首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Applied soil ecology》2001,16(1):23-34
The succession of soil nematodes from initial planting with Pinus sylvestris seedling to about 30-year-old pine plantations on coal mining sands in the Lusatian lignite-mining district near Cottbus (Germany) was studied and compared with the nematode fauna of a 40-year-old semi-natural pine forest on naturally formed sandy soil. The initial stage was primarily characterised by a very low abundance (20×103 individuals/m2), which increased over a period of two years to values common in older pine plantations (500–600×103 individuals/m2). In the semi-natural forest the mean abundance of nematodes was about 1300×103 individuals/m2. Populations of Tardigrada, Rotifera and Enchytraeidae also increased with stand age. Nematode biomass increased from 49 to 543 mg m−2 in pine plantations and slightly decreased in the semi-natural forest to 301 mg m−2 over the period of investigation. The early colonisation of the initial stage was by bacterivorous (Acrobeloides) and fungal feeding (Aphelenchoides) nematodes, but the communities diversified as succession progressed with bacterivorous nematodes of the genera Plectus, Wilsonema and Metateratocephalus, root-fungal feeding Filenchus, omnivorous Aporcelaimellus and Eudorylaimus, and predacious Prionchulus becoming abundant. The abundance of plant-parasitic nematodes was very low. The greatest number of nematode genera was found in the semi-natural forest.  相似文献   

2.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

3.
Generalist predators play a key role in agriculturally and environmentally sustainable systems of pest control. A detailed knowledge on their ecology, however, is needed to improve management practices to maximize their service of pest control. The present study examines the habitat use and activity patterns of larval and adult Cantharis beetles that are abundant predators in arable land. Laboratory experiments revealed that sixth instar larvae of Cantharis fusca and Cantharis livida significantly preferred high relative humidity levels of 85–90% to lower ones. This can explain their preference for meadows over fields due to the more favorable microclimatic conditions in the former habitats. Surface activity of sixth instar Cantharis larvae during autumn, winter and early spring occurred at soil temperatures above 0 °C. However, no correlation between surface activity and soil temperature, air temperature or relative humidity was found above 0 °C. Catches of sixth instar Cantharis larvae within fenced pitfall traps were higher in a meadow (Mean ± S.D.; 13.8 ± 7.63 individuals m−2) than in a field (4.60 ± 2.89 individuals m−2). Mark-recapture density estimations for sixth instar larvae indicated mean densities of 25.9 ± 5.63 (field) and 42.8 ± 16.0 individuals m−2 (meadow). The same pattern was found for adult emergence rates in the field (0.17 ± 0.39 adults m−2) and meadow (1.83 ± 1.17 adults m−2) as well as for adult densities in the vegetation (field 4.89 ± 3.62 adults 60 m−2; meadow 12.5 ± 11.2 adults 60 m−2). It is concluded that especially in winter elements that provide plant cover should be incorporated in arable fields to enhance larval cantharid population densities and to attract them from their prime grassland habitats into arable sites.  相似文献   

4.
《Applied soil ecology》2000,14(1):27-36
The nematode communities of 36 grassland ecosystems in Romania, belonging to different plant associations and soil types, were studied. The abundance of nematodes, the species and trophic types present, as well as their distribution in relation to plant community and soil characteristics are analyzed and discussed.The abundance of nematodes from the 36 grasslands studied ranged between 0.41 × 106 and 8.57 × 106 individuals/m2, and a total of 121 genera and 145 species of nematodes were found. The highest diversity was found in grasslands developed on brown earth soil (65–67 genera and 74–76 species), with least diversity in those evolving on podzol and lithosol (33–36 genera with 25–28 identified species). Most of the dominant taxa were found in specific soil layers; some obligate plant parasitic genera (e.g., Paratylenchus, Rotylenchus, Criconema) showed preference for deeper soil layers. The nematode diversity index (H′), with values ranging between 2.38 and 3.47, did not differ significantly between the different types of grasslands. Plant feeding, bacterial feeding, hyphal feeding and omnivorous nematodes were the main groups in mountainous grasslands developed on different soil types. Plant feeding and bacterial feeding nematodes dominated the trophic structure and more plant feeders (62–69%) were found in communities of subalpine and alpine grasslands developed on podzol and alpine meadow soil, than in those developed on rendzina and lithosol (27–33%). The ratio of hyphal feeding to bacterial feeding nematodes (Hf/Bf) is constantly in favour of the bacterial feeding group, the values being an indicator of good soil fertility for most studied grasslands. The nematode communities of grasslands are grouped into six main clusters according to their genera affinity and distinguished by different grassland and soil types. Communities from subalpine grasslands developed on rendzina, acid brown and lithosol have the greatest similarities. An ordination of nematode communities in relation to important environmental variables is presented. Environmental variables relevant in explaining the patterns of nematode composition in grasslands, using canonical correspondence analysis (CCA), are: humus, pH, total nitrogen, exchangeable bases and soil type. No single factor could be selected.  相似文献   

