首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

2.
Abstract

Through unflooded mulching in field plots and 15nitrogen microplot tracer experiments, nitrogen (N) uptake of rice and N utilization have been studied compared with normal irrigation cultivation. The results showed that N uptake of unflooded rice and N derived from fertilizer (NDFF) of root, stem, and grain under mulching cultivation were lower than that under cultivation without mulching. However, the NDFF of rice under unflooded cultivation was higher than that under normal irrigation cultivation. The N utilization has been greatly enhanced under unflooded cultivation without mulching and unflooded plastic film cultivation with mulching as compared with normal irrigation. At the same time, there was no significant difference on the N uptake of unflooded rice among different ways of mulching cultivations. During the growth period of rice, no prominent differences were found in the soil residue, recovery, and N losses of fertilizer except the N uptake of rice between unflooded mulching and normal irrigation. The yield of rice under film mulching and straw mulching cultivation was higher than that of cultivation without mulching in the condition of unflooded cultivation, whereas the yield of rice under irrigation cultivation was higher than that under unflooded cultivation.  相似文献   

3.
Abstract

Up to 50% of nitrogen (N) fertilizer can remain in soil after crop harvest in dryland farming. Understanding the fate of this residual fertilizer N in soil is important for evaluating its overall use efficiency and environmental effect. Nitrogen-15 (15N)-labeled urea (165 kg N ha?1) was applied to winter wheat (Triticum aestivum L.) growing in three different fertilized soils (no fertilizer, No-F; inorganic nitrogen, phosphorus and potassium fertilization, NPK; and manure plus inorganic NPK fertilization, MNPK) from a long-term trial (19 years) on the south of the Loess Plateau, China. The fate of residual fertilizer N in soils over summer fallow and the second winter wheat growing season was examined. The amount of the residual fertilizer N was highest in the No-F soil (116 kg ha?1), and next was NPK soil (60 kg ha?1), then the MNPK soil (43 kg ha?1) after the first winter wheat harvest. The residual fertilizer N in the No-F soil was mainly in mineral form (43% of the residual 15N), and for the NPK and MNPK soils, it was mainly in organic form. The loss rate of residual 15N in No-F soil over summer fallow was as high as 48%, and significantly (P < 0.05) higher than that in the NPK soil (22%) and MNPK soil (19%). The residual 15N use efficiency (RNUE) by the second winter wheat was 13% in the No-F soil, 6% in the NPK soil and 8% in the MNPK soil. These were equivalent to 9.0, 2.0 and 2.2% of applied 15N. The total 15N recovery (15N uptake by crops and residual in 0–100 cm soil layer) in the MNPK and NPK soils (84.5% and 86.6%, respectively) were both significantly higher than that in the No-F soil (59%) after two growing seasons. The 15N uptake by wheat in two growing seasons was higher in the MNPK soil than in NPK soil. Therefore, we conclude that a high proportion of the residual 15N was lost during the summer fallow under different land management in dryland farming, and that long-term combined application of manure with inorganic fertilizer could increase the fertilizer N uptake and decrease N loss.  相似文献   

