首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
氨氮的简易测定方法   总被引:2,自引:0,他引:2  
氨氮是水产育苗、养殖中需要密切关注的水质指标,氨氮过高会影响水产生物的生长发育、甚至造成水产生物的死亡,因此,养殖户需要经常对水体中氨氮含量进行测定。本方法以纳氏试剂法为基础,运用纯净水代替无氨水、目视比色法代替分光光度法,并对测定过程进行简化,是一种廉价、快速、简便、稳定的水体氨氮测定方法,方法测定结果与传统的纳氏试剂法相当一致,适合于水产养殖场水体中氨氮的测定。1材料与方法1.1仪器与试剂(1)普通天平、移液管、洗耳球;(2)市售596mL装纯净水;(3)称取24g氢氧化钠于空的纯净水瓶(596mL,下同),倒入约半瓶纯净水,冷却…  相似文献   

2.
采集海水虾蟹养殖池底泥,在以(NH4)2SO4为唯一氮源的选择性培养基上分离得到17株细菌,利用纳氏试剂分光光度法测定其氨氮降解能力,筛选出降解率较高的菌株X14-1-1。该菌株在氨氮质量浓度50mg/L时,72h内使氨氮质量浓度降至1.65mg/L,降解率可达96.7%;在氨氮质量浓度5mg/L时,72h内降解率可达74.01%。采用盐酸萘乙二胺分光光度法测定其降解亚硝酸盐的能力,结果显示,菌株X14-1-1在72h对亚硝酸盐的降解率达到67.2%。该菌株为革兰氏阴性短杆菌,大小为1.47~2.54μm×0.37~0.53μm,平板菌落呈乳白色,圆形。通过形态观察、生理生化试验及16SrDNA鉴定,初步确定X14-1-1属食油假单胞菌,命名为Pseudomonas oleovorans X14-1-1。该菌株在海水养殖环境水质调节及养殖废水处理方面具有潜在的应用价值。  相似文献   

3.
本研究优化了样品贮运条件及前处理步骤,建立了气相分子吸收光谱仪测定渔业水质中氨氮的方法。实验将样品采集于棕色玻璃瓶中,调节pH至1~3,采样运输时间小于6 h可常温运输。样品摇匀后,直接上机检测,外标法定量。结果发现:氨氮在0.1~2.0 mg/L范围内线性良好,相关系数0.999 9。检出限为0.003 mg/L,定量限为0.013 mg/L。对两个浓度为(1.49±0.06) mg/L、(2.02±0.12) mg/L的水质氨氮环境标准样品进行测定,结果分别为(1.49±0.02)和(1.99±0.01)mg/L。两家实验室使用该方法对相同的养殖淡水和海水进行了检测以及加标回收实验,实验室间的相对相差为3.60%~7.40%,方法回收率为90.00%~105.00%,相对标准偏差为0.36%~3.26%。结果表明:本方法简单、快速、准确度高、重复性好、易于推广,适用于渔业水质中氨氮的批量检测。[中国渔业质量与标准,2021,11(4):23-30]  相似文献   

4.
氨氮胁迫下凡纳滨对虾运动行为与能量分配模式变化   总被引:1,自引:1,他引:0  
为研究氨氮胁迫下凡纳滨对虾(Litopenaeus vannamei)行为和能量分配的变化,将体质量为(4.89?0.27)g的凡纳滨对虾幼虾分别置于氨氮质量浓度为0.02 mg/L(对照)、1.00 mg/L、2.50 mg/L、5.00 mg/L,水温(28?0.5)℃的水族箱中养殖2周,监测其行为并对其生长、体组分和能量收支进行测定。结果表明,随氨氮浓度升高,凡纳滨对虾白昼的活动频率、游走距离呈先升后降趋势,而夜间则呈逐渐下降趋势,5.00 mg/L组白昼和夜间活动频率及游走距离均显著低于对照组(P0.05);特定生长率及摄食率均呈逐渐下降趋势,处理组显著低于对照组(P0.05);2.50 mg/L和5.00 mg/L组的凡纳滨对虾脂肪含量和能值均显著低于对照组(P0.05);各处理组摄食能量分配于生长的比例随着氨氮浓度的增大而降低,而消耗于代谢的比例随氨氮浓度增大而升高,与对照组相比,5.00 mg/L组的摄食能用于生长比例下降4.57%,用于代谢消耗的比例上升5.70%。上述结果表明,氨氮胁迫下凡纳滨对虾的夜间活动水平明显下降,摄食量减少,能量利用效率降低,生长速度减慢。  相似文献   