5.
In central Veracruz, Mexico, many coffee plantations are managed using agrochemicals for weed control, with glyphosate-based herbicides (GBH) the most commonly used. To date, however, no studies in this region have characterized the soil biological and physicochemical properties in coffee plantations under such glyphosate application. In this study, earthworms were used as bioindicator organisms by measuring differences in the earthworm community in plots within shaded coffee plantations, with and without repeated applications of glyphosate. Differences in earthworm-induced soil processes, such as water infiltration rates, potential net carbon mineralization rates and soil physicochemical properties were also evaluated. Eight plots were selected in shaded coffee plantations; four had received regular applications of GBH over the preceding 22 years, while the other four had received no herbicides over the preceding 7 years. The earthworm species found in plots with no GBH treatment were Pontoscolex corethrurus (99%) and Amynthas corticis (1%), while A. corticis was absent in plots that had been treated with GBH. Significant differences (P < 0.01) in earthworm density (168 ± 16 and 353 ± 37 ind m−2) and biomass (22.7 ± 1.1 and 45.4 ± 6.9 g m−2) were observed in soils with and without GBH, respectively. No significant difference (P = 0.08) was observed in the water infiltration rate (2 × 10−4 ± 4 × 10−5 and 4 × 10−4 ± 1 × 10−4 cm s−1 with and without GBH, respectively). Soil carbon flow was greater in plots with GBH (76 ± 7 μg dry soil−1 d−1) than in those without GBH (62 ± 1 μg dry soil−1 d−1, P < 0.005). Significant differences (P < 0.05) were found in pH and in the clay, silt and Ca content of the soil. Our findings indicated reduced species number, density and biomass of earthworms, and increased net carbon mineralization rate in plots with GBH. The plots managed with glyphosate presented a negative effect on the earthworm parameters measured, and we conclude that the earthworms therefore acted as indicators of perturbation. It is also possible that this effect could be due to factors unrelated to the glyphosate that were not considered in this study, such as chemical fertilization or legume litter spatial variability, among others.  相似文献   

6.
《Applied soil ecology》1999,11(2-3):189-197
Senescent leaves of Miscanthus sinensis contained 36% soluble polysaccharides, 26% cellulose and had a C/N ratio of 45. In 11 wild flower species contents of soluble polysaccharides (21–30%), cellulose (3–16%) and C/N ratio (13–31) were lower. Decomposing leaves of M. sinensis lost weight at a rate of 0.002 day−1, increased the C/N ratio from 45 to about 100, the bacterial biomass from 0.4 to 1 μg C mg−1 dry weight, and decreased the tensile strength from 35 to 10 N. The withdrawal rate of Lumbricus terrestris with senescent leaves of M. sinensis was 30 mg g−1 week−1; the feeding rate was lower. With most senescent wild flowers withdrawal and feeding rates were higher. During decomposition of M. sinensis withdrawal rates increased to about 90, and feeding rates to about 30 mg g−1 week−1. The rates were not related to soluble polysaccharides, cellulose, acid-insoluble residue, C/N ratio and the presence of trichomes on the leaves. The abundance of L. terrestris decreased in a meadow turned into a field of M. sinensis from 55 to 26 earthworms m−2 and increased in a rotational maize field turned into wild flower strips from 28 to 46 earthworms m−2. The species richness of earthworms decreased with M. sinensis from 7.2 to 4.7 and increased with wild flowers from 4.7 to 6.7 species per sampling unit.  相似文献   

