首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Little is know on the impact of biosolids application on soil organic matter (SOM) stability, which contributes to soil C sequestration. Soil samples were collected in 2006 at plow layer from fields that received liquid and dry municipal biosolids application from 1972 to 2004 at the cumulative rate of 1416 Mg ha−1 in mined soil and 1072 Mg ha−1 in nonmined soil and control fields that received chemical fertilizer at Fulton County, western Illinois. The biosolids application increased the soil microbial biomass C (SMBC) by 5-fold in mined soil and 4-fold in nonmined soil. The biosolids-amended soils showed a high amount of basal respiration and N mineralization, but low metabolic quotient, and low rate of organic C and organic N mineralization. There was a remarkable increase in mineral-associated organic C from 6.9 g kg−1 (fertilizer control) to 26.6 g kg−1 (biosolids-amended) in mined soil and from 8.9 g kg−1 (fertilizer control) to 23.1 g kg−1 (biosolids-amended) in nonmined soil. The amorphous Fe and Al, which can improve SOM stability, were increased by 2–7 folds by the long-term biosolids application. It is evident from this study that the biosolids-modified SOM resists to decomposition more than that in the fertilizer treatment, thus long-term biosolids application could increase SOM stability.  相似文献   

2.
3.
Soil urease is crucial for the nitrogen cycle and its association with humic acids (HAs) is a fundamental requirement for its stability. In this work, the chemical characteristic of two HA fractions (HA1, ≥50 kDa; HA2, 10–50 kDa) extracted from lignite was evaluated, and their effects on the activity and stability of Jack Bean urease were also studied. HA1 and HA2 exhibited different structural properties in the micro-FT-IR and 13C NMR spectra and influences on urease stability during 12 days of incubation: HA1 stabilized the urease activity. After 12 days, the residual activity of urease, at pH 6.0, 7.0 and 8.0, was 2.1, 2.6 and 3.9 times higher in the treatment of HA1-urease than in the free urease, respectively. With pH values increasing, the stability of free urease decreased and that of HA1-urease increased, which indicated that HA1 improved the stability of urease in the solution, especially at the alkaline condition.  相似文献   

4.
We studied quantitative and qualitative changes in soil organic matter (SOM) due to different land uses (reference woodland versus cultivated) on six soils from Tanzania (Mkindo and Mafiga), Zimbabwe (Domboshawa and Chickwaka), and South Africa (Hertzog and Guquka). Structural characteristics of the humic acids (HAs) were measured by Curie-point pyrolysis–gas chromatography/mass spectrometry (Py–GC/MS) and solid-state 13C nuclear magnetic resonance (CPMAS 13C NMR) spectroscopy. Significant changes in concentration and composition of SOM were observed between land uses. Losses of organic carbon after cultivation ranged from 35% to 50%. Virgin soils showed large proportions of colloidal humus fractions: humic acids (HAs) and fulvic acids (FAs) but negligible amounts of not-yet decomposed organic residues. The change in land use produced a contrasting effect on the composition of the HAs: a noteworthy “alkyl enhancement” in Mkindo soil and “alkyl depletion” in Chikwaka and to a lesser extent in Domwoshawa. The remaining soils displayed only minor alterations.  相似文献   

5.
The distribution of phosphorus among humus acid groups in different soil types was studied. It was shown that the binding of P with acid-soluble and-insoluble organic components is determined by the acid-base status of soils, which controls the predominant interaction of P with Fe and Al or with Ca and Mg, and the solubility of the resulting organic phosphates in acid and alkali. The major part of P is associated with the group of humic acids (HAs) in the acid soils and with fulvic acids (FAs) in the neutral and calcareous soils. During the fractionation of organic matter from acid soils, the amount of P redistributed from the HA to the FA group can increase with an increasing acid or alkaline impact on the soil, which breaks the bonds of the phosphorus-bearing organic components with metals.  相似文献   