5.
为了建立优化的循环海水养殖系统,采用水质国标检测方法分析了珊瑚石生物滤池在不同氨氮和溶解氧(DO)负荷实验条件下对养殖废水中氨氮、化学耗氧量(COD)及颗粒悬浮物(SS)的处理效果。结果显示,进水氨氮浓度对出水氨氮(正相关)、COD(正相关)均有极显著的影响(P0.01),对SS处理效果影响不显著。当进水氨氮浓度为0.45~0.65 mg/L时,滤池对水体处理效果最优(氨氮平均清除率为82.1%±3.3%;COD平均清除率为7.1%±1.5%;SS平均清除率为5.8%±1.6%)。DO浓度对水体氨氮(负相关)和COD(负相关)处理效果的影响显著(P0.05),对SS处理效果影响不显著。DO浓度为5.0~7.0 mg/L时,水体处理效果最优(氨氮平均清除率为78.7%±3.5%;COD平均清除率为23.0%±5.3%;SS平均清除率为7.1%±2.0%)。因此,本实验环境下的循环海水养殖系统珊瑚石生物滤池在氨氮浓度为0.45~0.65 mg/L,DO浓度为5.0~7.0 mg/L时,对水体中的氨氮、COD、SS的综合处理效果最优。  相似文献   

6.
《畜禽业》2017,(4)
目的:建立饲料添加剂中甘露寡糖的高效液相色谱分析方法。方法:样品经浓盐酸水解后,用氢氧化钠调节pH至6~7,过0.2μm滤膜后上机测定。采用Shodex SUGAR SH1011糖分析柱,0.005 mol/L硫酸溶液为流动相,用示差检测器进行检测。结果:甘露寡糖的定量限为0.01 mg/mL;线性范围为0.05~0.50 mg/mL;相关系数r~2=0.9995。结论:所建方法准确、灵敏、简便,适用于饲料添加剂中甘露寡糖的测定。  相似文献   

7.
氨氮对凡纳对虾免疫指标的影响   总被引:33,自引:1,他引:33  
以凡纳对虾(Litopenaeus vannamei)为研究对象,研究氨氮对其免疫指标的影响。实验氨氮质量浓度梯度设置为0.05(对照)、0.5、1.0、1.5、2.0、2.5 mg/L,各氨氮梯度用4g/L的氯化铵溶液来调节。将暂养在自然海水(对照)中的凡纳对虾分别放入各实验梯度中,对虾体长为(8.5±0.5)cm。结果表明,氨氮对凡纳对虾血细胞数量、血清中的酚氧化酶活力、溶菌和抗菌活力的影响显著(F>F0.05),且随着氨氮质量浓度的升高,血细胞数量和溶菌、抗菌活力降低,酚氧化酶活力升高;在0-24 h实验时间内,各处理组(对照组除外)对虾血细胞数量和溶菌、抗菌活力呈下降趋势,酚氧化酶活力呈上升趋势,24 h后稳定在较低水平上。实验说明,随着氨氮水平升高,凡纳对虾免疫力明显下降,对病原菌的易感性提高,因此在养殖过程中,环境氨氮变化幅度不应超过0.5 mg/L,或长时间维持在较高氨氮水平(>0.5 mg/L)。  相似文献   

8.
本文采用有机溶剂萃取的提取方法,利用气相色谱-质谱选择离子法,建立了海水及贝类中丙烯酸丁酯的检测方法.该方法在0.01 ~ 10.00 mg/L范围内具有良好的线性,线性相关系数为0.9 994;在海水和贝类样品中检出限(S/N=3)分别为0.001 mg/L和0.01mg/kg;在加标回收率试验中,海水中丙烯酸丁酯的平均回收率为104.2%,贝类样品中丙烯酸丁酯的平均回收率为91.8%;方法相对标准偏差(n=6)小于7.53%.通过实际样品的测定,表明本方法满足海水和贝类样品中丙烯酸丁酯检测分析的要求.  相似文献   

9.
正分光光度法是养殖水化学里面经常涉及的方法。经常用到的是氨氮和亚硝酸盐氮的测定。测定方法如下:氨氮:HJ 535-2009水质氨氮的测定纳氏试剂分光光度法亚硝酸盐氮:GB/T 7493-1987水质亚硝酸盐氮的测定分光光度法  相似文献   