4.
Abstract

A field study with maize (Zea mays L.) was conducted in the 1988/89 cropping season to investigate the fate of 15NO3-N-labelled NH4 15NO3 applied at 40, 80 and 120 kg N ha?1 (unlabelled N applied at 0, 80, 160 and 240 N ha?1) with and without lime. The investigations were conducted in northern Zambia at Misamfu Regional Research Centre, Kasama on a Misamfu red sandy loam soil. The experimental design was a split plot arrangement with four replications with main plots receiving 0 and 2 Mg ha?1 dolomitic limestone, while subplots received fertilizer N at various rates. Significant (p < 0.001) grain and DM yield responses to applied N up to 160 kg ha?1 were observed. At higher rates little or no crop responses were observed and fertilizer use efficiency declined. Partitioning of amounts of total N and 15N in plants was in the order of seed = tassel > leaf> cob = earleaf> stem. Fertilizer N rates showed a highly significant (p < 0.001) effect on plant uptake of labelled N. Lime and its interaction with N rates had no effect on all measured parameters. Leaching of NO3-N fertilizer to lower soil depths was in proportion to the rate of N applied, with highly significant (p < 0.001) differences among soil depths. Although higher concentrations of fertilizer-15N were recovered in the 0–20 cm depth the recovered portion at lower soil depths was still significant. Total recovery of labelled N by plant and by soil after crop harvest averaged 75, 55 and 54% of originally applied fertilizer-15N at 40, 80 and 120 kg N ha?1, respectively. Corresponding unaccounted for 15N was 25, 45 and 46%. The most probable loss mechanism could have been by leaching to depths greater than 60 cm, gaseous losses to the atmosphere and root assimilation.  相似文献   

5.
Summary The dynamics of basally applied 15N-labeled ammonium sulfate in inorganic and organic soil fractions of five wetland rice soils of the Philippines was studied in a greenhouse experiment. Soil and plant samples were collected and analyzed for 15N at various growth stages. Exchangeable NH4 + depletion continued after 40 days after transplanting (DAT) and corresponded with increased nitrogen uptake by rice plants. Part of the applied fertilizer was fixed by 2:1 clay minerals, especially in Maligaya silty clay loam, which contained beidellite as the dominant clay mineral. After the initial fixation, nonexchangeable 15N was released from 20 DAT in Maligaya silty clay loam, but fixation delayed fertilizer N uptake from the soil. Part of the applied N was immobilized into the organic fraction. In Guadalupe clay and Maligaya silty clay loam, immobilization increased with time while the three other soils showed significant release of fertilizer N from the organic fraction during crop growth. Most of the immobilized fertilizer N was recovered in the nondistillable acid soluble (alpha-amino acid + hydrolyzable unknown-N) fraction at crop maturity. Between 61% and 66% of applied N was recovered from the plant in four soils while 52% of fertilizer N was recovered from the plant in Maligaya silty loam. Only 20% – 30% of the total N uptake at maturity was derived from fertilizer N. Nmin (mineral N) content of the soil before transplanting significantly correlated with N uptake. Twenty-two to 34% of applied N was unaccounted for possibly due to denitrification and ammonia volatilization.  相似文献   

6.
Abstract

Excessive use of nitrogen (N) fertilizers in wheat fields has led to elevated NO3-N concentrations in groundwater and reduced N use efficiency. Three-year field and 15N tracing experiments were conducted to investigate the effects of N application rates on N uptake from basal and topdressing 15N, N use efficiency, and grain yield in winter wheat plants; and determine the dynamics of N derived from both basal and topdressing 15N in soil in high-yielding fields. The results showed that 69.5–84.5% of N accumulated in wheat plants derived from soil, while 6.0–12.5%and 9.2–18.1% derived from basal 15N and top 15N fertilizer, respectively. The basal N fertilizer recovery averaged 33.9% in plants, residual averaged 59.2% in 0–200 cm depth soil; the topdressing N fertilizer recovery averaged 50.5% in plants, residual averaged 48.2% in 0–200 cm soil. More top 15N was accumulated in plants and more remained in 0–100 cm soil rather than in 100–200 cm soil at maturity, compared with the basal 15N. However, during the period from pre-sowing to pre-wintering, the soil nitrate moved down to deeper layers, and most accumulated in the layers below 140 cm. With an increase of N fertilizer rate, the proportion of the N derived from soil in plants decreased, but that derived from basal and topdressing fertilizer increased; the proportion of basal and top 15N recovery in plants decreased, and that of residual in soil increased. A moderate application rate of 96–168 kg N ha?1 led to increases in nitrate content in 0–60 cm soil layer, N uptake amount, grain yield and apparent recovery fraction of applied fertilizer N in wheat. Applying above 240 kg N ha?1 promoted the downward movement of basal and top 15N and soil nitrate, but had no significant effect on N uptake amount; the excessive N application also obviously decreased the grain yield, N uptake efficiency, apparent recovery fraction of applied fertilizer N, physiological efficiency and internal N use efficiency. It is suggested that the appropriate application rate of nitrogen on a high-yielding wheat field was 96–168 kg N ha?1.  相似文献   