6.
Although Andosols are relatively resistant to water erosion, they can be severely affected by changes in land use, resulting in accelerated erosion and loss of soil organic matter (SOM). We hypothesized that if the contents of specific components of SOM and organo–metallic complexes (humic acids –HAs–, fulvic acids –FAs–, sodium pyrophosphate extractable carbon –Cp–, aluminium –Alp–, and iron –Fep–) consistently tend towards certain ratios in A and B horizons, they could be used to identify soils denuded by erosion. To test this hypothesis, we investigated the vertical distribution of humus components and certain ratios, namely C‐HA/C‐FA, C‐FA/total organic C (TOC), Cp/TOC and (Fep + Alp)/C‐FA, in representative profiles of andic soils located in natural ecosystems with different degrees of human disturbance. Furthermore, we analysed these parameters in the topsoil of a natural protected area and in adjacent soils under different land use scenarios (natural reserve vs. traditional exploitation). We found that the ratios of C‐HA/C‐FA and, to a lesser extent, of C‐FA/TOC and Cp/TOC changed with depth in the selected soil profiles, but the values were characteristic of each type of soil horizon. The values of these ratios in the topsoils of the disturbed areas were closer to a B horizon than an A horizon. This pattern may be superimposed on pre‐existing gradients, such as those related to the type of natural vegetation. The use of these indices emerges as a possible land use and erosion indicator.  相似文献   

7.
《Soil Use and Management》2018,34(2):187-196
The objective of this study was to evaluate the use of chemical and physical fractions of soil organic matter (SOM ), rather than SOM per se , as indicators of soil physical quality (SPQ ) based on their effect on aggregate stability (AS ). Chemically extracted humic and fulvic acids (HA and FA ) were used as chemical fractions, and heavy and light fractions (HF and LF ) obtained by density separation as physical fractions. The analyses were conducted on medium‐textured soils from tropical and temperate regions under cropland and pasture. Results show that soil organic carbon (SOC ), SOM fractions and AS appear to be affected by land use regardless of the origin of the soils. A general separation of structurally stable and unstable soils between samples of large and small SOC content, respectively, was observed. SOM fractions did not show a better relationship with AS than SOC per se . In both geographical regions, soils under cropland showed the smallest content of SOC , HA and carbon concentration in LF and HF , and the largest HF /LF ratio (proportion of the HF and LF in percent by mass of bulk soil). With significant associations between AS and SOC content (0.79**), FA /SOC (r  = −0.83**), HA /FA (r  = 0.58**), carbon concentration of LF (r  = 0.69**) and HF (r  = 0.70**) and HF /LF ratio (r  = 0.80**), cropland showed lowest AS . These associations indicate that SOM fractions provide information about differences in SOM quality in relation to AS and SPQ of soils from tropical and temperate regions under cropland and pasture.  相似文献   

8.
Purpose

Biochar is one of the most widely used ameliorants for soil amendment, which is known as factor which rises crop yields and levels of soil biological activity. Nowadays, it is under investigated how biochar application affects the dynamics of the humic components and whole soil organic matter (SOM) and the processes of its alteration. This investigation is aimed to evaluate the influence of biochar on the content, composition, and transformation of humic acids (HAs) as the main component of the SOM.

Materials and methods

The incubation experiment was carried out on three Podzol Antric soils, with varying amounts of initial total organic carbon. The incubation time was 90 days, using biochar gravimetric doses of 0.1 and 1.0%. The biochar was produced by fast pyrolysis of birch and aspen wood at 550 °С. Humus composition was analyzed for the organic matter fractions extracted with 0.1 M NaOH (containing HAs 1 + fulvic acids (FAs) 1) and 0.1 M Na4P2O7 (containing HAs 1 + FAs 1 + HAs 2 + FAs 2). Isolated HAs were characterized for their elemental composition (C, N, H, and S) and molecular composition with the use of solid-state 13C nuclear magnetic resonance (13C-NMR) techniques.

Results and discussion

We found that 0.1% of biochar amendment does not influence SOM mineralization, but 1.0% of biochar increases the mineralization by 15–18%. This process is accompanied by changes in the composition and properties of the HS. The increased proportion of HA aromatic fragments in biochar indicates an increasing of their stability. However, in soils with high humus content and a significant amount of insoluble matter, the processes of mineralization and the growth of HAs are taking place simultaneously. The replenishment of HAs could be the outcome of both the intensification of the transformation processes (mineralization and humification) of the more sustainable insoluble matter compounds and the humification of the biochar itself.