10.
采用珊瑚骨作为生物膜载体,利用海水素配制人工海水,构建盐度为15‰(海水)和5‰(淡水)的两个凡纳滨对虾内循环养殖系统,通过添加硝化细菌菌剂和氮源,分别用8 d和13 d建立硝化功能。按照500尾/m~3密度投入虾苗后,海水系统和淡水系统分别运行97 d和83 d。在运行期间淡水和海水系统养殖水体氨氮浓度始终维持在较低水平,平均浓度分别为(0.015±0.008) mg/L和(0.014±0.008) mg/L;在海水系统运行前60 d,亚硝氮浓度维持在较低水平,在60~90 d,亚硝氮浓度呈缓慢上升趋势,在90 d后,海水系统亚硝氮浓度开始快速增加,最终达到3.43 mg/L;淡水系统在运行前40 d亚硝氮浓度维持在较低水平,40 d后开始小幅上升,运行至70 d后,亚硝氮浓度开始快速增加,最终达到0.52 mg/L。最终海水系统和淡水系统凡纳滨对虾存活率分别为51.5%和48.5%。  相似文献   

11.
利用均匀设计法设计得到的12种培养基及对照Zarrouk培养基对钝顶螺旋藻(Spirulina platensis)S6品系进行培养,研究了在不同培养基下螺旋藻对无机氮的吸收利用。结果表明,螺旋藻可以同时以NO3-N 和NH4-N为氮源。NO3-N对螺旋藻是最为通用和安全的氮源,但添加浓度以11mmol/L左右最为适宜,既可满足藻体的最佳生长需求又可降低养殖成本;适宜浓度的NH4-N可促进螺旋藻的生长,浓度过高则会造成NH3中毒,NH4-N的添加量以1.27~2.57mmol/L范围最为适宜。  相似文献   

12.
2006年9月,通过营养水平和水草的差异设计了4个浅水湖泊模拟系统,对草、藻型湖泊间隙水营养盐特性的差异进行研究。2007年9月,采用平衡浓度法测定了各系统间隙水的营养盐浓度,经分析得出以下结论或认识:(1)上覆水中,各系统营养盐浓度比较均一,垂向上梯度变化不明显;与藻型系统相比,草型系统上覆水PO43--P浓度较高,NH4+-N浓度较低;(2)在泥水界面处,各系统PO43--P和NH4+-N浓度均存在极陡的浓度梯度,随泥深增加浓度迅速升高;(3)由于底泥营养负荷高等原因,间隙水中的PO43--P和NH4+-N浓度明显高于上覆水;(4)水生植物生长对间隙水中的营养盐具有“低促高抑”的特性,即降低重污染沉积物间隙水中PO43--P和NH4+-N的浓度,增加微污染沉积物间隙水中的营养盐浓度;(5)藻型系统中,NH4+-N和PO43--P浓度之间存在非常明显的线性相关关系,说明这两种成分均主要来源于有机质的厌氧分解。  相似文献   

13.
通过模拟培养试验,比较不同浓度非离子态氨(NH3-N)条件下,富营养化湖泊———太湖竺山湾水体及沉积物中硝化作用2个过程,即氨氧化和亚硝酸盐氧化的发生情况。结果表明,在试验设置的NH3-N浓度范围内,水体和沉积物中氨氧化速率都随着NH3-N浓度的升高显著增加(LSD检验,P<0.05),亚硝酸盐氧化速率却呈阶段性变化。水体中NH3-N浓度大于0.35 mg/L时,亚硝酸盐氧化速率开始显著降低(LSD检验,P<0.05),而氨氧化速率与亚硝酸盐氧化速率的比值从NH3-N浓度为0.15 mg/L开始随着NH3-N浓度的升高而显著增加,说明水体中亚硝酸盐氧化过程在NH3-N浓度为0.15 mg/L时已受到部分抑制;沉积物中亚硝酸盐氧化速率在NH3-N浓度大于0.65 mg/L时开始降低(LSD检验,P>0.05),而氨氧化速率与亚硝酸盐氧化速率的比值从NH3-N浓度为0.35 mg/L开始随着NH3-N浓度的升高而显著增加,说明沉积物中亚硝酸盐氧化过程在NH3-N浓度为0.35 mg/L时已受到部分抑制。太湖竺山湾水体中的NH3-N浓度为0.19 mg/L,已达到对亚硝酸盐氧化过程的抑制范围;沉积物间隙水中NH3-N浓度为0.16 mg/L,还未对亚硝酸盐氧化过程产生抑制效果。  相似文献   

