首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of major dwarfing genes on yield potential in spring wheats   总被引:1,自引:0,他引:1  
Summary A composite convergent cross of 16 spring wheat parents produced a set of unselected progeny lines among which the major dwarfing genes, Rht1, Rht2 and Rht3, were distributed against a common random genetic background. Random subsets of these lines were grown under irrigation and optimal conditions in 4 experiments with replicated bordered plots in southern New South Wales in order to measure the dwarfing gene effect on yield potential. The dwarfing gene composition of each line was determined by test crossing and seedling responsiveness to gibberellic acid.Lodging was negligible in the two experiments in 1982. While present in the two in 1983, it was not strongly associated with yield. Grain yield levels were appropriately high (mean 5.9 t/ha). In all but 1 experiment the Rht1+Rht2 dwarf genotypes gave highest yields while the Rht3 group yielded on average 3% lower, Rht2 9% lower, Rht1 11% lower, and the non-dwarf or tall group yielded 24% lower. These yield differences were positively associated with harvest index, kernels per m2 and kernels per spike, but negatively associated with mature plant height. Even within major dwarfing gene classes, grain yield was significantly and negatively associated with height.  相似文献   

2.
The objective of this work is to study the association between the genotypic differences in mean grain weight and grain yield, the relationship of yield and grain weight with culm length, and the differences between the effects of the Rht1 and Rht2 dwarfing alleles on these characters. Yield, grain weight, grains m-2 and culm length were evaluated in two random samples of 19 semi-dwarf early lines, selected in F5 and tested in F2, from two different crosses between cultivars differing in the Rht allele controlling their semi-dwarf ness. The lines of each cross were tested in 4-replicated field trials at two different sites. Phenotypic, genotypic, partial and multiple correlations as well as hertability estimates were computed. In each cross the lines differed significantly in their mean values of all the characters tested. In both crosses there was no apparent association between grain weight and grain yield. It therefore seems that in wheat of the type investigated in this study, grain yield and grain weight are independent controlled and that high grain yield is not restricted to any particular range of mean grain weight. A rather high positive correlation between culm length and grain weight was found in one cross but not in the other indicating the dependence of this relationship on the genetic background. In both crosses no significant differences were found between the performance of the lines carrying the Rht1 dwarfing allele and those carrying the Rht2 allele.  相似文献   

3.
Summary Possible negative effects of tissue culture on qualitative and quantitative characters have been investigated in three crosses of spring barley, using doubled haploid lines produced by anther culture (AC, with maltose as a carbon source) or the Hordeum bulbosum-method (HB). In one cross inbred lines produced by single seed descent (SSD) have also been included. Quantitative characters were investigated in a 2-year field experiment at one location. The results show that although the methods in the majority of cases gave similar results, the genotypic arrays produced were not identical. Different markers deviated in the various cross/method combinations. The ranking of methods as well as the frequencies of lines transgressive for grain yield differed between crosses. Thus no consistently negative impact of anther culture in barley has been found, and, although not identical, the various methods may be considered equivalent.Abbreviations AC Anther Culture method - SSD Single Seed Descent method - HB Hordeum bulbosum method  相似文献   

4.
The amount of genetic variation among inbred lines and testcrosses, and covariation between both genetic materials, are of crucial importance for selection efficiency in hybrid breeding. To estimate these quantitative genetic parameters for resistance of winter rye (Secale cereale) to head blight caused by Fusarium culmorum, 88 three-way cross hybrids, produced by crossing each of 44 S2 Carsten inbred lines with two unrelated Petkus single-cross testers, were evaluated along with the parental lines over 2 years. Resistance traits were head-blight rating and grain weight per spike relative to the non-inoculated control. Significant genotypic variation occurred among lines and in both testcross series. S2 lines displayed considerably more variation than testcross series. Genotype × environment interaction was more marked among the inbred lines, while estimates of heritability were similar for both genetic materials. Testcrosses showed heterosis for head-blight resistance. No relationship existed between S2 lines and the two testcross series for any resistance trait. This might be caused by an association between inbreeding and Fusarium-head-blight susceptibility and different inbreeding depression among the S2 population. The phenotypic correlations between the testcross series were moderate for both traits (r = 0.58, P < 0.01). In conclusion, Fusarium-head-blight resistance has to be selected at the respective heterozygosity levels.  相似文献   