7.
Abstract

Recovery of residual nitrogen (N) from the subsoil by maize (Zea mays L.) was studied by injecting 15N‐labeled nitrate at 110 cm for treatments with and without N fertilizer in a calcareous soil on the North China Plain. The results show that the recovery of 15N‐labeled nitrate diffusing in the 90‐ to 130‐cm soil horizon was 11.9% with N fertilizer application and 6.7% without N application in maize. Nitrogen fertilizer applied to topsoil stimulated growth of maize roots in the subsoil, thus increasing the recovery of 15N‐labeled nitrate. In the relatively dry growing season in this experiment, the 15N‐labeled nitrate did not move downward because there was no downward water flow at 110 cm. Hence, under dry weather conditions, the maize crop can re‐utilize a small part of the residual soil nitrate in deep soil layers. Most of the nitrogen uptake was in the 0‐ to 80‐cm layer during the experiment.  相似文献   

8.
A field experiment on dhaincha, sunflower, and sorghum plants grown in monocropping and intercropping systems was conducted to evaluate growth and nitrogen (N2) fixation using 13carbon (C) and 15N natural abundance techniques. Intercropping of sesbania/sorghum showed a greater efficiency than monocropping in producing dry matter during the entire growth period, whereas the efficiency of producing dry matter in the sesbania/sunflower intercropping was similar to that in the monocropping system. Moreover, sorghum plants (C4) were more competitive than sesbania (C3) for soil N uptake, whereas sesbania seemed to be more competitive than its associated sunflower (C3). Nitrogen uptake in the mixed stand of sesbania/sorghum was improved as a result of the increase in soil N uptake by the component sorghum and the greater root nodule activity of component sesbania without affecting the amount of N2 fixed. The Δ 13C in plant materials was affected by plant species and the cropping system.  相似文献   

9.
Abstract

A field experiment was conducted to test the new approach for estimating crop nitrogen (N) uptake from organic inputs. The soil was prelabeled with 15N by applying 15N fertilizer to sunflower crop (Helianthus annuus L. var. Viki). The 14N plots, which received unlabelled fertilizer, were also set up. At harvest, 15N labeled residues were added to the unlabeled soils at a rate of 73 kg N ha?1 (direct technique) and unlabeled residues were added to the 15N‐labeled soils at the same rate (indirect technique). Control plots without residues were also established. All plots were sown with the wheat (Triticum aestivum L. var merchouch)–fababean (Vicia faba L.)–wheat (Triticum aestivum L. var merchouch) cropping sequence.

In the cropping sequence, the first, second and third crop derived respectively 12.01, 2.4, and 1.93 kg N ha?1 from crop residues estimated by the direct method and 14.77, 3.3, and 1.85 kg N ha?1 estimated by the indirect method. The results showed no significant difference between the two techniques, which suggests that the new soil prelabeling technique compares well with the direct technique.  相似文献   

10.
Summary Leptochloa fusca (L.) Kunth (kallar grass) has previously been found to exhibit high rates of nitrogen fixation. A series of experiments to determine the level of biological nitrogen fixation using 15N isotopic dilution were carried out in nutrient solution and saline soil. In the nutrient solution, E. coli inoculated plants were taken as non-nitrogen-fixing control. It was observed that nearly 60%–80% of the plant N was derived from atmospheric fixation. Estimations based on the N difference method gave much lower values (18%–35%). In experiments with saline soil which was initially sterilized with chloroform fumigation, a mixed culture of N2-fixing rhizospheric isolates from kallar grass roots was inoculated and planted to kallar grass. Uninoculated treatments were regarded as controls. The soil was previously labelled with 15N by adding cellulose and (15NH4)2SO4. The results of these studies showed fixation values of 6%–32% when estimated by 15N dilution, whereas by the N difference method 54% of the plant N was estimated to be derived from fixation. This discrepancy is due to the increase in root proliferation due to inoculation, which results in greater uptake of soil N. The distribution of 15N in different fractions of the soil-N indicted isotopic dilution due to bacterial fixation of atmospheric N2.  相似文献   

