant difference in the risk of exposure to S neurona among farms but not in the risk of exposure to N hughesi. Median age at first exposure was 1.2 years for S neurona and 0.8 years for N hughesi. Highest prevalence of antibodies against S neurona and N hughesi was 6% and 2.1 %, respectively, at a mean age of 1.7 and 1.4 years, respectively. Median time to maternal antibody decay was 96 days for S neurona and 91 days for N hughesi. There were no clinical cases of equine protozoal myeloenchaphlitis (EPM). CONCLUSIONS AND CLINICAL RELEVANCE: Exposure to S neurona and N hughesi was low in foals between birth and 2.5 years of age. Maternally acquired antibodies may cause false-positive results for 3 or 4 months after birth, and EPM was a rare clinical disease in horses < or = 2.5 years of age.  相似文献   

13.
The Virginia opossum (Didelphis virginiana) is a definitive host for multiple Sarcocystis species including Sarcocystis neurona, one of the causative agents of equine protozoal myeloencephalitis (EPM), a severe, neuromuscular disease of horses. Size and morphologic characteristics of isolates of Sarcocystis shed by the opossum were examined to determine if differences were useful in discriminating between the isolates and/or species. Collections of sporocysts from 17 opossums were molecularly characterized and measured using an ocular micrometer. The mean sporocyst size of isolates of S. neurona was 10.7 microm x 7.0 microm, Sarcocystis falcatula 11.0 microm x 7.1 microm, Sarcocystis speeri 12.2 microm x 8.8 microm, 1085-like isolate 10.9 microm x 6.8 microm, and 3344-like isolate 19.4 microm x 10.5 microm. The length and width of S. speeri were statistically different (p < 0.05) from the sporocysts of other types. The length of S. neurona and S. falcatula sporocysts were statistically different (p < 0.05) from each other and the width of S. falcatula and 1085 differed (p < 0.05). The fifth sporocyst type (3344) was observed, but due to pronounced morphological characteristics, statistical analysis was not performed. There was no consistent difference between the taxa based on internal structure of the sporocyst.  相似文献   

14.
Equine protozoal myeloencephalitis (EPM) is a serious neurological disease of horses in the Americas. The protozoan most commonly associated with EPM is Sarcocystis neurona. The complete life cycle of S. neurona is unknown, including its natural intermediate host that harbors its sarcocyst. Opossums (Didelphis virginiana, Didelphis albiventris) are its definitive hosts. Horses are considered its aberrant hosts because only schizonts and merozoites (no sarcocysts) are found in horses. EPM-like disease occurs in a variety of mammals including cats, mink, raccoons, skunks, Pacific harbor seals, ponies, and Southern sea otters. Cats can act as an experimental intermediate host harboring the sarcocyst stage after ingesting sporocysts. This paper reviews information on the history, structure, life cycle, biology, pathogenesis, induction of disease in animals, clinical signs, diagnosis, pathology, epidemiology, and treatment of EPM caused by S. neurona.  相似文献   

