首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Seven wild diploid potato species, Series Tuberosa, representing 1023 clones were screened for resistance to the potato cyst nematode, Globodera pallida. Over 25% of the clones were resistant to pathotype P4A and almost 30% were resistant to pathotype P5A. The resistance in hybrid progenies of these and other resistant species with cultivated potatoes was evaluated, and over 2200 seedlings were screened. High frequencies of resistance (>50%) to P4A were found in progenies with Solanum leptophyes, S. vernei, S. gourlayi and S. capsicibaccatum, whereas resistance to P5A was found in these species as well as S. sparsipilum. The importance of nematode resistant wild species for potato breeding is discussed.  相似文献   

2.
Summary The potato tuber moth, Phthorimaea operculella (Zeller) is an important pest of potatoes in the field and in stores in warm environments throughout the world. In this study genetic resistance to potato tuber moth was identified in clones of Solanum sparsipilum (coded MBN) originally developed for resistance to bacterial wilt and root-knot nematode. Resistance to this pest in S. sucrense and S. tarijense as well as S. sparsipilum was exploited in wide crosses with diploid and tetraploid cultivated potatoes, and haploids derived from S. tuberosum; hybrid progenies were produced. Crosses between resistant S. pinnatisectum or S. commersonii and cultivated potatoes failed completely, although S. commersonii did hybridise with two bridging species S. lignicaule and S. capsicibaccatum which are slightly compatible with cultivated potatoes. Resistance to potato tuber moth was transferred to all progenies except those in which S. tarijense was the resistant parent. The development of potatoes resistant to potato tuber moth is discussed in the context of population breeding for the lowland tropics.  相似文献   

3.
D. Astley  J. G. Hawkes 《Euphytica》1979,28(3):685-696
Summary Two theories for the origin of the Bolivian weed potato species Solanum sucrense Hawkes have been tested. The first was that it had an allopolyploid origin as a hybrid of the cultivated tetraploid S. tuberosum ssp. andigena (Juz. et Buk.) Hawkes with the wild/weed tetraploid cytotype of S. oplocense Hawkes. The second hypothesis postulated that it was a cross of the weed diploid species S. sparsipilum (Bitt.) Juz. et Buk. with S. oplocense.Synthetic hybrids of S. tuberosum ssp. andigena x S. oplocense and of S. sparsipilum x S. oplocense have been compared morphologically with S. sucrense accessions. Their crossability has also been investigated.The crossability and morphological studies strongly suggested that the former hypothesis was the more likely. This was borne out by observations made on the 1974 University of Birmingham Expedition when segregating populations of S. sucrense and S. oplocense were collected growing with feral S. tuberosum ssp. andigena.The evidence from this study indicates that the S. tuberosum ssp. andigena x S. oplocense hybrid has formed the basis of the S. sucrense gene pool. It is suggested that this hybridogenic taxon be maintained under the name Solanum x sucrense.The clarification of the taxonomic relationships of these three species will be of interest to Globodera resistance breeders, in view of the fact that these taxa are resistant to various pathotypes of the golden nematode.  相似文献   

4.
Screening for resistance to the potato cyst nematode, Globodera pallida, in potatoes from. Bolivia, was carried out in 1983 and 1984, using a mixture of four nematode populations representing pathotypes Pa1, Pa2 and Pa3 From the 66 accessions of 17 species and subspecies evaluated, highly resistant genotypes were identified in 21 accessions from seven species. All had Pf/Pi values of 2 or less, whereas the susceptible control, Solanum tuberosum cv. ‘Disiree’ had Pf/Pi values of more than 2G in both tests. Two diploid wild species, S. brevicaule and S. leptophyes, showed the best resistant. The geographical distributional of resistant populations and the evolution of resistance in wild potato populations are discussed.  相似文献   