11.
Abstract

Nitrogen (N) management may be improved by a thorough understanding of the nutrient dynamics during previous‐crop residue decomposition and its impact on fertilizer N fate in the soil–plant system. An experiment was conducted in the Argentine Pampas to evaluate the effect of maize and soybean as previouscrops and plow‐till and no‐till methods on N dynamics and 15N‐labeled fertilizer uptake during a wheat growing season. Maize and soybean residues released N under both tillage treatments, but N release was faster from soybean residues and when residues were buried by tillage. Net immobilization of N on decomposing residues was not detected. A regression model that accounted for 92% of remaining N variability included time, previous crop, and tillage treatment as independent variables. The rapid residue decomposition with N release was attributed to the high temperatures of the agroecosystem. The recovery of 15N‐labeled fertilizer in the wheat crop, soil organic matter, and decomposing residues was not statistically different between previous crop treatments or tillage systems. Crop uptake of fertilizer N averaged 52% across treatments. Forty percent of fertilizer N was removed in grains. Immobilization of labeled N on soil organic matter was substantial, averaging 34% of the 15N‐labeled fertilizer retained, but was very small on decomposing residues, averaging 0.2–3.0%. Fertilizer N not accounted for at harvest in the soil–plant system was 12% and was ascribed to losses. Previous crop or tillage system had no impact on wheat yield, but when soybean was the previous crop, N content of grain and straw+roots increased. Discussion is presented on the potential availability of N retained in wheat straw, roots, and soil organic matter for future crops.  相似文献   

12.
不同管理方式对夏玉米氮素吸收、分配及去向的影响   总被引:3,自引:5,他引:3  
【目的】本文利用15N同位素示踪技术探讨传统(CT)和优化(YH)两种管理方式对夏玉米氮素吸收、分配及去向的影响。分析目标产量下化肥氮的变化,解析夏玉米花前、花后氮素利用及转移规律,探讨肥料氮、土壤氮与作物氮之间的关系,为该地区夏玉米的科学合理施氮提供合理依据。【方法】在传统和优化两种管理方式定位试验中设置15N微区,采用将15N标记的尿素表施的方法,分析植株和土壤样品。新鲜土壤用1 mol/L KCl浸提,滤液用TRACCS 2000型流动分析仪测定土壤的NH+4-N和NO-3-N含量。15N标记的土壤和植物全氮的测定用烘干样(过0.15 mm筛),然后用美国THERMO finnigan公司生产的稳定同位素质谱仪DeltaplusXP进行测定。【结果】在该试验条件下,优化方式下夏玉米籽粒产量和总吸氮量显著高于传统方式,分别增加12%和10%。作物收获后,优化方式的15N吸收量及利用率显著高于传统方式,利用率分别为20.81%、32.54%。夏玉米各器官中氮素的积累量和向籽粒中的转移量土壤氮显著高于肥料氮,传统方式籽粒中氮素的57.73%、优化方式籽粒中氮素的45.15%来自各器官的转移,近一半的氮素是在花后积累的,基施高氮对作物生长作用不大。开花期土壤表层硝态氮含量传统方式显著高于优化方式,收获后有所降低,而土壤深层含量明显增加,有向下淋洗的趋势。夏玉米收获后,传统方式各土层的原子百分超均高于优化方式,而且在20—40 cm处出现了明显的15N累积峰,与开花期相比,40 cm以下土层的原子百分超明显增大,氮肥随水向下淋洗强烈。夏玉米收获后传统方式土壤氮素残留率高达56.18%,表现为土壤残留损失作物吸收;优化方式则表现为土壤残留作物吸收损失。【结论】在优化方式中夏玉米施氮量为N 185 kg/hm2时,玉米达到高产水平且氮肥的利用率高。适当减少施氮量及增加后期追肥次数可实现夏玉米的高产和肥料的高效利用。  相似文献   

