首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
基于远程监控的农业气象自动采集系统设计   总被引:4,自引:1,他引:3  
针对传统农业气象观测和当前传感器技术系统、方法存在的不足,设计了一套基于远程监控的农业气象自动采集系统,其硬件设备由农田小气候信息采集前端、视频图像信息采集前端、数据采集装置、数据传输装置和供电设备组成。该系统实现了农田小气候和视频图像信息参数采集与传输的高度集成,自动采集降水量、气温、空气湿度、风速、风向、光合有效辐射、土壤温度、土壤湿度和农作物视频图像信息,并通过远程客户端软件实现各要素信息的实时动态显示和远程监控。通过在郑州市、鹤壁市、温江市和荆州市开展的采集试验和系统试运行表明,系统显示出较好的稳定性,农田小气候和视频图像要素数据的采集、传输、动态实时显示与远程监控等各项功能均可满足各级用户需求。  相似文献   

2.
基于ZigBee和ARM9的农田墒情远程监测系统   总被引:2,自引:1,他引:1  
针对农田信息采集的需要,设计了一套基于ZigBee网络与GPRS网络相结合的远程监测系统。农田信息数据的采集利用CC2430无线射频芯片完成,可采集土壤温度、作物叶片温度、土壤含水量和光照强度。系统控制终端基于ARM9和嵌入式Linux操作系统进行设计,用于农田信息的接收、实时显示和存储,通过GPRS方式实现与远程管理...  相似文献   

3.
基于嵌入式技术的农田信息远程采集系统   总被引:1,自引:1,他引:0  
根据农田信息远程监测的特点, 提出了一种基于嵌入式系统和无线远程通信技术相结合的系统解决方案.该系统以ARM7 CPU 为硬件核心, 通过μC/ OS-Ⅱ嵌入式操作系统的调度与管理, 实现农业信息的实时采集与处理, 然后经由GPRS 无线移动通信模块发送至数据中心服务器.服务器接受数据,并采用ASP.NET技术实现动态WEB 发布.该系统的实现满足了农田信息远程监测的各种需要,为农田信息现代化提供了重要支持.  相似文献   

4.
针对农田环境的特点,介绍了一种基于ZigBee技术的开发,并在此基础上研制了实时在线监控的自动节水灌溉系统。通过无线移动网络(TD-SCDMA)和INTERNET的连接,实现数据远程传输至数据库服务器。远程监控中心下达命令唤醒子站,子站响应命令采集数据并传送到远程监控中心,从而指导灌溉。从硬件和软件方面描述了系统的设计及实现方法。实际应用表明:系统工作性能稳定,数据传输可靠,基本达到了设计要求。  相似文献   

5.
针对传统粮库远程监控大多使用有线通信的现状,设计了一种基于GSM模块的粮库远程无线监控系统。该系统主要由GSM模块、单片机、温度检测模块、火灾信息检测模块和输出控制模块等部分组成。系统能够监控粮库温度、火灾和盗警等环境信息,并能以短信息方式发送给远程监控手机,同时能够通过短信息实现对粮库有关设备的控制。该系统采用GSM通信网络实现粮库远程无线监控,具有成本低、通信安全性高、工作可靠及操作简单等特点。  相似文献   

6.
为实现对农田环境参数的监测,设计了基于物联网的农田环境监测系统。系统基于EPC架构,构建网络框架,感知层采用ZigBee传感节点。传感节点实时采集与农田生产有关的多个重要环境参数,对作物形态进行可控图像采集,通过网络构建层将各种数据发送到远程监测服务层。对监测系统进行了试验,结果表明,系统可对播种进度、苗期、花期、施肥、打药、灌水、适时收获、病虫害和质量监控等过程中的信息进行采集。   相似文献   

7.
以MSP430为核心控制器,设计一种小型冷库温度自动调节以及实时远程监控系统,利用数字温度传感器DS18B20实时检测库房温度并传送给单片机,做出控制决策,并利用GSM通讯网络传输温度、故障等信息至用户手机。详细阐述冷库库房温度采集系统、单片机控制系统和GSM短信息系统的设计思想,并在某小型冷库中进行试验,实现小型冷库的自动控制和远程监控。  相似文献   

8.
设计开发了基于ZigBee无线传感网络技术的棉田滴灌监测与控制系统。该系统通过无线传感网络实时采集土壤环境信息,使用自适应加权融合算法对各节点土壤湿度数据进行融合,根据融合数据发送电磁阀控制命令,完成实时监测自动灌溉;结合棉花不同生育期对需肥量和施肥浓度的要求,根据灌溉水量设置注肥比例,系统通过无线传感网络实时采集液态肥流量,实时监控施肥量,并根据施肥量发送施肥电磁阀控制命令,完成水肥一体化灌溉。工作过程中,系统可以将传感器采集的数据通过ZigBee无线网络协调器传输给上位机并实时显示和存储。通过试验验证,该系统可以按照设计要求实现灌溉和施肥的自动控制与检测。  相似文献   

