首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 810 毫秒
1.
Faults in complex tectonic environments interact in various ways, including triggered rupture of one fault by another, that may increase seismic hazard in the surrounding region. We model static and dynamic fault interactions between the strike-slip and thrust fault systems in southern California. We find that rupture of the Sierra Madre-Cucamonga thrust fault system is unlikely to trigger rupture of the San Andreas or San Jacinto strike-slip faults. However, a large northern San Jacinto fault earthquake could trigger a cascading rupture of the Sierra Madre-Cucamonga system, potentially causing a moment magnitude 7.5 to 7.8 earthquake on the edge of the Los Angeles metropolitan region.  相似文献   

2.
Seismological observations of the 2012 moment magnitude 8.6 Sumatra earthquake reveal unprecedented complexity of dynamic rupture. The surprisingly large magnitude results from the combination of deep extent, high stress drop, and rupture of multiple faults. Back-projection source imaging indicates that the rupture occurred on distinct planes in an orthogonal conjugate fault system, with relatively slow rupture speed. The east-southeast-west-northwest ruptures add a new dimension to the seismotectonics of the Wharton Basin, which was previously thought to be controlled by north-south strike-slip faulting. The rupture turned twice into the compressive quadrant, against the preferred branching direction predicted by dynamic Coulomb stress calculations. Orthogonal faulting and compressional branching indicate that rupture was controlled by a pressure-insensitive strength of the deep oceanic lithosphere.  相似文献   

3.
Lin A  Fu B  Guo J  Zeng Q  Dang G  He W  Zhao Y 《Science (New York, N.Y.)》2002,296(5575):2015-2017
Field investigations show that the surface wave magnitude (Ms) 8.1 Central Kunlun earthquake (Tibetan plateau) of 14 November 2001 produced a nearly 400-kilometer-long surface rupture zone, with as much as 16.3 meters of left-lateral strike-slip along the active Kunlun fault in northern Tibet. The rupture length and maximum displacement are the largest among the co-seismic surface rupture zones reported on so far. The strike-slip motion and the large rupture length generated by the earthquake indicate that the Kunlun fault partitions its deformation into an eastward extrusion of Tibet to accommodate the continuing penetration of the Indian plate into the Eurasian plate.  相似文献   

4.
We showed that the rupture produced by the great Peru earthquake (moment magnitude 8.4) on 23 June 2001 propagated for approximately 70 kilometers before encountering a 6000-square-kilometer area of fault that acted as a barrier. The rupture continued around this barrier, which remained unbroken for approximately 30 seconds and then began to break when the main rupture front was approximately 200 kilometers from the epicenter. The barrier had relatively low rupture speed, slip, and aftershock density as compared to its surroundings, and the time of the main energy release in the earthquake coincided with the barrier's rupture. We associate this barrier with a fracture zone feature on the subducting oceanic plate.  相似文献   

5.
The 3 November 2002 moment magnitude 7.9 Denali fault earthquake generated large, permanent surface displacements in Alaska and large-amplitude surface waves throughout western North America. We find good agreement between strong ground-motion records integrated to displacement and 1-hertz Global Positioning System (GPS) position estimates collected approximately 140 kilometers from the earthquake epicenter. One-hertz GPS receivers also detected seismic surface waves 750 to 3800 kilometers from the epicenter, whereas these waves saturated many of the seismic instruments in the same region. High-frequency GPS increases the dynamic range and frequency bandwidth of ground-motion observations, providing another tool for studying earthquake processes.  相似文献   

6.
Seismic evidence for an earthquake nucleation phase   总被引:4,自引:0,他引:4  
Near-source observations show that earthquakes initiate with a distinctive seismic nucleation phase that is characterized by a low rate of moment release relative to the rest of the event. This phase was observed for the 30 earthquakes having moment magnitudes 2.6 to 8.1, and the size and duration of this phase scale with the eventual size of the earthquake. During the nucleation phase, moment release was irregular and appears to have been confined to a limited region of the fault. It was characteristically followed by quadratic growth in the moment rate as rupture began to propagate away from the nucleation zone. These observations suggest that the nucleation process exerts a strong influence on the size of the eventual earthquake.  相似文献   

7.
Segall P  Harris R 《Science (New York, N.Y.)》1986,233(4771):1409-1413
A network of geodetic lines spanning the San Andreas fault near the rupture zone of the 1966 Parkfield, California, earthquake (magnitude M = 6) has been repeatedly surveyed since 1959. In the study reported here the average rates of line-length change since 1966 were inverted to determine the distribution of interseismic slip rate on the fault. These results indicate that the Parkfield rupture surface has not slipped significantly since 1966. Comparison of the geodetically determined seismic moment of the 1966 earthquake with the interseismic slip-deficit rate suggests that the strain released by the latest shock will most likely be restored between 1984 and 1989, although this may not occur until 1995. These results lend independent support to the earlier forecast of an M = 6 earthquake near Parkfield within 5 years of 1988.  相似文献   

