首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, we have shown that roasted peanuts have a higher level of IgE binding (i.e., potentially more allergenic) than raw peanuts. We hypothesized that this increase in IgE binding of roasted peanuts is due to an increased levels of protein-bound end products or adducts such as advanced glycation end products (AGE), N-(carboxymethyl)lysine (CML), malondialdehyde (MDA), and 4-hydroxynonenal (HNE). To support our hypothesis, we produced polyclonal antibodies (IgG) to each of these adducts, determined their levels in raw and roasted peanuts, and examined their ability to bind to IgE from a pooled serum of patients with clinically important peanut allergy. Results showed that AGE, CML, MDA, and HNE adducts were all present in raw and roasted peanuts. Roasted peanuts exhibited a higher level of AGE and MDA adducts than raw peanuts. IgE was partially inhibited in a competitive ELISA by antibodies to AGE but not by antibodies to CML, MDA, or HNE. This indicates that IgE has an affinity for peanut AGE adducts. Roasted peanuts exhibited a higher level of IgE binding, which was correlated with a higher level of AGE adducts. We concluded that there is an association between AGE adducts and increased IgE binding (i.e., allergenicity) of roasted peanuts.  相似文献   

2.
The high-oleic-acid trait improves the oxidative stability of peanuts (Arachis hypogaea L.) and their products. The explicit effect of the trait on sensory quality, particularly on off-flavors associated with oil rancidity, has not been well documented. To assess the effect of the trait on off-flavors, data from two independent databases were analyzed to compare sensory quality and composition in normal- versus high-oleic peanut genotypes. In data collected using a sensory panel in the Department of Food Science at North Carolina State University, there were small differences between near-isogenic lines for intensities of the roasted peanut, astringent, over-roast, and nutty attributes, with the high-oleic lines exhibiting slightly greater intensities of those attributes. There were no differences for off-flavors such as fruity, painty, stale, moldy, or petroleum. In data collected from the multistate Uniform Peanut Performance Test and evaluated by a panel in the USDA-ARS Market Quality and Handling Research Unit (MQHRU) at Raleigh, NC, there were differences in chemical composition associated with the high-oleic trait, including differences in oil content, tocopherols, and carbohydrates in addition to the expected differences in fatty acid contents. There were small decreases in the intensities of the sensory attributes cardboard and painty associated with the high-oleic trait in the MQHRU data when all high-oleic lines were compared with all normal-oleic lines. Comparison of the near-isogenic pair NC 7 and N00090ol showed differences in oil and glucose contents, but not in sensory attributes. The high-oleic trait does not appear to have a major impact on sensory quality on average, although there were individual instances in which the trait was associated with shifts in sensory attribute intensities that may be perceptible to consumers.  相似文献   

3.
The processes of peanut maturation, curing, and roasting are known to have an important role in peanut flavors. One of these processes (i.e., roasting) has been found to have an effect on allergenicity. To determine if the other processes (i.e., maturation and curing) affect allergenicity, mature and immature roasted peanuts and peanuts cured at different temperatures (35-77 degrees C) were, respectively, tested for IgE binding and advanced glycation end adducts (AGEs). Peanuts with and without stress proteins, which are associated with peanut maturation and curing, were also tested. Results showed that mature roasted peanuts exhibited a higher IgE binding and AGEs level than immature roasted peanuts. Curing temperatures between 35 and 60 degrees C gave no difference in the profiles. However, a higher curing temperature (i.e., 77 degrees C) exhibited a profile of higher levels of AGEs and IgE binding. These levels were higher in peanuts with stress proteins than without stress proteins. Roasting increased stress protein level and IgE binding. From these results, the processes of maturation and curing, in conjunction with roasting, may be associated with allergenicity, suggesting that these processes may lead to changes in the allergenic properties of peanuts.  相似文献   