7.
《Applied soil ecology》2001,16(3):243-249
Very little is known about the effect of overgrazing on carbon loss from soil in semi-arid savannas and woodlands of South America. Soil carbon parameters were measured in a 10,000 ha restoration project in the western Chaco of Argentina (24°43′S and 63°17′W). Three situations were compared: highly restored (HRS), moderately restored (MRS) and highly degraded (HDS). Soil and litter samples were recovered in the dry and wet seasons. SOC and CO2–C values decreased from the HRS (7.0 kg m−2 and 130 g m−2) to the HDS (1.5 kg m−2 and 46 g m−2) whereas the C mineralization rate increased toward the less restored sites (0.96–2.29). Surface-litter C was similar in both sites under restoration (260 and 229 g m−2), being non-existent at the HDS. Leaves from woody species dominated surface-litter in the HRS, whereas grass material was predominant in the MRS. During the wet season, the SOC decreased, whereas both CO2–C and C mineralization rate increased. The magnitude of the between-season differences was highest at the HDS (62% in SOC, 55% in CO2, and 80% in C mineralization rate). We estimated that C loss since introduction of cattle into the forest was 58 Mg ha−1, reaching a total of 2×1015 g at for the entire Chaco. These values are higher than those caused by the conversion of savannas and other ecosystems into agriculture or cultivated pastures. The amount of C fixed in the highly restored site (275 g ha−1 per year) indicates that the Chaco soils have a significant potential as atmospheric carbon sinks.  相似文献   

8.
Over a 2-year study, we investigated the effect of environmental change on the diversity and abundance of soil arthropod communities (Acari and Collembola) in the Maritime Antarctic and the Falkland Islands. Open Top Chambers (OTCs), as used extensively in the framework of the northern boreal International Tundra Experiment (ITEX), were used to increase the temperature in contrasting communities on three islands along a latitudinal temperature gradient, ranging from the Falkland Islands (51°S, mean annual temperature 7.5 °C) to Signy Island (60°S, ?2.3 °C) and Anchorage Island (67°S, ?3.8 °C). At each island an open and a closed plant community were studied: lichen vs. moss at the Antarctic sites, and grass vs. dwarf shrub at the Falkland Islands. The OTCs raised the soil surface temperature during most months of the year. During the summer the level of warming achieved was 1.7 °C at the Falkland Islands, 0.7 °C at Signy Island, and 1.1 °C at Anchorage Island.The native arthropod community diversity decreased with increasing latitude. In contrast with this pattern, Collembola abundance in the closed vegetation (dwarf shrub or moss) communities increased by at least an order of magnitude from the Falkland Islands (9.0 ± 2 × 103 ind. m?2) to Signy (3.3 ± 8.0 × 104 ind. m?2) and Anchorage Island (3.1 ± 0.82 × 105 ind. m?2). The abundance of Acari did not show a latitudinal trend.Abundance and diversity of Acari and Collembola were unaffected by the warming treatment on the Falkland Islands and Anchorage Island. However, after two seasons of experimental warming, the total abundance of Collembola decreased (p < 0.05) in the lichen community on Signy Island as a result of the population decline of the isotomid Cryptopygus antarcticus. In the same lichen community there was also a decline (p < 0.05) of the mesostigmatid predatory mite Gamasellus racovitzai, and a significant increase in the total number of Prostigmata.Overall, our data suggest that the consequences of an experimental temperature increase of 1–2 °C, comparable to the magnitude currently seen through recent climate change in the Antarctic Peninsula region, on soil arthropod communities in this region may not be similar for each location but is most likely to be small and initially slow to develop.  相似文献   

9.
Soil archaeal population dynamics at two experimental sites of the same clay-loam type in Ottawa and Woodslee, Ontario, were investigated to determine fertilizer and manure effects following their different long-term crop rotation and fertilization schemes. Phylogenetic analysis of cloned soil archaeal 16S rRNA gene libraries of both sites identified them with group 1.1b of Thaumarchaeota. The gene population dynamics subtly varied in the order of 107 copies g−1 soil when monitored by quantitative real-time PCR during three growing seasons (2007–2009). In Ottawa, where plots were amended with dairy-farm manure, soil thaumarchaeal gene abundance was double of the unamended plots. At the Woodslee N-P-K-fertilized plots, it remained at least 30% fewer than that of the unfertilized ones. These cultivated plots showed soil carbon limitation while the fertilized ones were low in soil pH (ca. 5.5). Surface soils from an unfertilized sod plot and an adjacent deciduous forest had higher total carbon content (C:N ratio of 9 and 11, respectively). Their thaumarchaeal gene abundance varied up to 4.8 × 107 and 7.0 × 107 copies g−1 soil, respectively. The former value was also attained at the manure-amended plots in Ottawa, where the C:N ratio was just below 10. Where soil pH was above 6.0, there was a weak and positive correlation between soil total C and the estimated gene abundance. Such gene population dynamics consistently demonstrated the stimulating and suppressive effects of dairy-farm manure (Ottawa site) and inorganic fertilizers (Woodslee site), respectively, on soil thaumarchaea. At both sites archaeal amoA and 16S rRNA gene abundance were similarly affected. Archaeal amoA gene abundance also outnumbered bacterial amoA abundance, suggesting that ammonia-oxidizing archaea might be dominant in these soils. Only minor crop effects on gene population dynamics were detected.  相似文献   