Conclusions

The influence of biochar on humification in Podzol Antric soils was revealed on the basis of incubation experiment. Both negative and positive changes under biochar in HS system were demonstrated. The active decrease of humus total contents and also the labile HS ought to qualify as negative changes. The increase of HA chemical maturity that leads to the stability of humus in whole as well as the intensive new HA formation thought to qualify as positive changes.

  相似文献   

9.
This study investigates how carbon sources of soil microbial communities vary with soil depth. Microbial phospholipid fatty acids (PLFA) were extracted from 0–20, 20–40 and 40–60 cm depth intervals from agricultural soils and analysed for their stable carbon isotopes (δ13C values). The soils had been subjected to a vegetation change from C3 (δ13C≈?29.3‰) to C4 plants (δ13C≈?12.5‰) 40 years previously, which allowed us to trace the carbon flow from plant-derived input (litter, roots, and root exudates) into microbial PLFA. While bulk soil organic matter (SOM) reflected ≈12% of the C4-derived carbon in top soil (0–20 cm) and 3% in deeper soil (40–60 cm), the PLFA had a much higher contribution of C4 carbon of about 64% in 0–20 cm and 34% in 40–60 cm. This implies a much faster turnover time of carbon in the microbial biomass compared to bulk SOM. The isotopic signature of bulk SOM and PLFA from C4 cultivated soil decreases with increasing soil depth (?23.7‰ to ?25.0‰ for bulk SOM and ?18.3‰ to ?23.3‰ for PLFA), which demonstrates decreasing influence of the isotopic signature of the new C4 vegetation with soil depth. In terms of soil microbial carbon sources this clearly shows a high percentage of C4 labelled and thus young plant carbon as microbial carbon source in topsoils. With increasing soil depth this percentage decreases and SOM is increasingly used as microbial carbon source. Among all PLFA that were associated to different microbial groups it could be observed that (a) depended on availability, Gram-negative and Gram-positive bacteria prefer plant-derived carbon as carbon source, however, (b) Gram-positive bacteria use more SOM-derived carbon sources while Gram-negative bacteria use more plant biomass. This tendency was observed in all three-depth intervals. However, our results also show that microorganisms maintain their preferred carbon sources independent on soil depth with an isotopic shift of 3–4‰ from 0–20 to 40–60 cm soil depth.  相似文献   

10.
Quantitative knowledge of the amount and stability of soil organic matter (SOM) is necessary to understand and predict the role of soils in the global carbon cycle. At present little is known about the influence of soil type on the storage and stability of SOM, especially in the tropics. We compared the amount of mineral-associated SOM resistant to different chemical treatments in soils of different parent material and mineralogical composition (volcanic ashes – dominated by short-range-order aluminosilicates and marine Tertiary sediments – dominated by smectite) in the humid tropics of Northwest Ecuador. Using 13C isotope analyses we traced the origin of soil organic carbon (SOC) in mineral-associated soil fractions resistant to treatment with HCl, NaOCl, and Na4P2O7 under pasture (C4) and secondary forest (C3). Prior to chemical treatments, particulate organic matter was removed by density fractionation (cut-off: 1.6 g cm?3). Our results show that: (1) independent of soil mineralogical composition, about 45% of mineral-associated SOC was resistant to acid hydrolysis, suggesting a comparable SOM composition for the investigated soils; (2) oxidation by NaOCl isolated a SOM fraction with enhanced stability of mineral-bound SOM in soils developed from volcanic ashes; while Na4P2O7 extracted more SOC, indicating the importance of Al-humus complexes in these soils; and (3) recently incorporated SOM was not stabilized after land use change in soils developed from volcanic ashes but was partly stabilized in soils rich in smectites. Together these results show that the employed methods were not able to isolate a SOM fraction which is protected against microbial decay under field conditions and that the outcome of these methods is sensitive to soil type which makes interpretation challenging and generalisations to other soils types or climates impossible.  相似文献   