13.
An adequate supply of nitrogen (N) is important for patumma growth and flower quality. This study aimed to compare the uptake and translocation of N by foliar and root application. Fertilization with 15 nitrate (NO3)-N via roots or leaves was carried out at four stages, at the 1st to 4th fully expanded leaf (FEL) stages, and the plants were sampled at each successive stage. The uptake and translocation of 15N from foliar or root applications showed relatively similar patterns at all stages. Although the N fertilizer utilization rate by roots was higher than that via leaves, the foliar application stimulated reproductive growth by earlier flowering. The N supplied at the 1st FEL and the 2nd FEL was utilized mainly in leaves, whereas supplying N at the 3rd and 4th FEL promoted flower quality. Fertilizer application method and stage of application influence the utilization rate and translocation of N to the sink organs.  相似文献   

14.
土壤微生物对施入肥料氮的固持及其动态研究   总被引:34,自引:0,他引:34  
采集长期定位试验(14年)土壤(棕壤)进行盆栽试验,并应用同位素^15N示踪技术研究了土壤中微生物对肥料氮的固持及其动态,结果表明,施肥后5天土壤微生物对施入人肥氮的固持达达到最高,除单施氮肥处理的固持量占施入人肥氮量的5.4%外,其余各处理均天13.3%-15.4%间,施肥后土壤微生物量氮的增加主要来自化肥氮,后者占微生物体总氮量的64.1%-87.3%,在作物生长期间微生物固持的化肥氮逐渐释入  相似文献   

15.
Abstract

A greenhouse experiment was conducted to determine the effect of rice straw residue on growth and uptake of added 15N‐labeled ammonium nitrogen (NH4‐N) (3% 15N abundance at the rate of 150 kg N ha?) by rice in Crowley silt loam soil (Typic Albaqualfs). Higher rates of rice straw addition had an adverse affect on plant growth from the first to sixth week. After 6 weeks, the high rice straw treatment had a positive effect on plant growth (P<0.05). The 15N‐labeled ammonium or fertilizer nitrogen (N) uptake by rice was significantly lower (P<0.05) in the high rice straw treatment as compared to lower rice straw treatments. Greater plant growth was recorded under alternate flooding and draining condition as compared to continuously flooded treatment (P<0.01).  相似文献   

16.
Brazil is a major world coffee producer, using increasing quantities of nitrogen (N) fertilizer as the monoculture expands across the savannas. The fate and efficiency of this fertilizer N were evaluated for one complete cropping cycle using 15N tracer, permitting an N balance at harvest. Annual rates of 200, 400, 600, and 800 kg N ha?1 year?1 of 15N-labeled urea and an unfertilized control were applied every 14 days via fertigation. The N concentration, percentage of N derived from fertilizer, quantity of N derived from fertilizer, and percentage of nitrogen derived from fertilizer per N rate was assessed for 8-year-old coffee trees. The most efficient N use was with 200 kg ha?1 year?1 because it presented the lowest losses and highest N recoveries in the crop. Conversely, the least sustainable rate was 800 kg ha?1 year?1, which presented the greatest losses and the lowest N recovery in the whole plant.  相似文献   