10.
Tussocks formed by Carex stricta are a relatively large carbon (C) pool in sedge meadows, but the stability of organic matter in these ecosystems is not well understood. We initiated year-long incubation experiments (22.5 °C) to evaluate the CO2 and CH4 production potentials of sedge meadow substrates under field moist and inundated treatments from five sites in the Upper Midwest, USA (4 reference, 1 restored). C mineralization potentials decreased with depth (tussocks > underlying soil), and were positively correlated with macro-organic matter content and negatively with lignin. Across sites, C stored in tussocks and soil at the restoration was the least stable, suggesting that the restoration of C-storage function may take decades. Mineralization potentials were similar between field moist and inundated treatments, but inundation resulted in higher methane production, accounting for 24–51% of total carbon mineralized from tussocks. In the field however, C. stricta tussocks emitted less methane (393 ± 76 mg CH4 m−2 d−1) than tussock interspaces (1362 ± 371 mg CH4 m−2 d−1) early in the growing season; we suggest that tussock tops oxidized methane produced from deeper anoxic horizons. Our results highlight the importance of considering how microtopography modulates greenhouse gas flux from wetlands and suggests that the C stored in the older, more decomposed C. stricta tussock sedge meadow substrates (both within and between sites) is relatively stable.  相似文献   

11.
《Applied soil ecology》2007,35(2-3):219-229
Rising atmospheric CO2 concentrations are expected to have marked impacts on the carbon (C) turnover in agro-ecosystems through increased plant photosynthetic rates, leading to an enhanced biomass, and wider plant C/N ratios. Through increased carbon allocation below-ground, as well as through changed litter quality, CO2 enrichment will indirectly affect soil faunal communities. In the present study we investigated how elevated atmospheric CO2 and two different levels of N fertilization may affect abundance and diversity of collembolans, as important catalysts in decomposition processes, within an agro-ecosystem under winter wheat cultivation. The investigations were carried out in 2002 within a field experiment using the “Free Air CO2 Enrichment” technique (FACE) at the Federal Agricultural Research Centre (Braunschweig, Germany). Stable C-isotopic analysis of collembolans, soil, and crops gave insight into C translocation. During our investigations δ13C values of all components analysed were significantly more negative under FACE compared to ambient air conditions. Stable C-isotopic signatures of collembolans were similar to those of soil under ambient air, but in between those of soil and roots under elevated CO2 conditions. Our results revealed significant effects of both treatments (CO2 enrichment and N fertilization) on density and species diversity of collembolans. Overall, collembolans were stimulated under elevated CO2 conditions, showing an increased abundance of more than 50% (11 240 ind m−2) as well as a higher biodiversity (Shannon Weaver index = 2.5; evenness = 0.75) compared to ambient air conditions (7520 ind m−2; Shannon Weaver index = 2.2; evenness = 0.72). With regard to N supply, a decrease of about 20–30% under CO2 enrichment and 45–55% under ambient air conditions in collembolan abundance with no alteration in diversity was recorded under reduced N fertilization. The observed impacts were species-specific.  相似文献   