4.
There has been much interest in the effect of the high-oleic acid trait of peanuts on various quality factors since discovery of high levels of oleic acid in a peanut mutant genotype. The trait provides greater oxidative stability for the high-oleic oil and seed. Several research groups have investigated high-oleic peanut oil and roasted peanut flavor characteristics, which were similar within high-oleic lines compared to Florunner. It was observed that some high-oleic lines derived from the Sunrunner cultivar have consistently higher predicted breeding values for roasted peanut attribute than Sunrunner itself. This study investigated if this apparent effect of the trait was an artifact arising from the handling procedures during processing and storage or from flavor fade. High-oleic lines used were derived by backcrossing the trait into existing cultivars, and the comparison of sensory attribute intensity was with the recurrent parent used in backcrossing. Previous comparisons have been between lines differing in more than just oleate content, that is, with widely different background genotypes that could contribute to the differences observed. Differential rates of change in sensory attributes were found in different background genotypes, suggesting that the comparison of high- and normal-oleic lines should be made in common background genotypes as well as in common production and postharvest environments. There was no measurable change in roasted peanut attribute in samples stored at -20 degrees C over the 63 day duration of this experiment. There were changes in roasted peanut in samples stored at 22 degrees C, confirming that storage at -20 degrees C is sufficient for large studies that require multiple sensory panel sessions over a period of weeks.  相似文献   

5.
Allergenicity of Maillard reaction products from peanut proteins   总被引:2,自引:0,他引:2  
It is known that peanut allergy is caused by peanut proteins. However, little is known about the impact of roasting on the allergenicity of peanuts. During roasting, proteins react with sugars to form Maillard reaction products, which could affect allergenicity. To determine if the Maillard reaction could convert a nonallergenic peanut protein into a potentially allergenic product, nonallergenic lectin was reacted with glucose or fructose at 50 degrees C for 28 days. Browning products from heat-treated peanuts were also examined. The products were analyzed in immunoblot and competitive assays, using a pooled serum (i.e., IgE antibodies) from patients with peanut anaphylaxis. Results showed that the products were recognized by IgE and had an inhibitory effect on IgE binding to a peanut allergen. Thus, the findings suggest that these Maillard reaction products are potentially allergenic and indicate the need to verify whether the Maillard reaction products formed in peanuts during roasting increase their allergenicity.  相似文献   

6.
Influence of thermal processing on the allergenicity of peanut proteins   总被引:3,自引:0,他引:3  
Peanuts are one of the most common and severe food allergens. Nevertheless, the occurrence of peanut allergy varies between countries and depends on both the exposure and the way peanuts are consumed. Processing is known to influence the allergenicity of peanut proteins. The aim of this study was to assess the effect of thermal processing on the IgE-binding capacity of whole peanut protein extracts and of the major peanut allergens Ara h 1 and Ara h 2. Whole proteins, Ara h 1, and Ara h 2 were extracted and purified from raw, roasted and boiled peanuts using selective precipitation and multiple chromatographic steps, and were then characterized by electrophoresis and mass spectrometry. The immunoreactivity of whole peanut extracts and purified proteins was analyzed by the enzyme allergosorbent test (EAST) and EAST inhibition using the sera of 37 peanut-allergic patients. The composition of the whole protein extracts was modified after heat processing, especially after boiling. The electrophoretic pattern showed protein bands of low molecular weight that were less marked in boiled than in raw and roasted peanuts. The same low-molecular-weight proteins were found in the cooking water of peanuts. Whole peanut protein extracts obtained after the different processes were all recognized by the IgE of the 37 patients. The IgE-binding capacity of the whole peanut protein extracts prepared from boiled peanuts was 2-fold lower than that of the extracts prepared from raw and roasted peanuts. No significant difference was observed between protein extracts from raw and roasted peanuts. It is noteworthy that the proteins present in the cooking water were also recognized by the IgE of peanut-allergic patients. IgE immunoreactivity of purified Ara h 1 and Ara h 2 prepared from roasted peanuts was higher than that of their counterparts prepared from raw and boiled peanuts. The IgE-binding capacity of purified Ara h 1 and Ara h 2 was altered by heat treatment and in particular was increased by roasting. However, no significant difference in IgE immunoreactivity was observed between whole protein extracts from raw and roasted peanuts. The decrease in allergenicity of boiled peanuts results mainly from a transfer of low-molecular-weight allergens into the water during cooking.  相似文献   