11.
Landspreading of biosolids (treated sewage sludge) in agroecosystems is a common waste management practice worldwide. Evidence suggests biosolids may be detrimental to arbuscular mycorrhizal fungi (AMF); however, previous studies focused on arable systems and often unrealistically high biosolids application levels. We investigated the effects of biosolids on AMF communities in grassland and arable agroecosystems, in the context of the natural seasonal dynamics of AMF community composition and diversity. A pasture and arable system under commercial farming management were amended annually with two different types of biosolids, applied at levels meeting current European Union regulations, in a factorial, replicated field-scale plot experiment. AMF root colonisation and community composition were measured in Lolium perenne roots from the pasture and Trifolium repens roots growing in arable soil across the seasons of two years. AMF community compositions were assessed by terminal-restriction fragment length polymorphism analyses. Biosolids had no significant effect on AMF root colonisation or community composition in either agroecosystem. Soil chemical analyses indicated several changes in the top 0–5 cm layer of the pasture soil, including small increases in heavy metal concentrations in biosolids relative to control plots. Temporal AMF dynamics were detected in soils from both agroecosystem indicating that the effect of seasonality outweighed that of biosolids application.  相似文献   

12.
The structure of humic acids (HAs) in zonal soil types—soddy-podzolic soils (two samples), gray forest soil (one sample), and chernozems (two samples)—was quantitatively studied by 13C NMR spectros-copy. In the series considered, the content of unsubstituted carbon in the aromatic fragments of HAs increased, and the fraction of unsubstituted aliphatic structures decreased. HAs of soddy-podzolic soils were found to be enriched with carbohydrate fragments compared to HAs of chernozems and gray forest soil. The carbon skeleton of HAs from typical rich chernozem contained significantly more aliphatic and carbohydrate fragments compared to typical chernozem, which probably reflected the lower degree of HA transformation in rich chernozem.  相似文献   

13.
Humic acids (HA) and fulvic acids (FA) were extracted from tropical humid forest, tea garden, and field crop soils, and their chemical, potentiometric, and spectrophotometric properties were measured. There was less HA than FA in the cultivated soils. The HAs contained more carbon (C) and nitrogen (N) and had greater C/H ratios but lower O (oxygen)/H (hydrogen) ratios than FAs. Cultivated soils had greater total acidity than the forest soil generally because of both —COOH and phenolic-OH. Molecular weights of HA an FA, estimated from intrinsic viscosities, revealed that cultivation had reasonably reduced the molecular weights. The difference in pH (ΔpH) values, corresponding to three-fourths and one-fourth of the pH at final inflexion point showed that they were polyprotic. The longer time required for stability of greater pH of HAs was related to greater degree of stable coiling. The (E4/E6), in general, revealed a greater amount of aliphatic moiety rather than aromatic moiety.  相似文献   

14.
Abstract

Matching biosolids application rates to crop phosphorus (P) needs requires quantifying the P fertilizer replacement value of biosolids. Neutral ammonium citrate (NAC) extraction of P, used for assessing available P in mineral fertilizers, was evaluated for 35 different biosolids. Biosolids NAC‐P was not statistically different (p=0.05) from total P using strong acid digestion (EPA 3051‐P). High P recovery by NAC was attributed to dissolution of P‐containing iron (Fe)/aluminum (Al) oxides under the aggressive extracting conditions (0.88 M citrate at 65°C). Citrate effectively dissolves P‐binding Fe/Al hydrous oxides, the very components that reduce phytoavailability when biosolids are land applied. Greenhouse studies with pasture grass (Paspalum notatum Flugge) grown in P‐deficient soils amended with biosolids revealed P phytoavailability was not correlated (r2=0.10) with biosolids NAC‐P. Phytoavailability was inversely correlated (r2=0.66) with biosolids total Al+Fe content. The NAC extraction, designed for commercial fertilizers, is inappropriate for quantifying biosolids phytoavailable P.  相似文献   

15.
Montane volcanic ash soils contain disproportionate amounts of soil organic carbon and thereby play an often underestimated role in the global carbon cycle.Given the central role of Al and Fe in stabilizing organic matter in volcanic ash soils,we assessed various extraction methods of Al,Fe,and C fractions from montane volcanic ash soils in northern Ecuador,aiming at elucidating the role of Al and Fe in stabilizing soil organic matter(SOM).We found extractions with cold sodium hydroxide,ammonium oxalate/oxalic acid,sodium pyrophosphate,and sodium tetraborate to be particularly useful.Combination of these methods yielded information about the role of the mineral phase in stabilizing organic matter and the differences in type and degree of complexation of organic matter with Al and Fe in the various horizons and soil profiles.Sodium tetraborate extraction proved the only soft extraction method that yielded simultaneous information about the Al,Fe,and C fractions extracted.It also appeared to differentiate between SOM fractions of different stability.The fractions of copper chloride-and potassium chloride-extractable Al were useful in assessing the total reactive and toxic Al fractions,respectively.The classical subdivision of organic matter into humic acids,fulvic acids,and humin added little useful information.The use of fulvic acids as a proxy for mobile organic matter as done in several model-based approaches seems invalid in the soils studied.  相似文献   