12.
Earthworms can have positive effects upon crop growth in the tropics. If soils are to be managed sustainably, then more attention should be paid to the effects of cultivation and cropping practices upon earthworms. When forest vegetation is cleared, slashed, burned and land is tilled and cultivated, earthworm abundance, diversity and activity are reduced. Conversely, retaining trees in agroecosystems may maintain earthworm populations during the cropping phase.Here, we assessed the impact on earthworm species diversity and densities of crop cultivation in the understorey of timber plantations thinned to two tree densities and compared these with uncropped, undisturbed timber plantation controls. The plots were reassessed after two and a half years of fallow to see whether populations had recovered. The experiment was in central Cameroon.Seventeen earthworm species were recorded from Eudrilidae subfamilies Eudrilinae and Pareudrilinae, Ocnerodrilidae and Acanthodrilidae, most of which were endemics. This included two new species from two new genera from the sub-family Pareudrilinae, one new species from one new genus of Ocnerodrilidae, two new species of Dichogaster and one new species of Legonodrilus. Ten species were epigeic, six were endogeic and one was anecic.Generally, earthworm densities were lower in cropped plots than in the undisturbed plantation control. The most abundant species was a Legonodrilus sp. nov. with average densities of 49 individuals m−2 in the crop phase and 80 ind. m−2 in the fallow phase. By the fallow phase, densities in the low tree density (120 ind. m−2) were higher than in the high density (40 ind. m−2). The densities of the epigeic Acanthodrilidae were significantly reduced to 7 ind. m−2 in the cropped plots compared with 42 ind. m−2 in the control plots. The effects of cropping were thus species-specific and more work is required to identify which of these endemics are the ecosystem engineers in the system.  相似文献   

13.
Anaerobic ammonium oxidation (anammox) and nitrite-dependent anaerobic methane oxidation (n-damo) are two recently discovered processes in the nitrogen cycle that are catalysed by anammox bacteria and n-damo bacteria, respectively. Here, the depth-specific distribution and importance of anammox bacteria and n-damo bacteria were studied in an urban wetland, Xixi Wetland, Zhejiang Province (China). Anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia and Candidatus Anammoxoglobus, and n-damo bacteria related to “Candidatus Methylomirabilis oxyfera” were present in the collected soil samples. The abundance of anammox bacteria (2.6–8.6 × 106 copies g−1 dry soil) in the shallow soils (0–10 cm and 20–30 cm) was higher than that (2.5–9.8 × 105 copies g−1 dry soil) in the deep soils, whereas the abundance of n-damo bacteria (0.6–1.3 × 107 copies g−1 dry soil) in the deep soils (50–60 cm and 90–100 cm) was higher than that (3.4–4.5 × 106 copies g−1 dry soil) in the shallow soils. Anammox activity was detected at all depths, and higher potential rates (12.1–21.4 nmol N2 g−1 dry soil d−1) were observed at depths of 0–10 cm and 20–30 cm compared with the rates (3.5–8.7 nmol N2 g−1 dry soil d−1) measured at depths of 50–60 and 90–100 cm. In contrast, n-damo was mainly occurred at depths of 50–60 cm and 90–100 cm with potential rates of 0.7–5.0 nmol CO2 g−1 dry soil d−1. This study suggested the niche segregation of the anammox bacteria and n-damo bacteria in wetland soils, with anammox bacteria being active primarily in deep soils and n-damo bacteria being active primarily in shallow soils.  相似文献   

14.
Old-growth forests are often assumed to exhibit no net carbon assimilation over time periods of several years. This generalization has not been typically supported by the few whole-ecosystem, stand-scale eddy-covariance measurements of carbon dioxide exchange in old-growth forests. An eddy-flux tower installed in a >300-year-old hemlock–hardwood forest near the Sylvania Wilderness, Ottawa National Forest, MI, USA, observed a small annual carbon sink of CO2 of −72 ± 36 g C m−2 year−1 in 2002 and −147 ± 42 g C m−2 year−1 in 2003. This carbon sink was much smaller than carbon sinks of −438 ± 49 g C m−2 year−1 in 2002 and −490 ± 48 g C m−2 year−1 in 2003 observed by a nearby flux tower in a 70-year-old mature hardwood forest (Willow Creek, WI). The mature forest had vegetation similar to the old-growth site prior to European settlement. Both sites had slightly larger carbon sinks in 2003, which was a drier and cooler year than 2002. However, the difference in sink strength between the two years was smaller than the uncertainty in the results arising from missing and screened data. Both sites also had significant systematic errors due to non-representative fluxes during certain micrometeorological conditions, which required careful screening. The difference in sink strength between the two sites was driven mainly by greater ER at the old-growth site (965 ± 35 g C m−2 year−1 in 2002 and 883 ± 69 g C m−2 year−1 in 2003) compared to the mature site (668 ± 21 g C m−2 year−1 in 2002 and 703 ± 17 g C m−2 year−1 in 2003). GEP was lower at the old-growth site (1037 ± 47 g C m−2 year−1 in 2002 and 1030 ± 41 g C m−2 year−1 in 2003) compared to the mature site (1106 ± 47 g C m−2 year−1 in 2002 and 1192 ± 51 g C m−2 year−1 in 2003), especially in 2003. Observations also suggested that growing season ER had greater interannual variability at the old-growth site. These results imply that old-growth forests in the region may be carbon sinks, though these sinks are smaller than mature forests, mostly likely due to greater ER.  相似文献   