7.
Peanut allergy is a public health issue. The culprits are the peanut allergens. Reducing the allergenic properties of these allergens or proteins will be beneficial to allergic individuals. In this study, the objective was to determine if peroxidase (POD), which catalyzes protein cross-linking, reduces the allergenic properties of peanut allergens. In the experiments, protein extracts from raw and roasted defatted peanut meals at pH 8 were incubated with and without POD in the presence of hydrogen peroxide at 37 degrees C for 60 min. The POD-treated and untreated samples were then analyzed by SDS-PAGE, western blots, and competitive inhibition ELISA. IgE binding or allergenicity was determined in blots and ELISA. Results showed that POD treatment had no effect on raw peanuts with respect to protein cross-linking. However, a significant decrease was seen in the levels of the major allergens, Ara h 1 and Ara h 2, in roasted peanuts after POD treatment. Also, polymers were formed. Despite this, a reduction in IgE binding was observed. It was concluded that POD induced the cross-linking of mainly Ara h 1 and Ara h 2 from roasted peanuts and that, due to POD treatment, IgE binding was reduced. The finding indicates that POD can help reduce the allergenic properties of roasted peanut allergens.  相似文献   

8.
Peanut pods (Tainan 12, a Spanish cultivar, Arachis hypogaea L.) have been obtained from peanuts grown in a newly developed aquatic floating cultivation system without artificial aeration or periodic renewal of the solution. The system provided a convenient status for examination of root and pod development. Compared to field-grown peanuts of the same cultivar, the aquatic-cultivated peanut pods and seeds were smaller, whereas seed/pod weight ratios, crude fat and protein contents, and SDS-PAGE protein patterns varied within similar ranges. During cultivation, the highest detected temperature of the aquatic solution was higher than the field-soil temperature. After gas chromatographic analysis of the fatty acid compositions, the oleic acid/linoleic acid ratio of the aquatic-cultivated seeds was higher than that of field-cultivated ones. When the peanut roots were collected, cleaned, dried, weighed, pulverized, and subjected to resveratrol analysis, dry root weights were 4.2 +/- 0.1 and 2.2 +/- 1.1 g/plant and resveratrol contents were 0.074 +/- 0.009 and 0.114 +/- 0.212 mg/g for the aquatic- and field-cultivated peanut roots, respectively. This indicates that the aquatic-cultivated peanut roots could be a potent and consistent source of resveratrol.  相似文献   

9.
Dietary conjugated linoleic acid (CLA; 0-2.0%) increased CLA concentrations in liver microsomes and skeletal muscle homogenates from rats. Dietary CLA decreased oleic and arachadonic acid concentrations in both liver microsomes and skeletal muscle. The presence of CLA in liver microsomes had no impact on linoleic acid, arachadonic acid, and alpha-tocopherol oxidation rates. Dietary CLA (2.0%) also did not alter alpha-tocopherol oxidation rates in liver microsomes or muscle homogenates. Formation of malonaldehyde (MDA) in oxidizing liver microsomes decreased with increasing CLA concentration as determined by measurement of thiobarbituric acid-MDA complexes by HPLC. The ability of CLA to decrease MDA formation without impacting other lipid oxidation markers such as the disappearance of fatty acid and alpha-tocopherol suggests that decreased MDA concentration was the result of CLA's ability to lower polyenoic fatty acids such as arachadonic acid. While CLA does not appear to act as an antioxidant, its ability to decrease polyenoic fatty acid concentrations could decrease the formation of highly cytotoxic lipid oxidation products such as MDA.  相似文献   

10.
Four different formulations of whey-protein-based coatings were used to coat peanuts. Four controls were used to investigate the effects of different ingredients in the coating formulation on the peanut shelf life. Untreated peanuts were designated as the reference. The peanut samples were stored in duplicate at 40, 50, and 60 degrees C for storage durations of up to 31 weeks. The analysis of hexanal indicated that the coated samples were oxidized significantly slower than the reference; hence, the predicted shelf life was longer for the coated samples. However, the investigation of the control ingredients revealed that even when only water was applied onto the peanuts the oxidation was delayed.  相似文献   