5.
Internal discoloration of tubers resulting from impact damage (blackspot bruise) is a serious quality problem in potato production and utilization, reducing profits to growers and increasing costs for processors. Resistance to blackspot bruise has been identified in the wild species Solanum hjertingii and is therefore a potential germplasm resource for genetic resistance to this problem. A bridging cross between S. hjertingii and a cultivated diploid clone was used to produce a triploid hybrid population that exhibited very low tuber browning potential, indicating a dominant pattern of inheritance for this trait. The triploid progeny were subjected to in vitrochromosome doubling and the resulting hexaploid clones were screened for browning potential. A hexaploid clone selected for low browning was reciprocally crossed with cultivated S. tuberosum cultivars exhibiting high susceptibility to blackspot bruise. Tubers obtained from the seed progeny of these 4x-6x crosses (hereafter referred to as the BC1 populations) were evaluated for browning potential and polyphenol oxidase (PPO) activity. Tubers from the BC1 populations displayed a very low potential for melanin production, while PPO activity was quite variable. The low Pearson correlation coefficient (r2 = 0.45), between browning potential and PPO activity suggests that the mechanism of blackspot bruise resistance derived from S. hjertingii cannot be explained simply as a reduction in the initial PPO activity. The expression of substantial resistance to browning and dominant expression pattern in these BC1 progeny indicate that utilizing genetic elements derived from S. hjertingii provides a robust approach for developing blackspot bruise resistant potato varieties. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
The wild non-tuberous species Solanumetuberosum is resistant to biotic andabiotic stresses, but is very difficult tocross with cultivated potato. Therefore,interspecific somatic hybrids between adihaploid clone of potato S.tuberosum (2n=2x=24, AA genome) and thediploid species S. etuberosum(2n=2x=24, EE genome) were produced byprotoplast fusion. Among the 7 fertilefusion hybrids analysed by genomic insitu hybridisation (GISH), three groups ofplants were found with the genomicconstitution of AAEE, AAEEEE and AAAAEE.Four fusion hybrids had exactly theexpected chromosome composition, while eachof the three aneuploid hybrids had lost twochromosomes of S. etuberosum. Twobackcross progenies were developed, andGISH analysis was applied to analysetransmission of the parental chromosomesinto the sexual generations. BC1hybrids derived from the crosses of thehexaploid somatic hybrids with tetraploidpotato were pentaploid with thetheoretically expected genomic compositionor with slight deviation from thisexpectation. In the three BC2 hybridsanalysed by GISH seven to 12 chromosomes ofS. etuberosum were detected in thepredominant S. tuberosum background.No recombinant chromosomes in the hybridswere detected. Genome dosage affects tuberformation in hybrids and their progenies,but has less effect on resistance to potatovirus Y (PVY) in fusion hybrids. Severalgenotypes of the fusion hybrids andBC1 progeny did not show viralinfection even in the graftingexperiments.  相似文献   

7.
Summary A combination of compatible second pollinations and embryo rescue was applied for systematic production of true tetraploid hybrids from crosses between disomic tetraploid Solanum acaule and tetrasomic tetraploid potato, S. tuberosum. Several genotypes of tetraploid potatoes were pollinated with S. acaule, and the compatible second pollinations were made on the following day, with a genotype of S. phureja, IvP 35 to promote fruit development. Embryo rescue was carried out in 21 families, 14 to 27 days after the first pollination. A total of eight plants were obtained from the embryo rescue and their chromosome numbers were counted in the root tips. Three of the eight plants were identified as tetraploid, and five others as diploid. Morphology, isozyme banding patterns, and pollen stainability, as well as potato spindle tuber viroid (PSTVd) resistance, indicated the hybrid nature of the three plants. This is the first report of successful tetraploid hybrid production between disomic tetraploid S. acaule (4x) and tetrasomic tetraploid potatoes. Seed set from the crosses between one of hybrids and diploid potatoes indicated workable levels of both male and female fertility for introgression of valuable genes from S. acaule into the cultivated potato gene pool. The methodology used may be applied to other disomic tetraploid tuber-bearing Solanum species and with some modifications also to distantly related solanaceous species and genera.  相似文献   

8.
Summary Accessions from exotic Solanum species, including diploid and tetraploid species, were screened for immunity to Clavibacter michiganensis subsp. sepedonicus, the causal agent of potato ring rot. The diploid species included S. infundibuliforme, S. lesteri, S. megistacrolobum, S. tuberosum Group Phureja, S. polyadenium, S. pinnatisectum, S. raphanifolium, S. sparsipilum, S. sanctae-rosae, S. tuberosum Group Stenotomum, S. toralapanum, and S. verrucosum. The tetraploid species included S. tuberosum Group Andigena, S. acaule, S. fendleri, S. hjertingii, S. oplocense, S. polytrichon, and S. stoloniferum. Apparent immunity was initially found in several diploid species, but was not present during subsequent retesting. Immunity was found in nine accessions of tetraploid S. acaule. These accessions maintained their immunity during testing over an eight-month period. S. acaule appears to be a good source of immunity for introgression studies.  相似文献   