15.
We tested the hypothesis that brown-headed cowbirds (Molothrus ater) harbor Sarcocystis neurona, the agent of equine protozoal myeloencephalitis (EPM), and act as intermediate hosts for this parasite. In summer 1999, wild caught brown-headed cowbirds were collected and necropsied to determine infection rate with Sarcocystis spp. by macroscopic inspection. Seven of 381 (1.8%) birds had grossly visible sarcocysts in leg muscles with none in breast muscles. Histopathology revealed two classes of sarcocysts in leg muscles, thin-walled and thick-walled suggesting two species. Electron microscopy showed that thick-walled cysts had characteristics of S. falcatula and thin-walled cysts had characteristics of S. neurona. Thereafter, several experiments were conducted to confirm that cowbirds had viable S. neurona that could be transmitted to an intermediate host and cause disease. Specific-pathogen-free opossums fed cowbird leg muscle that was enriched for muscle either with or without visible sarcocysts all shed high numbers of sporocysts by 4 weeks after infection, while the control opossum fed cowbird breast muscle was negative. These sporocysts were apparently of two size classes, 11.4+/-0.7 microm by 7.6+/-0.4 microm (n=25) and 12.6+/-0.6 microm by 8.0+/-0 microm (n=25). When these sporocysts were excysted and introduced into equine dermal cell tissue culture, schizogony occurred, most merozoites survived and replicated long term and merozoites sampled from the cultures with long-term growth were indistinguishable from known S. neurona isolates. A cowbird Sarcocystis isolate, Michigan Cowbird 1 (MICB1), derived from thin-walled sarcocysts from cowbirds that was passaged in SPF opossums and tissue culture went on to produce neurological disease in IFNgamma knockout mice indistinguishable from that of the positive control inoculated with S. neurona. This, together with the knowledge that S. falcatula does not cause lesions in IFNgamma knockout mice, showed that cowbird leg muscles had a Sarcocystis that fulfills the first aim of Koch's postulates to produce disease similar to S. neurona. Two molecular assays provided further support that both S. neurona and S. falcatula were present in cowbird leg muscles. In a blinded study, PCR-RFLP of RAPD-derived DNA designed to discriminate between S. neurona and S. falcatula showed that fresh sporocysts from the opossum feeding trial had both Sarcocystis species. Visible, thick-walled sarcocysts from cowbird leg muscle were positive for S. falcatula but not S. neurona; thin-walled sarcocysts typed as S. neurona. In 1999, DNA was extracted from leg muscles of 100 wild caught cowbirds and subjected to a PCR targeting an S. neurona specific sequence of the small subunit ribosomal RNA (SSU rRNA) gene. In control spiking experiments, this assay detected DNA from 10 S. neurona merozoites in 0.5g of muscle. In the 1999 experiment, 23 of 79 (29.1%) individual cowbird leg muscle samples were positive by this S. neurona-specific PCR. Finally, in June of 2000, 265 cowbird leg muscle samples were tested by histopathology for the presence of thick- and thin-walled sarcocysts. Seven percent (18/265) had only thick-walled sarcocysts, 0.8% (2/265) had only thin-walled sarcocysts and 1.9% (5/265) had both. The other half of these leg muscles when tested by PCR-RFLP of RAPD-derived DNA and SSU rRNA PCR showed a good correlation with histopathological results and the two molecular typing methods concurred; 9.8% (26/265) of cowbirds had sarcocysts in muscle, 7.9% (21/265) had S. falcatula sarcocysts, 1.1% (3/265) had S. neurona sarcocysts, and 0.8% (2/265) had both. These results show that some cowbirds have S. neurona as well as S. falcatula in their leg muscles and can act as intermediate hosts for both parasites.  相似文献   

16.
Equine protozoal myeloencephalitis.   总被引:2,自引:0,他引:2  
Recent advances in the understanding of the parasite life cycle, epidemiology, clinical signs, diagnosis, treatment, and prevention of EPM are reviewed. The NAHMS Equine '98 study and a controlled retrospective study from The Ohio State University College of Veterinary Medicine identified a number of risk factors associated with development of the disease. The national annual incidence of EPM was 1% or less depending on the primary use of the animals. Increased disease risk was associated with age (1-5 and > 13 years of age), season (lowest in winter months and increasing with ambient temperature), previous stressful events, the presence of opossums, the use of nonsurface water drinking systems, and failure to restrict wildlife access to feed. Horses that received treatment were 10 times more likely to improve, and those that improved were 50 times more likely to survive. A number of recent studies confirmed that horses can be experimentally infected with S. neurona; however, large numbers of sporocysts are apparently necessary to achieve infection, and clinical signs and abnormal CNS histology are only seen inconsistently. Results suggest that CNS infection and positive CSF immunoblot findings may be transient phenomena among naturally infected horses. Although immunosuppression may be involved in the development of EPM, some element of the immune response seems to be necessary for the development of clinical signs. Use of the standard immunoblot test for the detection of anti-S. neurona antibodies in CSF continues to provide the most useful adjunct to a detailed neurologic examination for the diagnosis of EPM. Test sensitivity and specificity were 89% in 295 horses euthanatized because of neurologic disease, of which 123 were confirmed cases of EPM. The PPV was 85%, and the NVP was 92%. A number of promising new EPM treatments are under investigation. In addition to standard SDZ/PYR therapy, toltrazuril, ponazuril, diclazuril, and NTZ have shown promise as possible alternatives.  相似文献   