11.
The effect of an early-, mid-, or late-season planting date on the fatty acid chemistry of four high oleic acid, one mid oleic acid, and five normal oleic acid peanut (Arachis hypogaea L.) genotypes was evaluated over a three year period. Oleic acid was also compared to other fatty acids and to indices of oil quality. High-oleic genotypes included SunOleic 97R, UF98326, UF99621, and 88x1B-OLBC1-6-1-3-1-b2-B with a mean oleic acid content between 77.8 and 82.5%. Florida MDR98, a mid-oleic cultivar, was intermediate in oleic acid chemistry (59.8-68.0%). The normal oil chemistry lines (Georgia Greene, Andru93, Florunner, 86x13A-4-2-3-2-b3-B, and UF97102) had an oleic acid content between 50.0 and 59.0%. The ratio of oleic to linoleic (O/L) was 18:1 to 51:1 for high-oleic lines and 1.7:1 to 3.5:1 for normal genotypes. When analyzed as a split-split plot in time, year had a highly significant effect (P < 0.001) on the eight main fatty acids, iodine value, ratio of unsaturated to saturated fatty acids (U/S), and percentage of saturated fatty acids. Thus, data were analyzed separately by year. Although genotypic effects were highly significant each year, planting date influenced oil chemistry in two of three years. During both 1999 and 2000, 11 of 12 variables were influenced by planting date and by genotype x planting date interactions. Iodine values were approximately 75 for high-oleic lines compared to 90-95 for normal genotypes. The highest correlations occurred for oleic acid (18:1) and linoleic acid (18:2) (r = -0.996) and for oleic and palmitic (16:0) acids (r = -0.959). Oleic acid was also inversely related to iodine value (r = -0.978) and to percentage saturation (r = -0.841).  相似文献   

12.
Gas chromatography/olfactometry on a concentrate of volatiles obtained by solvent-assisted flavor evaporation (SAFE) from roasted peanuts containing a fruity/fermented off-note was used to identify the odorants responsible for the flavor defect. Freshly dug peanuts were divided into two classes, mature and immature, using pod mesocarp color, and subjected to normal (27 degrees C) and high (40 degrees C) temperature curing. Sensory evaluation of the roasted peanuts found that immature peanuts cured at high temperature contained the fruity/fermented off-note. Mature peanuts cured at high temperature and both immature and mature peanuts cured at low temperature were free of the off-note. Peanuts with the off-flavor were found to contain fruit-like esters (ethyl 2-methylpropanoate, ethyl 2-methylbutanoate, and ethyl 3-methylbutanoate) along with increased levels of short chain organic acids (butanoic, 3-methylbutanoic, and hexanoic). These findings were confirmed by sensory evaluation of models, where the addition of these compounds produced the fruity/fermented flavor defect in a control peanut paste. This is the first time that the odorants responsible for this off-note in roasted peanuts have been identified.  相似文献   

13.
The effect of the lipid oxidation product, 4-hydroxy-2-nonenal (HNE), on oxidation of oxymyoglobin (OxyMb) from seven different meat-producing species was investigated. Relative to controls, HNE increased OxyMb oxidation within all species (p < 0.05) at both 25 and 4 °C, pH 5.6. The relative effect of HNE was greater for myoglobins (Mbs) that contained 12 ± 1 histidine (His) residues than for those that contained 9 His residues (p < 0.05); HNE efficacy in all species except chicken and turkey decreased with time. Mono-HNE adducts were detected in all species except chicken and turkey. In general, HNE alkylation increased the Mbs' ability to accelerate lipid oxidation in a microsome model. However, neither an HNE nor a Mb species dependent effect was observed. Results suggested that microsome model system associated lipid oxidation overshadowed HNE and species effects on OxyMb oxidation observed in lipid-free systems.  相似文献   