8.
The Landers earthquake, which had a moment magnitude (M(w)) of 7.3, was the largest earthquake to strike the contiguous United States in 40 years. This earthquake resulted from the rupture of five major and many minor right-lateral faults near the southern end of the eastern California shear zone, just north of the San Andreas fault. Its M(w) 6.1 preshock and M(w) 6.2 aftershock had their own aftershocks and foreshocks. Surficial geological observations are consistent with local and far-field seismologic observations of the earthquake. Large surficial offsets (as great as 6 meters) and a relatively short rupture length (85 kilometers) are consistent with seismological calculations of a high stress drop (200 bars), which is in turn consistent with an apparently long recurrence interval for these faults.  相似文献   

9.
Observations and modeling of 3- to 6-hertz seismic shear waves trapped within the fault zone of the 1992 Landers earthquake series allow the fine structure and continuity of the zone to be evaluated. The fault, to a depth of at least 12 kilometers, is marked by a zone 100 to 200 meters wide where shear velocity is reduced by 30 to 50 percent. This zone forms a seismic waveguide that extends along the southern 30 kilometers of the Landers rupture surface and ends at the fault bend about 18 kilometers north of the main shock epicenter. Another fault plane waveguide, disconnected from the first, exists along the northern rupture surface. These observations, in conjunction with surface slip, detailed seismicity patterns, and the progression of rupture along the fault, suggest that several simple rupture planes were involved in the Landers earthquake and that the inferred rupture front hesitated or slowed at the location where the rupture jumped from one to the next plane. Reduction in rupture velocity can tentatively be attributed to fault plane complexity, and variations in moment release can be attributed to variations in available energy.  相似文献   

10.
Major earthquakes occur regularly on an isolated plate boundary fault   总被引:2,自引:0,他引:2  
The scarcity of long geological records of major earthquakes, on different types of faults, makes testing hypotheses of regular versus random or clustered earthquake recurrence behavior difficult. We provide a fault-proximal major earthquake record spanning 8000 years on the strike-slip Alpine Fault in New Zealand. Cyclic stratigraphy at Hokuri Creek suggests that the fault ruptured to the surface 24 times, and event ages yield a 0.33 coefficient of variation in recurrence interval. We associate this near-regular earthquake recurrence with a geometrically simple strike-slip fault, with high slip rate, accommodating a high proportion of plate boundary motion that works in isolation from other faults. We propose that it is valid to apply time-dependent earthquake recurrence models for seismic hazard estimation to similar faults worldwide.  相似文献   

11.
Ide S  Baltay A  Beroza GC 《Science (New York, N.Y.)》2011,332(6036):1426-1429
Strong spatial variation of rupture characteristics in the moment magnitude (M(w)) 9.0 Tohoku-Oki megathrust earthquake controlled both the strength of shaking and the size of the tsunami that followed. Finite-source imaging reveals that the rupture consisted of a small initial phase, deep rupture for up to 40 seconds, extensive shallow rupture at 60 to 70 seconds, and continuing deep rupture lasting more than 100 seconds. A combination of a shallow dipping fault and a compliant hanging wall may have enabled large shallow slip near the trench. Normal faulting aftershocks in the area of high slip suggest dynamic overshoot on the fault. Despite prodigious total slip, shallower parts of the rupture weakly radiated at high frequencies, whereas deeper parts of the rupture radiated strongly at high frequencies.  相似文献   

12.
A flying start, then a slow slip   总被引:1,自引:0,他引:1  
Bilham R 《Science (New York, N.Y.)》2005,308(5725):1126-1127
The human tragedy caused by the Sumatra-Andaman earthquake (moment magnitude 9.3) on 26 December 2004 and its companion Nias earthquake (moment magnitude 8.7) on 28 March 2005 is difficult to comprehend. These earthquakes, the largest in 40 years, have also left seismologists searching for the words and tools to describe the enormity of the geological processes involved. Four papers in this issue discuss aspects of a rupture process of surprising complexity, the first such event to test the sensitivity and range of many new technologies. A surprising feature of the earthquake is that after the initial rapid rupture, subsequent slip of the plate interface occurred with decreasing speed toward the north.  相似文献   

13.
The Morgan Hill, California, earthquake (magnitude 6.1) of 24 April 1984 ruptured a 30-kilometer-long segment of the Calaveras fault zone to the east of San Jose. Although it was recognized in 1980 that an earthquake of magnitude 6 occurred on this segment in 1911 and that a repeat of this event might reasonably be expected, no short-term precursors were noted and so the time of the 1984 earthquake was not predicted. Unilateral rupture propagation toward the south-southeast and an energetic late source of seismic radiation located near the southeast end of the rupture zone contributed to the highly focused pattern of strong motion, including an exceptionally large horizontal acceleration of 1.29g at a site on a dam abutment near the southeast end of the rupture zone.  相似文献   