15.
《Soil biology & biochemistry》2001,33(4-5):533-551
This study aimed to determine the factors which regulate soil microbial community organisation and function in temperate upland grassland ecosystems. Soil microbial biomass (Cmic), activity (respiration and potential carbon utilisation) and community structure (phospholipid fatty acid (PLFA) analysis, culturing and community level physiological profiles (CLPP) (Biolog®)) were measured across a gradient of three upland grassland types; Festuca–Agrostis–Galium grassland (unimproved grassland, National Vegetation Classification (NVC) — U4a); FestucaAgrostisGalium grassland, Holcus–Trifolium sub-community (semi-improved grassland, NVC — U4b); Lolium–Cynosurus grassland (improved grassland, NVC — MG6) at three sites in different biogeographic areas of the UK over a period of 1 year. Variation in Cmic was mainly due to grassland type and site (accounting for 55% variance, v, in the data). Cmic was significantly (P<0.001) high in the unimproved grassland at Torridon (237.4 g C m−2 cf. 81.2 g C m−2 in semi- and 63.8 g C m−2 in improved grasslands) and Sourhope (114.6 g C m−2 cf. in 44.8 g C m−2 semi- and 68.3 g C m−2 in improved grasslands) and semi-improved grassland at Abergwyngregyn (76.0 g C m−2 cf. 41.7 g C m−2 in un- and 58.3 g C m−2 in improved grasslands). Cmic showed little temporal variation (v=3.7%). Soil microbial activity, measured as basal respiration was also mainly affected by grassland type and site (n=32%). In contrast to Cmic, respiration was significantly (P<0.001) high in the improved grassland at Sourhope (263.4 l h−1m−2 cf. 79.6 l h−1m−2 in semi- and 203.9 l h−1m−2 unimproved grasslands) and Abergwyngregyn (198.8 l h−1m−2 cf. 173.7 l h−1m−2 in semi- and 88.2 l h−1m−2 unimproved grasslands). Microbial activity, measured as potential carbon utilisation, agreed with the respiration measurements and was significantly (P<0.001) high in the improved grassland at all three sites (A590 0.14 cf. 0.09 in semi- and 0.07 in unimproved grassland). However, date of sampling also had a significant (P<0.001) impact on C utilisation potential (v=24.7%) with samples from April 1997 having highest activity at all three sites. Variation in microbial community structure was due, predominantly, to grassland type (average v=23.6% for bacterial and fungal numbers and PLFA) and date of sampling (average v=39.7% for bacterial and fungal numbers and PLFA). Numbers of culturable bacteria and bacterial PLFA were significantly (P<0.001) high in the improved grassland at all three sites. Fungal populations were significantly (P<0.01) high in the unimproved grassland at Sourhope and Abergwyngregyn. The results demonstrate a shift in soil microbial community structure from one favouring fungi to one favouring bacteria as grassland improvement increased. Numbers of bacteria and fungi were also significantly (P<0.001) higher in August than any other sampling date. Canonical variate analysis (CVA) of the carbon utilisation data significantly (P<0.05) differentiated microbial communities from the three grassland types, mainly due to greater utilisation of sugars and citric acid in the improved grasslands compared to greater utilisation of carboxylic acids, phenolics and neutral amino acids in the unimproved grasslands, possibly reflecting substrate availability in these grasslands. Differences in Cmic, activity and community structure between grassland types were robust over time. In addition, broad scale measures of microbial growth and activity (Cmic and respiration) showed little temporal variation compared to measures of soil microbial community structure, which varied quantitatively with respect to environmental variables (temperature, moisture) and plant productivity, hence substrate supply.  相似文献   