9.
Somatic hybridization can be used to induce genetic variability in plastidial and mitochondrial genomes, and transfer multiple uncloned genes across sexual barriers. Somatic hybrids were produced between a dihaploid clone of the common potato, S. tuberosum subsp. tuberosum, and the wild sexually incongruent diploid species S. commersonii. Fusion products were selected on the basis of callus growth and regeneration in vitro. Genome composition of putative somatic hybrids was determined by flow cytometric analysis of nuclear DNA content, RAPD analysis, and Southern analysis with probes specific to organellar DNA. All regenerated fusion products proved to be hybrids based on RAPD analysis. Seventy per cent of somatic hybrids were (near) tetraploids, 22% (near) hexaploids and 8%(near) octoploids. A high correlation was found between the nuclear DNA content determined by flow cytometry and the number of chloroplasts in stomata guard cell pairs. Somatic hybrids inherited the parental plastids in a random manner. On the contrary, they preferentially inherited the mitochondrial DNA fragments of S. tuberosum. The majority of them had a rearranged mitochondrial genome with fragments from both parents. Hybrids were highly vigorous and morphologically more similar to the cultivated than to the wild parent, produced tubers on long stolons under long photoperiod conditions, showed a high degree of flowering, but did not produce pollen. In addition, somatic hybrids were generally more resistant to frost and Verticillium wilt than the cultivated parent, indicating the introgression of relevant resistance genes from the wild species into the genetic background of S. tuberosum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Summary The origin and nature of the diploid cultivated potato species S. ajanhuiri Juz. et Buk. was studied. Several lines of evidence indicate that S. ajanhuiri might be derived from natural crosses between primitive cultivars of the diploid species S. stenotomum and the wild species S. megistacrolobum. Morphological comparisons were made between S. stenotomum x S. megistacrolobum F1 hybrids and naturally occurring S. ajanhuiri to investigate this hypothesis. Comparisons were also made between S. ajanhuiri x S. stenotomum crosses and the F2 generation of the first-mentioned cross.Crosses between the two major groups of S. ajanhuiri cultivars, Ajawiri and Yari, showed not only genetic breakdown but also a wide range of phenotypic variation similar to those of artificial F2 families of S. stenotomum x S. megistacrolobum. Furthermore, there was strong evidence showing that the Yari group of S. ajanhuiri could almost certainly be an F1 S. stenotomum x S. megistacrolobum hybrid, whereas the Ajawiri group could be a backcross of an F1 hybrid to S. stenotomum. These results added further support to the hypothesis of a hybrid origin of S. ajanhuiri, as well as indicating its putative parents. It is suggested that this hybridogenic taxon be retained at the species level under the name Solanum x ajanhuiri.  相似文献   

11.
Summary Verticillium wilt (V. albo-atrum Reinke & Berthold or V. dahliae Kleb) threatens potato (Solanum tuberosum L.) production in most growing areas of the world. Genetic resistance offers the most cost-effective and environmentally-sound control measure. However, there is a dearth of genetic and breeding information on resistance to verticillium wilt in potato, because of obscure parentage of some standard cultivars and the complex segregation at the tetraploid level. The wide range of genetic variability in wild relatives of potatoes can be potentially useful as a source of disease resistance, such as verticillium wilt resistance. Six diploid, wild, interspecific Solanum hybrids involving resistant x resistant and susceptible x resistant crosses, were assayed for verticillium wilt resistance under greenhouse conditions to evaluate their potential as sources of verticillium wilt resistance. The cross between S. gourlayi Oka. and S. chacoense Bitt. and its reciprocal had the most resistant progenies based on mean colony counts. No simple mode of inheritance can be proposed based on the observed segregation ratios. However, the continuous distributions observed on verticillium wilt disease response among hybrid families indicate that inheritance of resistance may be polygenic and complex. In addition, skewness of colony count distributions toward the resistance parents were characteristic of all resistant x susceptible crosses suggesting that resistance may be dominant. By contrast, the susceptible x susceptible cross showed a more normal distribution. Overall, the cross between S. gourlayi and S. chacoense showed the most potential as a source of verticillium wilt resistance.  相似文献   