14.
Peanuts (Arachishypogaea) are more susceptible to zinc (Zn) toxicity than other crops. However, there is potential for rapid evolution of Zn tolerance in many species. The objectives of this study were to test a nutrient solution screening procedure for identifying Zn tolerant cultivars and to identify plant characteristics and cultivars which have potential for Zn tolerance. Florunner was used as the test cultivar to determine the optimum Zn and pH levels for the nutrient solution cultivar screening test. The screening test showed that VA 81B and NC 6 (both virginia‐type peanuts) were more Zn sensitive than Florunner and that N. M. Valencia C and McRan (both valencia‐type peanuts) were more tolerant than Florunner. Field tests were carried out at three locations in Tift County, Georgia: Gibbs Farm (1986–87), Richards Farm (1991), and Stephens Farm (1992). Two out of four field tests did not have adequate soil Zn levels to test Zn tolerance; soil pH between 5.0 and 5.5 and Mehlich 1 soil Zn level ranging from 15–20 mg/kg should be adequate for cultivar screening in the field. Spanish‐type cultivars (Pronto, Spanco, and Starr) had the lowest toxicity ratings and highest yields (Gibbs, 1987), but yields were not economically viable for any cultivars. Aboveground plant Zn or calcium (Ca): Zn ratio were not good indicators of cultivar tolerance. However, low hull Zn concentration, high hull Ca: Zn ratio, and high plant Zn: root Zn ratio correlated well with high yield and low toxicity rating. Minimization of Zn uptake by the hulls would evidently be beneficial in aiding peanut plants in tolerating high soil Zn levels while producing economic yields.  相似文献   

15.
A high-performance liquid chromatographic (HPLC) method for determination of vanillin in boiled peanuts has been developed. Vanillin was extracted with acetonitrile by blending at high speed followed by purification of an aliquot of the extract on a minicolumn packed with Al(2)O(3). Vanillin was quantitated by HPLC on silica gel with n-hexane/2-propanol/water/acetic acid (2100/540/37/2, v/v) as a mobile phase. The recovery of vanillin added to fresh peanut hulls at 0.50 and 2.50 microg/g was 78.7 +/- 2.7 and 79.9 +/- 3.1%, respectively. The detection limit of vanillin in boiled peanuts was estimated at 0.05 microg/g. UV-detector response to vanillin was linear to at least 2.5 microg/injection. Free vanillin has been found in two commercial brands of boiled peanuts at low ppm levels. Both the kernels and the hulls contained vanillin, which was formed during hydrolysis of lignin, one of the major constituents of the peanut hulls. Since vanillin has a low flavor threshold, it could be considered as one of the major ingredients that determines the flavor of boiled peanuts.  相似文献   

16.
Peanuts are consumed mostly as processed products. Although the effect of processing on isoflavone composition of legumes has been extensively studied, there has been no such study on peanuts. The objective of this study was to evaluate the effect of processing (boiling, oil- and dry-roasting) on the phytochemical composition of peanuts. Boiling had a significant effect on the phytochemical composition of peanuts compared to oil- and dry-roasting. Boiled peanuts had the highest total flavonoid and polyphenol content. The biochanin A and genistein content of boiled peanut extracts were two- and fourfold higher, respectively. trans-Resveratrol was detected only in the boiled peanuts, with the commercial product having a significantly (p < or = 0.05) higher concentration. Ultraviolet and mass spectrometry chromatograms for the boiled peanut extracts show the presence of four additional peaks that were not observed in the raw peanut extracts.  相似文献   

17.
Occurrence of resveratrol in edible peanuts   总被引:11,自引:0,他引:11  
Resveratrol has been associated with reduced cardiovascular disease and reduced cancer risk. This phytoalexin has been reported in a number of plant species, including grapes, and may be one of the compounds responsible for the health benefits of red wine. Analytical methods for measuring resveratrol in wine and peanuts were adapted to isolate, identify, and quantify resveratrol in several cultivars of peanuts. Aqueous ethanol (80% v/v) extracts from peanuts without seed coats were purified over alumina/silica gel columns and analyzed by reversed phase HPLC using a C-18 column. Peanuts from each market type, Virginia, runner, and Spanish, produced in four different locations contained from 0.03 to 0.14 microg of resveratrol/g. Seed coats from runner and Virginia types contained approximately 0.65 microg/g of seed coat, which is equivalent to <0.04 microg/seed. Quantitative analysis of 15 cultivars representing 3 peanut market types, which had been cold stored for up to 3 years, indicated a range of 0.02-1.79 microg/g of peanut compared to 0.6-8.0 microg/mL in red wines.  相似文献   