14.
三种水质改良剂对水中三态氮降解效果初步测试   总被引:1,自引:0,他引:1  
对水质改良剂对降低养殖水体中的三态氮浓度及有机物耗氧量进行了探讨,选出效果显著的,并找出水质改良剂加入水体中的最适浓度,以便在生产中改善水质,促进渔业生产。  相似文献   

15.
为了解在不同pH和滤料条件下硝化细菌对氨氮(NH_4~+-N)和亚硝酸盐氮(NO_2~--N)的去除效果,通过试验,探讨了5.0~10.0等6个pH梯度以及陶环、珊瑚石、生物刷和生物球等4种滤料的消氨效果。在pH 8.0~9.0时,至试验第7天氨氮去除率分别达99.86%、98.95%,明显高于pH 6.0、7.0和10.0组(去除率分别为66.18%、71.43%和70.51%)。在pH 7.0~9.0时,亚硝酸盐氮浓度的增加小于氨氮浓度的下降,特别是在pH 9.0时两者浓度变化差异明显。生物刷、陶环、珊瑚石和生物球分别在试验的第3、4、6、7天,氨氮去除率达100%。陶环组和珊瑚石组,NO_2~--N质量浓度在达到最高值(9.60 mg/L和10.00 mg/L),之后开始逐步下降。生物刷组和生物球组在达到最高值(9.55 mg/L和11.00 mg/L)之后基本维持不变。结果表明:硝化细菌适宜碱性的环境条件(pH 8.0~9.0),水体pH 9.0最有利于硝化细菌对NH_4~+-N和NO_2~--N的去除。不同滤料对硝化细菌去除NH_4~+-N和NO_2~--N有不同的影响。陶环对硝化细菌去除NH_4~+-N和NO_2~--N都有良好效果,生物刷只对去除NH_4~+-N有良好效果,珊瑚石只对去除NO_2~--N有良好效果。多种滤料配合使用有利于产生优势互补的效果。  相似文献   

16.
基于15N稳定同位素技术的斜生栅藻对硝氮和氨氮吸收研究   总被引:2,自引:0,他引:2  
硝氮(NO3--N)和氨氮(NH4+-N)是水体中无机氮的主要形态。利用15N稳定同位素技术研究了斜生栅藻(Scendesmus obliquus)对NO3--N和NH4+-N的吸收特征。结果显示,在相同浓度条件下,斜生栅藻对NH4+-N的吸收速率显著高于对NO3--N的吸收率,在180min的试验中,对15NH4+-N的吸收速率为0.62~1.15μmol/(g·min);对15NO3--N的吸收速率为0.08~0.15μmol/(g·min)。在NO3--N和NH4+-N2种形态氮源同时存在的混合组中,斜生栅藻对NO3--N的吸收速率[0.12~1.00μmol/(g·min)]显著低于NO3--N作为唯一氮源的单一组[0.78~1.23μmol/(g·min)],表明NH4+-N的存在对藻类吸收NO3--N有抑制作用。在14NO3--N和15NO3--N同时存在时,斜生栅藻优先吸收14NO3--N,产生同位素分馏效应,但不同形态氮对藻类氮吸收的影响远远大于同位素的影响。  相似文献   

17.
以沉水植物穗花狐尾藻(Myriophyllum spicatum L.)、伊乐藻(Elodea canadensis Michx)和金鱼藻(Ceratophyllum demersum L.)为试验对象,研究水体中不同硝态氮(NO_3~-N)和铵态氮(NH_4~+-N)浓度比对植物碳氮(C-N)代谢的影响。2015年春季栽培3种沉水植物;7月,截取长约10 cm的植物顶端于1 L的玻璃烧杯预培养,光暗比为14 L∶10 D,温度控制为光周期25℃,暗周期15℃,光照强度为110μmol/(m~2·s),预培养7 d后截取植物顶端1 g左右转入250 m L的锥形瓶,设计培养液总氮浓度为2 mg/L,按照NH_4~+-N与NO_3~-N的浓度比设置2∶1、1∶1、1∶2、2∶0、0∶2共计5个处理,以预培养液为对照,每个处理设置3个重复。结果表明:(1)与对照相比,氨氮添加显著提高了3种植物组织内游离氨基酸(FAA)的含量,且在氨氮浓度2 mg/L时FAA达最大;(2)植物体内可溶性糖含量(SC)存在显著的种间差异,二元方差分析显示处理间SC的差异,种间差异的贡献值为69%;(3)硝态氮完全替代氨态氮时,3种植物组织中的SC/FAA显著升高,二元方差分析显示处理间SC/FAA的差异主要源于氮源形态组成(56%);(4)伊乐藻体内FAA和SC含量均大于穗花狐尾藻和金鱼藻。这可能是它在富营养水体中更有优势的重要原因之一。  相似文献   