17.
We studied the effects of 15N-labelled ammonium nitrate and urea on the yield and uptake of labelled and unlabelled N by wheat (Triticum aestivum L., cv. Mexi-Pak-65) in a field experiment. The dry matter and N yields were significantly increased with fertilizer N application compared to those from unfertilized soil. The wheat crop used 33.6–51.5 and 30.5–40.9% of the N from ammonium nitrate and urea, respectively. Splitting the fertilizer N application had a significant effect on the uptake of fertilizer N by the wheat. The fertilizer N uptake showed that ammonium nitrate was a more available source of N for wheat than urea. The effective use of fertilizer N (ratio of fertilizer N in grain to fertilizer N in whole plant) was statistically similar for the two N fertilizers. The application of fertilizer N increased the uptake of unlabelled soil N by wheat, a result attributed to a positive added N interaction, which varied according to the fertilizer N split; six split applications gave the highest added N interaction compared to a single application or two split applications for both fertilizers. Ammonium nitrate gave 90.5, 33.5, and 48.5% more added N interaction than urea with one, two, and six split N applications. A values were not significantly correlated with the added N interaction (r=0.557). The observed added N interaction may have been the result of pool substitution, whereby added labelled fertilizer N replaced unlabelled soil N.  相似文献   

18.
A field experiment was carried out to study the effect of different rates of potassium (K) fertilizer [0, 50, 100, and 150 potassium oxide (K2O) ha–1] in the presence of increased supply of nitrogen (N) (120, 180, and 240 kg N ha–1) on cotton (Gossypium hirsutum L.) yield and the N and K use efficiencies using the 15N isotopic dilution technique. Potassium fertilizer increased cotton yield, which was significant and more pronounced with the application of N in the high level (N3). The greatest cotton yield (6442 kg ha–1) was obtained in N2K3 treatment with an increase of 14% over the control. In addition, K fertilizer significantly increased N uptake efficiency in the N2 and N3 treatments. The greatest N uptake efficiency (98%) was in N2K3 treatment. The greatest K uptake efficiency (42%) was occurred in N3K1 treatment. In conclusion, the use of K fertilizer could be useful when growing cotton in soils of moderate to high N content to improve N uptake efficiency and consequently increase cotton yield.  相似文献   

19.
To evaluate the distribution and source of nitrogen (N) in non-bearing orange trees (Citrus sinensis L. Osbeck cv. ‘Lane Late’ grafted on ‘Carrizo’ citrange), an orchard was established in a Gleyic Podzol (South Portugal). Trees were labelled with 15N-enriched ammonium nitrate. A set of trees was used for monthly leaf sampling while a second set was destructively harvested in November of each year and separated into different plant organs. Five trees also received unlabelled N after one year of labeling to evaluate the re-distribution of N within the plant. Nitrogen concentration in new leaves tended to decrease following the growth flushes of March, June, and August. The N derived from fertilizer (%Ndff) was small in April suggesting the importance of internal N reserves for new development in spring. Fertilizer use efficiency was 6, 20, and 30% in the 1st, 2nd, and 3rd years, respectively. More than half of the 15N absorbed by plants each year was allocated to young organs, but the %Ndff was practically the same for all plant organs in the three years. Of the total N content of trees in November 2001, about 35% derived from fertilizer applied that year, 16% from fertilizer applied the previous year, and the remaining 49% came from other N sources.  相似文献   

20.
The effects of 15N-labeled ammonium nitrate on yield, uptake of nitrogen (N) by sorghum (Sorghum sudanense, Piper), and on N remaining in the soil were studied in a field experiment with different N rates (0, 50, and 100 kg N ha?1) and with two irrigation water qualities, well water (WW) and treated wastewater (TWW). Treated wastewater irrigation increased dry matter and N yield compared to WW. At equal N rates, recovery of 15N-labeled fertilizer by plants increased with TWW irrigation compared to WW (36% versus 23%). Neither fertilizer rate nor water quality had an effect on the 15N-labeled fertilizer remaining in the 0- to 60-cm layer of soil. On average 41% in the TWW treatment (49–33%) and 38% in WW treatment was mostly present in the surface 20-cm layer. Losses of 15N-labeled fertilizer were unaffected by irrigation water quality (35%) and increased with N application rate in TWW (4% versus 31%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号