16.
《Applied soil ecology》2011,48(3):210-216
Labile soil organic matter (SOM) can sensitively respond to changes in land use and management practices, and has been suggested as an early and sensitive indicator of SOM. However, knowledge of effects of forest vegetation type on labile SOM is still scarce, particularly in subtropical regions. Soil microbial biomass C and N, water-soluble soil organic C and N, and light SOM fraction in four subtropical forests were studied in subtropical China. Forest vegetation type significantly affected labile SOM. Secondary broadleaved forest (SBF) had the highest soil microbial biomass, basal respiration and water-soluble SOM, and the pure Cunninghamia lanceolata plantation (PC) the lowest. Soil microbial biomass C and N and respiration were on average 100%, 104% and 75%, respectively higher in the SBF than in the PC. The influence of vegetation on water-soluble SOM was generally larger in the 0–10 cm soil layer than in the 10–20 cm. Cold- and hot-water-soluble organic C and N were on average 33–70% higher in the SBF than in the PC. Cold- and hot-soluble soil organic C concentrations in the coniferous-broadleaved mixed plantations were on average 38.1 and 25.0% higher than in the pure coniferous plantation, and cold- and hot-soluble soil total N were 51.4 and 14.1% higher, respectively. Therefore, introducing native broadleaved trees into pure coniferous plantations increased water-soluble SOM. The light SOM fraction (free and occluded) in the 0–10 cm soil layer, which ranged from 11.7 to 29.2 g kg−1 dry weight of soil, was strongly affected by vegetation. The light fraction soil organic C, expressed as percent of total soil organic C, ranged from 18.3% in the mixed plantations of C. lanceolata and Kalopanax septemlobus to 26.3% in the SBF. In addition, there were strong correlations among soil organic C and labile fractions, suggesting that they were in close association and partly represented similar C pools in soils. Our results indicated that hot-water-soluble method could be a suitable measure for labile SOM in subtropical forest soils.  相似文献   

17.
The stabilization of SOM by Al–humus complexes and non-crystalline minerals is a key issue to explain the soil-C variability and the biogeochemical processes that determine the fate of soil C following land-use/cover change (LUCC) in volcanic landscapes. In an altitudinal gradient of volcanic soils (2550–3500 masl), we quantified the total soil C (CT) concentrations and stocks in soil pits sampled by genetic horizons. We performed analyses at landscape and local scales in order to identify and integrate the underlying environmental controls on CT and the effects of LUCC. We selected four sites, two on the upper piedmont, one on the lower mountain slope and one on the middle mountain slope at Cofre de Perote volcano (eastern central Mexico) where temperate forests are the natural vegetation. At each site we selected three to five units of use/cover as a chronosequence of the LUCC pathways. In each soil horizon chemical characteristics (i.e. N, C/N ratio, pH, exchangeable bases) were determined and mineralogical properties were estimated from selective Al, Fe and Si oxalate and pyrophosphate extractions (i.e. the Alp/Alo ratio, the active Al related to non-crystalline minerals as Alo ? Alp, the allophane concentration, and the non-crystalline Al and Fe minerals as Alo + 1/2Feo). At landscape scale, the Al–humus complexes were strongly related to the CT concentration in topsoil (A horizons) but this relationship decreased with depth. In turn, the non-crystalline minerals and the C/N ratio explained the variability of the CT concentrations in C horizons. At local scale, CT concentrations and stocks were depleted after conversion of forest to agriculture in Vitric Andosols at the upper piedmont but this was not observed in Silandic Andosols. However, in Vitric Andosols the reduction of the CT stocks is partially recovered throughout the regeneration/reforestation processes. The results suggest that the lower vulnerability of Silandic Andosols than Vitric Andosols to changes in the CT after LUCC is due to the higher levels of SOM stabilized by Al–humus complexes and non-crystalline minerals in the Silandic soils. Furthermore, the importance of the allophane to explain the CT stocks in the Silandic Andosols of the middle slopes suggests that the CT stabilized by this mineral fraction in the subsoil adds an important fraction of the CT to the estimates of the stocks.  相似文献   