18.
三都澳四个水产养殖点水质周年变化分析   总被引:1,自引:0,他引:1  
2011年8月-2012年7月对三都澳四个水产养殖点的营养盐(N、P)、溶解氧(D0)、化学需氧量(COD)、pH值进行了分析,结果表明,无机溶解氮(DIN)组成结构在春、秋、冬季节中主要以NO3-N为主,其次为NH4-N和NO2-N.夏季营养盐结构,NO3-N所占比例明显减低,NO2-N所占比例超过NH4-N.营养盐NO3-N浓度的周年变化为:冬季>秋季>春季>夏季;NO2-N的浓度为:夏季>秋季>春季>冬季;NH4-N浓度:夏、秋偏低,春、冬较高;P04-P的浓度:冬季>秋季>夏季>春季.水体中DO浓度的周年变化为:冬季=春季>秋季=夏季.pH变化的周年变化为:春季>冬季>夏季>秋季.三都澳四个养殖点周年属于中度营养状态.  相似文献   

19.
溶解无机氮加富对海带养殖水体无机碳体系的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
通过室内模拟实验,研究了在海带养殖水体中添加不同浓度的无机氮(NO-3-N和NH+4-N)对海水无机碳体系的影响。结果表明,无机碳体系各组分的变化趋势与无机氮添加浓度和无机氮形态有关。当NO-3-N和NH+4-N浓度范围分别在(4.73~52.78)μmol/L和(2.56~34.66)μmol/L时,DIC、HCO-3和pCO2均随着营养盐浓度的增加呈下降趋势,其中以NO-3-3和NH+4-3组变化最为明显,均达到最低值,分别为2 054、2 112μmol/L,1 776、1 869μmol/L,86、114μatm;而当NO-3-N和NH+4-N浓度范围分别为(52.78~427.29)μmol/L、(34.66~268.33)μmol/L时,DIC、HCO-3和pCO2随着营养盐浓度的增加,其下降幅度逐渐减弱,但实验结束时DIC、HCO-3和pCO2仍低于对照组。NO-3-N对海带养殖水体无机碳体系的影响较NH+4-N明显,加NO-3-N组对水体的固碳能力显著高于加NH+4-N组。当NO-3-N和NH+4-N浓度分别为52.78μmol/L、34.66μmol/L时,海带的光合固碳能力达到最大,过高或者过低均会降低海带对水体无机碳的吸收固定。  相似文献   

20.
为了解南太湖水域近年来水质状况,以及蓝藻生物量与氨氮和总氮之间的变化规律,实验采用统计学方法,对南太湖水域3个入湖口(小梅港、新塘港、大钱港)水质中蓝藻生物量、氨氮和总氮的年变化特征进行了调查;使用SPSS10.0中的Bivariate(pcarson)软件对蓝藻生物量与氨氮和总氮的相关性进行了分析。结果表明:(1)南太湖入湖口蓝藻生物量一般有两个高位期,一个是在每年5—6月,另一个在每年的9—10月;(2)南太湖入湖口的总氮浓度处于富营养水平,并有向重富营养化发展的迹象;(3)蓝藻生物量与氨氮浓度的相关性系数r介于0.102~0.290,呈现不相关;(4)2008—2009年蓝藻生物量与总氮浓度的相关系数r介于0.010~0.210,呈现不相关;2010年蓝藻生物量与总氮浓度的相关系数r介于0.430~0.474,呈现低度负相关。结果说明南太湖入湖口的氮营养盐已经不容忽视,湖泊中氨氮和总氮浓度升高,将为蓝藻的繁殖生长提供条件,蓝藻一旦暴发,氨氮和总氮浓度反而迅速降低,在南太湖水域蓝藻生物量与氨氮和总氮浓度之间存在一定的此消彼长规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号