16.
《Applied soil ecology》1999,11(1):91-101
Potential C and N mineralization and soil microbial biomass C (SMBC) are soil biological properties important in understanding nutrient and organic matter dynamics. Knowledge of soil water content at a matric potential near field capacity is needed to determine these biological properties. The objective of this study was to examine whether adjustment of soil water content to a common level of water-filled pore space (WFPS) may be an acceptable alternative that would require little prior analysis in comparison with adjustment based on matric potential. Potential C and N mineralization and SMBC were determined from 15 variably eroded soils of the Madison–Cecil–Pacolet association (clayey, kaolinitic, thermic Typic Kanhapludults) in response to WFPS. The levels of WFPS to achieve maximum activity and biomass under naturally settled conditions were unaffected by clay content and occurred at 0.42±0.03 m3 m−3 for net N mineralization during 24 days of incubation, 0.51±0.22 m3 m−3 for specific respiratory activity of SMBC, 0.60±0.07 m3 m−3 for cumulative C mineralization during 24 d of incubation, and 0.76±0.27 m3 m−3 for SMBC. Selecting a common WFPS level of 0.5 m3 m−3 resulted in 96±2%, 97±5%, 97±4%, and 88±10% of the maximum for these four properties, respectively, and was a reasonable compromise when attempting to estimate these properties during simultaneous incubations. Adjusting soil water content based on WFPS was simpler and nearly as reliable as based on matric potential, in which soil water content at −33 kPa varied from 0.16 to 0.30 g g−1.  相似文献   

17.
Underestimation of nocturnal CO2 respiration using the eddy covariance method under calm conditions remains an unsolved problem at many flux observation sites in forests. To evaluate nocturnal CO2 exchange in a Japanese cypress forest, we observed CO2 flux above the canopy (Fc), changes in CO2 storage in the canopy (St) and soil, and trunk and foliar respiration for 2 years (2003–2004). We scaled these chamber data to the soil, trunk, and foliar respiration per unit of ground area (Fs, Ft, Ff, respectively) and used the relationships of Fs, Ft, and Ff with air or soil temperature for comparison with canopy-scale CO2 exchange measurements (=Fc + St). The annual average Fs, Ft, and Ff were 714 g C m−2 year−1, 170 g C m−2 year−1, and 575 g C m−2 year−1, respectively. At small friction velocity (u*), nocturnal Fc + St was smaller than Fs + Ft + Ff estimated using the chamber method, whereas the two values were almost the same at large u*. We replaced Fc + St measured during calm nocturnal periods with a value simulated using a temperature response function derived during well-mixed nocturnal periods. With this correction, the estimated net ecosystem exchange (NEE) from Fc + St data ranged from −713 g C m−2 year−1 to −412 g C m−2 year−1 in 2003 and from −883 g C m−2 year−1 to −603 g C m−2 year−1 in 2004, depending on the u* threshold. When we replaced all nocturnal Fc + St data with Fs + Ft + Ff estimated using the chamber method, NEE was −506 g C m−2 year−1 and −682 g C m−2 year−1 for 2003 and 2004, respectively.  相似文献   

18.
《Soil biology & biochemistry》2001,33(7-8):1103-1111
Biologically active fractions of soil organic matter are important in understanding decomposition potential of organic materials, nutrient cycling dynamics, and biophysical manipulation of soil structure. We evaluated the quantitative relationships among potential C and net N mineralization, soil microbial biomass C (SMBC), and soil organic C (SOC) under four contrasting climatic conditions. Mean SOC values were 28±11 mg g−1 (n=24) in a frigid–dry region (Alberta/British Columbia), 25±5 mg g−1 (n=12) in a frigid–wet region (Maine), 11±4 mg g−1 (n=117) in a thermic–dry region (Texas), and 12±5 mg g−1 (n=131) in a thermic–wet region (Georgia). Higher mean annual temperature resulted in consistently greater basal soil respiration (1.7 vs 0.8 mg CO2–C g−1 SOC d−1 in the thermic compared with the frigid regions, P<0.001), greater net N mineralization (2.8 vs 1.3 mg inorganic N g−1 SOC 24 d−1, P<0.001), and greater SMBC (53 vs 21 mg SMBC g−1 SOC, P<0.001). Specific respiratory activity of SMBC was, however, consistently lower in the thermic than in the frigid regions (29 vs 34 mg CO2–C g−1 SMBC d−1, P<0.01). Higher mean annual precipitation resulted in consistently lower basal soil respiration (1.1 vs 1.3 mg CO2–C g−1 SOC d−1 in the wet compared with the dry regions, P<0.01) and lower SMBC (31 vs 43 mg SMBC g−1 SOC, P<0.001), but had inconsistent effects on net N mineralization that depended upon temperature regime. Specific respiratory activity of SMBC was consistently greater in the wet than the dry regions (≈33 vs 29 mg CO2–C g−1 SMBC d−1, P<0.01). Although the thermic regions were not able to retain as high a level of SOC as the frigid regions, due likely to high annual decomposition rates, biologically active soil fractions were as high per mass of soil and even 2–3-times greater per unit of SOC in the thermic compared with the frigid regions. These results suggest that macroclimate has a large impact on the portion of soil organic matter that is potentially active, but a relatively small impact on the specific respiratory activity of SMBC.  相似文献   