12.
Summary Bacterial ring rot of potato (Solanum tuberosum) has not been successfully controlled through management of certified seed. Therefore, the identification of immunity to this pathogen and its introgression into the cultivated potato is vitally important to the potato industry. Immunity was detected in the disomic tetraploid 2EBN (Endosperm Balance Number) species S. acaule. Immune and nonimmune parents were crossed in a 4 × 4 mating scheme that consisted of four immune × immune crosses, four immune × nonimmune, four nonimmune × immune, and four nonimmune × nonimmune crosses. Analysis was performed on the 16 F1 populations and 54% of the progeny was found to exhibit an immune response to inoculation with Clavibacter michiganensis subsp. sepedonicus (Spieck & Kotth.) Davis et al. Immunity appears to be conferred by two dominant alleles, one at each locus, and may be associated with minor or modifying genes. Phenotypic expression of nonimmune progeny ranged from susceptible to resistant, probably due to minor or modifying genes. These results indicate that it may not be difficult to transfer immunity into the cultivated potato.  相似文献   

13.
Summary Experiments were carried out for adding the chromosome carrying resistance to beet root nematode (Heterodera schachtii) from the wild Beta species of the section Patellares (B. procumbens, B. webbiana and B. patellaris) to the genome of B. vulgaris. Preliminary experiments indicated that crosses between the wild species and B. vulgaris cultivars of the mangold type yielded on average more viable F1 hybrids than crosses with sugar and fodderbeet. However, crossability varied strongly between individual parental combinations. It was concluded that most types of B. vulgaris can be hybridized with the wild species of the section Patellares if a sufficient number of pair-crosses is made. Crosses between diploid cultivars or species of the section Vulgares and diploid wild species of the section Patellares yielded many hybrids which, however, were highly sterile. From crosses between tetraploid B. vulgaris and the wild species a great number of viable allotriploid and allotetraploid hybrids was obtained. In the backcross progenies of allotriploid hybrids 26% alien monosomic additions occurred, of which 4.1% carried the resistance bearing chromosome of B. procumbens or B. patellaris. The programme will be continued by sereening progenies of the resistant monosomic addition plants for the occurrence of resistant disomic introgression products.  相似文献   

14.
Summary This study investigated the possibility of recombining anew the genomes of the wild and cultivated progenitors of triploid S. juzepczukii and pentaploid S. curtilobum by following the known evolutionary pathway of these two species. Before starting the actual breeding work, the natural variation of S. juzepczukii, S. curtilobum and their wild progenitor S. acaule was studied from the point of view of morphology, quantitative and qualitative tuber glycoalkaloid content and frost resistance. The morphological study was supplemented by a study of the soluble tuber proteins employing polyacrylamide slab-electrophoresis. From 137 accession of S. juzepczukii only 19 morphotypes were identified, 18 of which were also different in their protein spectra. The only red-tubered S. juzepczukii revealed a protein spectrum identical to that of the largest white-tubered group. On phylogenetic grounds, the occurrence of a red-tubered S. juzepczukii cannot be explained. It is concluded that this red clone is a somatic mutant for tuber colour which arose from a whitetubered clone. S. curtilobum was restricted in its variation to just two morphotypes differing only in tuber colour which are, however, identical chemotypes. This would be the case if one of the clones was a somatic mutant for tuber colour from the other one. The glycoalkaloids -solanine, -chaconine, tomatine, demissine and - and -solamarine are shown to be useful taxonomic characters which confirm earlier hypotheses on the origin of S. juzepczukii and S. curtilobum. Laboratory tests showed the two cultivated species to be resistant to about –3°C whereas S. acaule is resistant to temperatures sometimes below–5°C. The diploid progenitor of S. juzepczukii, S. stenotomum, also has forms resistant to –3°C. The results of this study demonstrate that the proposed breeding scheme is possible.  相似文献   

15.
Summary The possibility of combining anew the genomes of wild and cultivated progenitors of triploid S. x juzepczukii and pentaploid S. x curtilobum by following the known evolutionary pathway of these species was investigated.The resynthesis of S. x juzepczukii was easy, and a wide range of synthetic forms was bred. Among these were forms with higher frost resistance (-5°C) than has been found in natural S. x juzepczukii. The total tuber glycoalkaloid content of several synthetic hybrids was lower than or as low as that of natural clones. Most synthetic hybrids were more vigorous than natural S. x juzepczukii and produced about the same types of tubers as are found in the natural range of variation. The best diploid parents were found in the species S. goniocalyx.The attempt to resynthesize pentaploid S. x curtilobum has not been successful but tetraploid plants were obtained in the process. An explanation for the occurrence of tetraploids resulting from triploid x tetraploid and/or diploid crosses is offered.The newly bred tetraploids contain at least one genome from S. acaule (possibly two) and hybridize easily with ssp. andigena. They thus provide a means for the transfer of S. acaule germ plasm into the tetraploid cultivated gene pool which would profit from the frost resistance of S. acaule.  相似文献   