18.
The dynamics of incorporation of fresh organic residues into the various fractions of soil organic matter have yet to be clarified in terms of chemical structures and mechanisms involved. We studied by 13C‐dilution analysis and CPMAS‐13C‐NMR spectroscopy the distribution of organic carbon from mixed or mulched maize residues into specific defined fractions such as carbohydrates and humic fractions isolated by selective extractants in a year‐long incubation of three European soils. The contents of carbohydrates in soil particle size fractions and relative δ13C values showed no retention of carbohydrates from maize but rather decomposition of those from native organic matter in the soil. By contrast, CPMAS‐13C‐NMR spectra of humic (HA) and fulvic acids (FA) extracted by alkaline solution generally indicated the transfer of maize C (mostly carbohydrates and peptides) into humic materials, whereas spectra of organic matter extracted with an acetone solution (HE) indicated solubilization of an aliphatic‐rich, hydrophobic fraction that seemed not to contain any C from maize. The abundance of 13C showed that all humic fractions behaved as a sink for C from maize residues but the FA fraction was related to the turnover of fresh organic matter more than the HA. Removal of hydrophobic components from incubated soils by acetone solution allowed a subsequent extraction of HA and, especially, FA still containing much C from maize. The combination of isotopic measurements and NMR spectra indicated that while hydrophilic compounds from maize were retained in HA and FA, hydrophobic components in the HE fraction had chemical features similar to those of humin. Our results show that the organic compounds released in soils by mineralization of fresh plant residues are stored mainly in the hydrophilic fraction of humic substances which are, in turn, stabilized against microbial degradation by the most hydrophobic humic matter. Our findings suggest that native soil humic substances contribute to the accumulation of new organic matter in soils.  相似文献   

19.
The study of paramagnetic activity of humic substances in taiga and tundra soils of the Komi Republic and the assessment of the influence of soil hydromorphism on concentrations of free radicals in the structure of humic acids (HAs) and fulvic acids (FAs) have been performed. The concentration of free radicals in HA specimens was up to 11 times higher than that in FA specimens due to a higher content of aromatic and other condensed structures in HA molecules. This fact attests to the high capacity of HAs to polymerization and complexation reactions with participation of radicals. The average value of g-factor is higher for FA specimens than for HA specimens, which attests to a greater electron density shift of unpaired electron to oxygen atom in the structure of FAs because of its spin-orbital interaction with oxygen-containing functional groups, the concentrations of which are significantly higher in FAs than in HAs. An increase in the concentration of free radicals in the molecular structure of HAs is observed in taiga soils with an increase in the degree of their hydromorphism (from automorphic to semihydromorphic soils), which is related to the biohydrothermal conditions of humus formation in bog-podzolic soils with retarded biochemical processes and low degree of plant litter humification. As a result, HAs with the high content of free radicals in their structure are formed. An opposite situation is observed for HAs in tundra soils with a decrease in the content of unpaired electrons under conditions of the increased hydromorphism. The difference in the character of changes in the paramagnetic activity of HAs in taiga and tundra soils with different degrees of hydromorphism may be related to different natures of plant residues participating in humification processes. A tendency for a decrease in the paramagnetic activity in both HAs and FAs from the south to the north is observed, which may be related to a general decrease in the content of poly-conjugated systems in the structure of humic substances in tundra soils.  相似文献   

20.
This study aimed at assessing the potential of near-infrared reflectance spectroscopy (NIRS) for determining the distribution of soil organic matter (SOM) in particle size fractions, which has rarely been attempted. This was done on sandy soils from Burkina Faso (three sites) and Congo-Brazzaville (one site). Over the total sample set, NIRS accurately predicted carbon (C) and nitrogen (N) concentrations (g kg?1 fraction) in the fraction <20 μm. When considering Burkina Faso only, predictions were improved in general; those of C and N amounts (g kg?1 soil) became accurate for the fraction <20 μm but not for the coarser fractions, probably due to heterogeneous SOM repartition. However, most SOM being <20 μm in general, NIRS could be considered promising for determining SOM size distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号