19.
Energy crops are of growing importance in agriculture worldwide. This field study aimed to investigate earthworm communities of different intensively cultivated soils during a 2-year period, with special emphasis on annual and perennial energy crops like rapeseed, maize, and Miscanthus. These were compared with cereals, grassland, and fallow sites. Distribution patterns of earthworm abundance, species, and ecological categories were analysed by constrained ordination procedures (redundancy analysis; CANOCO) using a set of environmental variables as predictors, such as CN value of harvest residues, SOC and Nt content, soil pH, soil texture, and land-use intensity. The latter was determined by principal component analysis using average soil coverage and intensity of tillage, weed control, and fertilisation as input variables. It was clearly found that land-use intensity was the dominant regressor for earthworm abundance and total number of species. The diversity of earthworm communities was especially enhanced and showed a more balanced species composition in extensively managed soils under grassland, fallow, and Miscanthus. For the total number of species, Miscanthus (5.1 ± 0.9) took a medium position and neither differed significantly from intensively managed rapeseed (4.0 ± 0.9), cereals (3.7 ± 1.1), and maize sites (3.0 ± 1.4), nor from grassland (6.8 ± 1.5) and fallow (6.4 ± 1.0) sites. Total earthworm abundance ranged between 355 (±132) and 62 (±49) individuals m−2 in fallow and maize sites, respectively.Interestingly, Miscanthus had quite positive effects on earthworm communities although the CN value of harvest residues was very high. It is recommended that Miscanthus may facilitate a diverse earthworm community even in intensive agricultural landscapes.  相似文献   

20.
Studies were conducted to evaluate the survival and persistence of Sinorhizobium meliloti 104A14 and two acid phosphatase-negative mutants in Kirkland (fine, mixed, thermic Udertic Paleustolls) silt loam soils with various fertility levels, and to assess the impact of inoculation on nodule occupancy and soil microbial community structure in the inoculated alfalfa (Medicago sativa L.) rhizosphere. Recovery of the inoculated strains was 100% (in the order of 108 cells g−1 soil) immediately following inoculation to soils, but decreased from 108 cells g−1 soil to undetectable levels in a nutrient-poor soil within 32 days. In a nutrient-rich soil, approximately 2–3% (4.7–7.43×106 cells g−1 soil) of the mutants and 23% (5.84×107 cells g−1 soil) of the wild-type inocula persisted for more than 64 days. Survivability and persistence of the wild-type S. meliloti were significantly greater than that of the genetically modified acid phosphatase negative mutants in all the soils tested. The persistence and nodule occupancy of the introduced S. meliloti in sterile and non-sterile soils were also tested for two repeated alfalfa growth periods in the same plant growth units, with a 1 month interval in between and no additional inoculation for the second period. Nodule occupancy of the introduced S. meliloti in non-sterile soils ranged from 30 to 60% for the first period and 85 to 100% for the second period. Our results suggest that survival and persistence of S. meliloti was enhanced by alfalfa cultivation and increased soil fertility, but impaired by mutation of acid phosphatase genes regardless of phosphorus nutritional levels. Moreover, inoculation with genetically modified S. meliloti strain 104A14 promoted indigenous bacterial growth in soil (increased bacterial population from 1.4×106 to 4.3×106 cells g−1 soil), but not the growth of fungi and yeast. However, inoculation of the wild-type S. meliloti or genetically modified mutants did not result in significant changes in microbial community structure as indicated by EP indices and ratios of r/K strategists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号