17.
Sarcocystis neurona is an important protozoal pathogen because it causes the serious neurological disease equine protozoal myeloencephalitis (EPM). The capacity of this organism to cause a wide spectrum of neurological signs in horses and the broad geographic distribution of observed cases in the Americas drive the need for sensitive, reliable and rapid typing methods to characterize strains. Various molecular methods have been developed and used to diagnose EPM due to S. neurona, to identify S. neurona isolates and to determine the heterogeneity and evolutionary relatedness within this species and related Sarcocystis spp. These methods included sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), immuno-fluorescent assay (IFA), slide agglutination test (SAT), SnSAG-specific ELISA, random amplified polymorphic DNA (RAPD), PCR-based restriction fragment length polymorphism (RFLP), amplified fragment length polymorphism (AFLP) fingerprinting, and sequence analysis of surface protein genes, ribosomal genes, microsatellite alleles and other molecular markers. Here, the utility of these molecular methods is reviewed and evaluated with respect to the need for molecular approaches that utilize well-characterized polymorphic, simple, independent, and stable genetic markers. These tools have the potential to add to knowledge of the genetic population structure of S. neurona and to provide new insights into the pathogenesis of EPM and S. neurona epidemiology. In particular, these methods provide new tools to address the hypothesis that particular genetic variants are associated with adverse clinical outcomes (severe pathotypes). The ultimate goal is to utilize them in future studies to improve treatment and prevention strategies.  相似文献   

18.
Sarcocystis neurona is the parasite most commonly associated with equine protozoal myeloencephalitis (EPM). Recently, cats (Felis domesticus) have been demonstrated to be an experimental intermediate host in the life cycle of S. neurona. This study was performed to determine if cats experimentally inoculated with culture-derived S. neurona merozoites develop tissue sarcocysts infectious to opossums (Didelphis virginiana), the definitive host of S. neurona. Four cats were inoculated with S. neurona or S. neurona-like merozoites and all developed antibodies reacting to S. neurona merozoite antigens, but tissue sarcocysts were detected in only two cats. Muscle tissues from the experimentally inoculated cats with and without detectable sarcocysts were fed to laboratory-reared opossums. Sporocysts were detected in gastrointestinal (GI) scrapings of one opossum fed experimentally infected feline tissues. The study results suggest that cats can develop tissue cysts following inoculation with culture-derived Sarcocystis sp. merozoites in which the particular isolate was originally derived from a naturally infected cat with tissue sarcocysts. This is in contrast to cats which did not develop tissue cysts when inoculated with S. neurona merozoites originally derived from a horse with EPM. These results indicate present biological differences between the culture-derived merozoites of two Sarcocystis isolates, Sn-UCD 1 and Sn-Mucat 2.  相似文献   

19.
Sarcocystis species sporocysts were found in intestinal scrapings from 24 of 72 opossums (Didelphis virginiana) from rural Mississippi. The number of sporocysts in each opossum varied from a few ( < 100000) to 187 million. Sporocysts from 24 opossums were bioassayed for Sarcocystis neurona infections by feeding to gamma-interferon knockout (KO) mice. S. neurona was detected in the brains of KO mice fed sporocysts from 19 opossums by immunohistochemical staining with anti-S. neurona specific polyclonal rabbit serum, and by in vitro culture from the brains of KO mice fed sporocysts. The isolates of S. neurona from opossums were designated SN16-OP to SN34-OP. Merozoites from 17 of 19 isolates tested at the 25/396 locus were identical to previously described S. neurona isolates from horses. The high prevalence of S. neurona sparocysts in D. virginiana suggests that this opossum constitutes an ample reservoir of infection in the southern United States.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号