14.
A 24 percent precursory change in apparent electrical resistivity was observed before a magnitude 3.9 earthquake of strike-slip nature on the San Andreas fault in central California. The experimental configuration and numerical calculations suggest that the change is associated with a volume at depth rather than some near-surface phenomenon. The character and duration of the precursor period agree well with those of other earthquake studies and support a dilatant earthquake mechanism model.  相似文献   

15.
Peltzer G  Rosen P 《Science (New York, N.Y.)》1995,268(5215):1333-1336
Satellite synthetic aperture radar (SAR) interferometry shows that the magnitude 6.1 Eureka Valley earthquake of 17 May 1993 produced an elongated subsidence basin oriented north-northwest, parallel to the trend defined by the aftershock distribution, whereas the source mechanism of the earthquake implies a north-northeast-striking normal fault. The +/-3-millimeter accuracy of the radar-observed displacement map over short spatial scales allowed identification of the main surface rupture associated with the event. These observations suggest that the rupture began at depth and propagated diagonally upward and southward on a west-dipping, north-northeast fault plane, reactivating the largest escarpment in the Saline Range.  相似文献   

16.
We use Global Positioning System (GPS) observations and elastic half-space models to estimate the distribution of coseismic and postseismic slip along the Izmit earthquake rupture. Our results indicate that large coseismic slip (reaching 5.7 meters) is confined to the upper 10 kilometers of the crust, correlates with structurally distinct fault segments, and is relatively low near the hypocenter. Continued surface deformation during the first 75 days after the earthquake indicates an aseismic fault slip of as much as 0.43 meters on and below the coseismic rupture. These observations are consistent with a transition from unstable (episodic large earthquakes) to stable (fault creep) sliding at the base of the seismogenic zone.  相似文献   

17.
We detected and measured coseismic displacement caused by the 11 March 2011 Tohoku-Oki earthquake [moment magnitude (M(W)) 9.0] by using multibeam bathymetric surveys. The difference between bathymetric data acquired before and after the earthquake revealed that the displacement extended out to the axis of the Japan Trench, suggesting that the fault rupture reached the trench axis. The sea floor on the outermost landward area moved about 50 meters horizontally east-southeast and ~10 meters upward. The large horizontal displacement lifted the sea floor by up to 16 meters on the landward slope in addition to the vertical displacement.  相似文献   

18.
Large earthquakes produce crustal deformation that can be quantified by geodetic measurements, allowing for the determination of the slip distribution on the fault. We used data from Global Positioning System (GPS) networks in Central Chile to infer the static deformation and the kinematics of the 2010 moment magnitude (M(w)) 8.8 Maule megathrust earthquake. From elastic modeling, we found a total rupture length of ~500 kilometers where slip (up to 15 meters) concentrated on two main asperities situated on both sides of the epicenter. We found that rupture reached shallow depths, probably extending up to the trench. Resolvable afterslip occurred in regions of low coseismic slip. The low-frequency hypocenter is relocated 40 kilometers southwest of initial estimates. Rupture propagated bilaterally at about 3.1 kilometers per second, with possible but not fully resolved velocity variations.  相似文献   

19.
Laboratory and theoretical studies suggest that earthquakes are preceded by a phase of developing slip instability in which the fault slips slowly before accelerating to dynamic rupture. We report here that one of the best-recorded large earthquakes to date, the 1999 moment magnitude (M(w)) 7.6 Izmit (Turkey) earthquake, was preceded by a seismic signal of long duration that originated from the hypocenter. The signal consisted of a succession of repetitive seismic bursts, accelerating with time, and increased low-frequency seismic noise. These observations show that the earthquake was preceded for 44 minutes by a phase of slow slip occurring at the base of the brittle crust. This slip accelerated slowly initially, and then rapidly accelerated in the 2 minutes preceding the earthquake.  相似文献   

20.
A silent slip event on the deeper Cascadia subduction interface   总被引:1,自引:0,他引:1  
Continuous Global Positioning System sites in southwestern British Columbia, Canada, and northwestern Washington state, USA, have been moving landward as a result of the locked state of the Cascadia subduction fault offshore. In the summer of 1999, a cluster of seven sites briefly reversed their direction of motion. No seismicity was associated with this event. The sudden displacements are best explained by approximately 2 centimeters of aseismic slip over a 50-kilometer-by-300-kilometer area on the subduction interface downdip from the seismogenic zone, a rupture equivalent to an earthquake of moment magnitude 6.7. This provides evidence that slip of the hotter, plastic part of the subduction interface, and hence stress loading of the megathrust earthquake zone, can occur in discrete pulses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号