16.
Summary Dihaploid and dihaploid derived clones of Solanum tuberosum and diploid genotypes of S. verrucosum produced 85 viable monohaploids by female parthenogenesis. All were induced using diploid S. phureja clones, homozygous for embryo spot, as pollinator. Frequency of S. tuberosum monohaploids per 100 berries was rather constant in three successive years (14, 17 and 17 respectively). No male and female fertility was found in flowering monohaploids.Colchicine-induced chromosome doubling yielded homozygous s. tuberosum diploids with low pollen quality but good seed fertility.Two diploid self-incompatible species (S. multidissectum and S. berthaultii) produced no monohaploids. The presence of genes for female parthenogenesis in some dihaploids is discussed.  相似文献   

17.
Summary In two experiments, using different testing methods, the number of newly formed cysts was determined on nine potato genotypes with resistance from various sources. Ten potato cyst nematode (PCN) populations were used in these experiments. Rank correlation between numbers of cysts over potato genotype-PCN population combinations for both experiments was high (rs = 0.90). Dendrograms for PCN populations and potato genotypes were constructed, based on a simultaneous hierarchical clustering procedure for potato genotype-PCN population interaction terms. Several virulence groups could be identified within Globodera rostochiensis as well as within G. pallida. Host genotypes, derived from the same sources of resistance, were clustered in different resistance groups.  相似文献   

18.
W. D. Evans 《Euphytica》1982,31(3):901-907
Summary A method of incorporating genetic material from five species of Fragaria and the cultivated strawberry into fertile octoploids is described. A synthetic octoploid derived from a hexaploid x diploid hybrid was crossed to octoploid cultivar breeding lines until a BC2 hybrid was produced. A second synthetic octoploid in which two diploid species and a tetraploid species were combined was crossed to a cultivated strawberry to produce a hybrid breeding clone. The two breeding clones were crossed and 222 seedlings were produced. The seedlings were generally vigorous and fruitful, some having commercial potential.  相似文献   

19.
Summary Dihaploids were produced from tetraploids resistant to potato cyst nematode (Globodera pallida (Stone)). High levels of resistance were found in the dihaploids and three were used to produce tetraploid progenies by crossing them with susceptible tetraploid cultivars. One dihaploid, PDH505, produced more highly resistant offspring than the other two, PDHs 417 and 418. The latter gave progenies whose levels of resistance were similar to those obtained from susceptible dihaploids crossed with resistant tetraploids.The differences between the progenies of the resistant dihaploids were probably due to different modes of unreduced gamete formation (PDH505 producing gametes by first division restitution (FDR) and PDHs 417 and 418 by second division restitution (SDR)) although cytological studies would be necessary to confirm this. The methods by which dihaploids could be utilised in a tetraploid potato breeding programme are discussed in relation to the mode of unreduced gamete formation.  相似文献   

20.
Potato leafroll virus (PLRV; Genus Polerovirus; Family Luteoviridae) is one of the most important virus pathogens of potato worldwide and breeders are looking for new sources of resistance. Solanum etuberosum Lindl., a wild potato species native to Chile, was identified as having resistances to PLRV, potato virus Y, potato virus X, and green peach aphid. Barriers to sexual hybridization between S. etuberosum and cultivated potato were overcome through somatic hybridization. Resistance to PLRV has been identified in the BC1, BC2 and BC3 progeny of the somatic hybrids of S. etuberosum (+) S. tuberosum haploid × S. berthaultii Hawkes. In this study, RFLP markers previously mapped in potato, tomato or populations derived from S. palustre (syn S. brevidens) × S. etuberosum and simple sequence repeat (SSR) markers developed from tomato and potato EST sequences were used to characterize S. etuberosum genomic regions associated with resistance to PLRV. The RFLP marker TG443 from tomato linkage group 4 was found to segregate with PLRV resistance. This chromosome region has not previously been associated with PLRV resistance and therefore suggests a unique source of resistance. Synteny groups of molecular markers were constructed using information from published genetic linkage maps of potato, tomato and S. palustre (syn. S. brevidens) × S. etuberosum. Analysis of synteny group transmission over generations confirmed the sequential loss of S. etuberosum chromosomes with each backcross to potato. Marker analyses provided evidence of recombination between the potato and S. etuberosum genomes and/or fragmentation of the S. etuberosum chromosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号