9.
基于ZigBee和模糊控制决策的自动灌溉系统的设计   总被引:1,自引:0,他引:1  
针对节水灌溉受多种因素影响难以建立精确控制模型的特点,为了实现作物的自动、实时与适量灌溉,设计了基于ZigBee和模糊控制决策的全自动灌溉系统。该系统通过ZigBee无线传感器网络采集土壤水势与环境气象信息,由农田蒸散量和土壤水势作为输入,以作物需水量为输出,采用模糊推理规则,使用分段模糊控制策略获得了作物的需水量,构成智能灌溉系统;采用ARM9微处理器,基于嵌入式Linux开发了网关节点,实现了数据的汇聚和GPRS通信方式的远程数据及命令转发。试验结果表明:该系统能快速准确地计算出作物的需水量,经济实用,有效地实现了全自动节水灌溉,特别适用于中小型灌溉区域的精细灌溉。  相似文献   

10.
从精准灌溉的需求出发,针对农田种植区域广、数据采集量大、信息实时传输难的特点,设计了基于nRF24L01无线传感器网络与GPRS相结合的农田信息采集系统,一方面解决了无线传感网络远程数据传输问题,另一方面解决了GPRS在特定区域内有较多检测点时,成本过高等问题。通过试验表明,该系统能够在实际生产过程中减少人力操作和人工测量的误差,降低农业生产的成本,并可以实现农田信息自动精确的实时采集。  相似文献   

11.
设计开发了一套基于Zigbee无线网络的温室远程监控系统,通过无线网络实现了对温室内温湿度、土壤含水量和CO2浓度的监测与调控,以及温室顶模的开模闭膜远程控制。温室远程监控系统由温室数据采集控制器和温室远程监控软件组成。温室数据采集控制器可以实现本地手动、遥控器遥控和控制室远程无线控制一体化集成控制。温室远程监控软件将采集到的数据进行汇总、显示和记录,实现了温室设备的自动控制和远程遥控。整个系统操作简单,经济适用,并且布线方便。  相似文献   

12.
为了进一步提高冬小麦产量预测的准确性,针对麦玉轮作体系缺乏直接把前茬作物信息纳入到当季作物的产量估算及管理中的研究状况,利用前茬玉米季中长势遥感信息及产量信息,融合小麦拔节期、灌浆期及成熟期长势遥感信息、播前施肥信息及土壤特性信息等多时相多模态数据,基于GPR算法,建立多时相多模态参数融合的麦玉轮作体系小麦产量估算模型,结果显示:基于多生育期的产量估算模型较单生育期最优产量估算模型性能有所提升,R2提高0.01~0.03。其中基于拔节期产量估算模型精度略低于多生育期产量估算模型,但精度相近。基于多模态参数融合的产量估算模型中,除玉米作物信息与土壤特性信息融合构建的产量估算模型,多模态参数融合的产量估算模型精度较相应低模态参数融合的产量估算模型精度高。四模态参数融合的GPR模型决定系数R2为0.92,RMSE为213.75 kg/hm2,较其他模型,R2提高0.02~0.41。对于小麦产量估算模型,各模态参数影响由大到小依次为施肥信息、小麦遥感信息、土壤特性信息、玉米作物信息。玉米作物信息对于多模态参...  相似文献   

13.
为充分掌握土壤水分、环境温度、环境湿度与光照情况,实现适时、适地、适量灌溉,施肥与远程管理,设计了基于无线传感器网络技术,结合GPS定位(用于WSN锚节点的定位)技术的果园数字信息采集与管理系统。该系统通过相应的传感器采集果园微气象信息(包括土壤水分、环境温度、环境湿度与光照等),并在无线传感网络的支持下,先结合GPS确定少数锚节点的位置,再根据锚节点计算出未知节点的相对位置,从而确定所有节点的位置信息。采集到的信息经转换后直接接入ES(专家系统),用ES输出辅助决策信息(状态评价结果,包括精确灌溉与环境控制建议等)给用户,实现了果园数字化管理的可视化、便利化。   相似文献   

14.
基于GSM和GIS的土壤水分信息远程采集与决策系统   总被引:2,自引:0,他引:2  
定点观测是野外信息获取的一种重要方式,以田间土壤水分固定观测点信息的远程采集为例,介绍了一种通过GSM公共网实现消息传递控制田间土壤水分传感器,实现远程的田间土壤水分信息采集,并通过以GIS为平台的信息服务中心实现信息采集与灌溉决策无缝集成的系统;最后探讨了利用GIS进行土壤特性分区,并以分区为基础实现土壤水分固定信息采集点布局设计的方法。  相似文献   