18.
We have performed an "in vivo" study of storage lipid synthesis in developing sunflower seeds, from several high-oleic genetic backgrounds, using radioactive acetate in conjunction with methyl viologen as an inhibitor of the stearoyl-ACP desaturase. As such, some backgrounds showed stronger acyl-ACP thioesterase activity on stearoyl-ACP. We have developed a saturation coefficient that quantifies stearoyl-ACP thioesterase activity among sunflower lines based on their ability to synthesize saturated fatty acids under conditions when the competing stearoyl-ACP desaturase is inhibited by methyl viologen. The saturation coefficient is defined as the ratio of sum of the stearic, araquidic, and behenic saturated fatty acid contents to the unsaturated fatty acid content. On the basis of this coefficient, we were able to select high-oleic lines that, when crossed with the high-stearic CAS-3 line, developed progeny with high-stearic content on a high-oleic background. This approach has enabled us to identify lines with a combination of alleles that synthesized oils with more stearic acid in a high-oleic background, 21% stearic and 62% oleic contents. In contrast, lines with a lower index produced progeny that contained less stearic acid, similar to those obtained previously, that were 13% stearic acid content in high-oleic background. This method could also be used for other metabolic pathways where the blockage of a principal pathway may activate a secondary pathway. However, it should be emphasized that although the stearic acid content could be augmented it was not possible to break the association or the epistatic relationship that exists between the genes that permit a high-stearic phenotype and those that determine a high-oleic background.  相似文献   

19.
Ara h 1, a major peanut allergen, is known as a stable trimeric protein. Nevertheless, upon purification of native Ara h 1 from peanuts using only size exclusion chromatography, the allergen appeared to exist in an oligomeric structure, rather than as a trimeric structure. The oligomeric structure was independent of the salt concentration applied. Subjecting the allergen to anion exchange chromatography induced the allergen to dissociate into trimers. Ammonium sulfate precipitation did not bring about any structural changes, whereas exposing the allergen to hydrophobic interaction chromatography caused it to partly dissociate into trimers, with increasing amounts of trimers at higher ionic strengths. The (partial) dissociation into trimers led to a change in the tertiary structure of the monomeric subunits of the allergen, with the monomers in Ara h 1 oligomers having a more compact tertiary structure compared with the monomers in Ara h 1 trimers. As structural characteristics are important for a protein's allergenicity, this finding may imply a different allergenicity for Ara h 1 than previously described.  相似文献   

20.
trans-resveratrol content in commercial peanuts and peanut products   总被引:9,自引:0,他引:9  
A modified high-performance liquid chromatographic (HPLC) method for determination of trans-resveratrol (resveratrol) in peanuts and peanut products has been developed. Resveratrol was extracted with acetonitrile-water (90/10, v/v) by blending with diatomaceous earth at high speed followed by purification of an aliquot of the extract on a minicolumn packed with Al(2)O(3)-ODS (C(18)) mixture. The column was eluted with acetonitrile-water (90/10, v/v), eluate was evaporated under nitrogen, and residue was dissolved in HPLC mobile phase. Resveratrol in an aliquot of purified extract was quantitated by HPLC on silica gel with n-hexane-2-propanol-water-acetonitrile-acetic acid (1050/270/17/5/1, v/v) as a mobile phase. The recovery of resveratrol added to diatomaceous earth at 0.05 microg/g was 98.95 +/- 17.79%; the recovery of the standard added to fresh peanuts (with 0.070 microg/g natural level of resveratrol) at 0.50, 5.00, and 10.00 microg/g was 117.23 +/- 8.87, 100.10 +/- 2.49, and 100.45 +/- 1.51%, respectively. The quantitation limit of resveratrol in fresh peanuts was about 0. 01 microg/g. Roasted peanuts had the lowest content of resveratrol of 0.055 +/- 0.023 microg/g (n = 21), while in peanut butter its concentration was significantly higher, 0.324 +/- 0.129 microg/g (n = 46), and boiled peanuts had the highest level of 5.138 +/- 2.849 microg/g (n = 12). Resveratrol content in commercial peanut products was similar to the resveratrol content of the raw peanut fractions routinely used for making them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号