15.
丘陵地区蓝莓园智能灌溉决策系统设计   总被引:2,自引:0,他引:2  
针对丘陵地区蓝莓园灌溉过程中水资源浪费严重、劳动力严重短缺的问题,基于物联网技术,研究并设计了一套智能灌溉决策系统。系统包括信息采集模块、无线通信模块、智能决策模块和灌溉执行模块。信息采集模块通过布设的土壤水分传感器和小型气象站实时采集蓝莓园土壤墒情信息和环境信息(风速、降雨量、温度、湿度);无线传输模块将信息采集模块采集到的数据实时发送到服务器端进行分析处理,并将智能决策模块的计算结果传送给灌溉执行模块;智能决策模块中,基于前期采集的历史数据使用彭曼公式和土壤水平衡公式建立灌溉决策模型,实现蒸腾量和灌溉量的计算以及实时监控与报警,该模型可根据实时获取的数据,确定是否需要灌溉及最优的灌溉量;灌溉执行模块根据接收到的灌溉信息及实际的灌溉速度计算灌溉时间,进行远程灌溉;以Visual Studio软件为平台,设计了系统上位机的监控界面,可实现土壤和环境参数的实时检测和存储、作物需水状况的分析管理以及实时预警和灌溉决策。试验结果表明,该智能灌溉决策系统可在无人干预的情况下,根据传感器采集的信息自行判断作物需水情况,当系统认为作物需要灌溉时自行驱动灌溉装置完成灌溉,从而实现蓝莓园的远程精确灌溉,节省了人力物力,有效提高了灌溉水的利用率。  相似文献   

16.
基于无线传感器网络的土壤信息采集系统   总被引:1,自引:0,他引:1  
张增林  郁晓庆 《节水灌溉》2011,(12):41-43,49
针对土壤信息采集的需要,提出了把无线传感器应用于土壤信息采集的思路,研究设计了一套基于无线传感器网络的土壤信息采集系统。节点设计采用低功耗MSP430单片机和CC2430 ZigBee无线射频芯片完成,可采集土壤温度、湿度和土壤含水率。系统网关设计基于ARM7系列S3C4480X、GPRS模块SIM100,搭建了农田中...  相似文献   

17.
张帆  肖志锋 《农业工程》2013,3(5):53-54
针对江西丘陵地区作物种植分布广、监测点多、布线和供电困难等特点,利用物联网技术,采用高精度土壤温湿度传感器和智能气象站,建立土壤墒情监测系统,远程在线采集代表性地块土壤墒情、气象信息,实现墒情(旱情)自动预报、灌溉用水量智能决策和远程灌溉设备自动控制等功能。   相似文献   

18.
为了解决偏远及地势复杂地区的自动灌溉控制问题,设计实现了一套嵌入式自动化节水灌溉系统。以STM3 2嵌入式控制器为核心,采用无线Zig Bee网络技术采集室外环境参数,通过上位机监测被测区域的温湿度变化,控制执行机构实现监测环境的温湿度控制调节。中央控制器与上位机采用E31-TTL-50无线通信,采用窄带无线方式进行数据传输,实现了机械臂智能灌溉、上位机远程监控系统查询、设置参数及实时监测等功能要求。  相似文献   

19.
为实现多个农机在农田环境中自主导航协同作业,设计了基于TD-LTE的多机协同导航通信系统。该系统由导航定位传感器、无线通信模块、车载控制终端和远程通信软件组成,其中:传感器包含GNSS接收机、惯性测量单元(IMU)和角度传感器,用于获取每台农机的地理位置、自身姿态和车辆转向角信息。无线通信模块采用4G DTU作为系统通信设备,与车载终端串口相连,实现RS232串口转TD-LTE网络功能。4G DTU经配置软件配置好串口参数等信息后,连接目的服务器IP地址和端口号,将车载传感器采集的数据按设计好的通信协议经TD-LTE网络传输到远程服务器的通信软件中。车载控制终端采用工控机(IPC),实现农机自动导航控制与人机交互。远程通信软件应用Socket网络编程开发了数据接收显示与数据发送的功能模块。系统对每台农机的状态信息实时上传的同时也可以接收远程服务器端对多台农机的协同控制命令,对于软件界面中显示的在线农机,可以根据优先级有选择的进行通信。以4台雷沃欧豹拖拉机为试验平台,每台农机状态信息的发送频率为5Hz,进行了系统稳定性试验测试,丢包率均为0.1%,且均无延迟,系统具有较高的可靠性与实时性。  相似文献   

20.
在当前智慧农业的大环境下,农作物生长过程的识别与监控问题一直是一项具有挑战性的任务,基于此提出一种基于物联网的远程温室视觉监控系统,系统通过LoRa无线通信技术监测温室内的温湿度、光照强度等环境参数,能够及时监测到农作物的生长状况,并实现自动通风、自动补光等功能。在PC端的Qt上位机实时监测温室内的环境信息并控制环境参数,通过OV9726摄像头对农作物进行监测,所获得的生长状态信息传输到S3C6410集中控制模块进行处理,结合克隆选择算法和朴素贝叶斯分类器对叶片进行识别处理。本系统采用LoRa模块进行自组网来实现环境监测,将Linux操作系统移植到集中控制模块,为视觉系统软硬件平台的搭建做准备工作,所使用的组合算法能够使得农作物叶片识别率达到95.3%,识别时间达到8.4 ms,对于叶片识别精度等方面有着明显的提升,经过实验充分验证本系统所使用的设备与算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号