5.
A. Kuczy&#;ska    M. Surma    Z. Kaczmarek    T. Adamski 《Plant Breeding》2007,126(4):361-368
The aim of the study was to evaluate the relationship between genetic and phenotypic distances of parents and the genetic potential of crosses as measured by the frequency of transgressive segregants in homozygous populations. Material for the study involved 17 barley cross‐combinations. In each cross, the parental genotypes, F2 hybrids and doubled haploid (DH) lines were analysed. Yield and yield‐related traits were observed in the experiments. Phenotypic (univariate and multivariate) and genetic distances (GD) were investigated between pairs of parental genotypes. Genetic distance was evaluated by using random amplified polymorphic DNA markers. In F2 generations, the genetic coefficient of variability (GCV) was evaluated. Within all the cross‐combinations studied, each DH line was compared with both parents to distinguish the positive and negative transgressive lines. In addition, the coefficient of gene distribution (r) along parental genomes was evaluated. Relationships between frequency of transgression and both phenotypic and GDs, GCV and r, were assessed by regression analysis. It was found that for all the traits studied the frequency of transgressive lines depended mainly on gene distribution (r). Genetic distance between parents appeared to be significant for the occurrence of transgression effects in plant height, ear length, grain weight per ear and grain yield per plot. Regression analysis has shown that phenotypic differences between parental genotypes were also important for the frequency of transgressive lines. A weak relationship was found between the variation of F2 hybrids and the occurrence of transgressive lines. The results indicate that occurrence of transgressive segregants in a homozygous population should be considered as a phenomenon dependent simultaneously on several factors characterizing parental genotypes. Among them, the most important are: gene distribution, phenotypic diversity and GD.  相似文献   

6.
Zea mays ssp. mexicana, an annual wild relative of maize, has many desirable characteristics for maize improvement. To transfer alien genetic germplasm into maize background, F1 hybrids were generated by using Z. mays ssp. mexicana as the female parent and cultivated maize inbred line Ye515 as the male parent. Alien introgression lines, with a large range of genetic diversity, were produced by backcross and successive self-pollinations. A number of alien introgression lines with the predominant traits of cultivated maize were selected. Genomic in situ hybridization (GISH) proved that small chromosome segments of Z. mays ssp. mexicana had been integrated into the maize genome. Some outstanding alien introgression lines were evaluated in performance trials which showed 54.6% hybrids had grain yield greater than that of hybrid check Yedan12 which possessed 50% Ye515 parentage, and 17.1, 9.9% hybrids had grain yield competitive or greater than those of Nongda108 and Zheng958, which were elite commercial hybrids in China, respectively. The results indicated that some of the introgression lines had excellent agronomic traits and combining ability for maize cultivar, and demonstrated that Z. mays ssp. mexicana was a valuable source for maize breeding, and could be used to broaden and enrich the maize germplasm.  相似文献   

7.
K. N. Rai  A. S. Rao 《Euphytica》1991,52(1):25-31
Summary A d2 dwarfing gene in pearl millet [Pennisetum glaucum (L.) R. Br.] is currently being extensively used for the development of hybrid parents. Its effect on grain yield and yield components is poorly understood. Twelve pairs of tall and dwarf near-isogenic lines developed in the diverse genetic background of three composites were evaluated for grain yield and yield components for 2 years at two locations in southern India. The d2 gene or the genes linked to it, on an average, reduced plant height by 42%, grain yield by 14%, and head girth by 8% but increased head length and number of tillers per plant by about 5–6%. Large variations were observed among pairs (genetic background) for the difference between tall and dwarf near-isogenic lines for all of the above yield components resulting in no significant difference in five pairs and 17–35% less yield in dwarfs as compared to their tall counterparts in six pairs. Days to 50% flowering and seed weight were least affected by the d2 gene with the average difference between tall and dwarf groups of near-isogenic lines being of the order of 1–2%. These results indicate that the advantageous effects of d2 dwarfing gene can be effectively exploited by manipulating the genetic background. The difference between the average grain yields of tall and dwarf groups of near-isogenic lines showed considerable variation across environments with the dwarfs yielding as much as tall group in one environment and up to 30% less than the tall group in the other, thus, indicating that the d2 gene effect may be substantially modified by the environments.Submitted as JA No. 979 by the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

8.
A series of half-diallel crosses involving early, medium and late maturity desi and kabuli type chickpea (Cicer arietinum L.) genotypes with stable resistance to Helicoverpa pod borer, along with the parents, were evaluated at two locations in India to understand the inheritance of pod borer resistance and grain yield. Inheritance of resistance to pod borer and grain yield was different in desi and kabuli types. In desi type chickpea, the additive component of genetic variance was important in early maturity and dominance component was predominant in medium maturity group, while in the late maturity group, additive as well as dominance components were equally important in the inheritance of pod borer resistance. Both dominant and recessive genes conferring pod borer resistance seemed equally frequent in the desi type parental lines of medium maturity group. However, dominant genes were in overall excess in the parents of early and late maturity groups. In the kabuli medium maturity group, parents appeared to be genetically similar, possibly due to dispersion of genes conferring pod borer resistance and susceptibility, while their F1s were significantly different for pod borer damage. The association of genes conferring pod borer resistance and susceptibility in the parents could be attributed to the similarity of parents as well as their F1s for pod borer damage in kabuli early and late maturity groups. Grain yield was predominantly under the control of dominant gene action irrespective of the maturity groups in desi chickpea. In all the maturity groups, dominant and recessive genes were in equal frequency among the desi parental lines. Dominant genes, which tend to increase or decrease grain yield are more or less present in equal frequency in parents of the early maturity group, while in medium and late maturity groups, they were comparatively in unequal frequency in desi type. Unlike in desi chickpea, differential patterns of genetic components were observed in kabuli chickpea. While the dominant genetic component was important in early and late maturity group, additive gene action was involved in the inheritance of grain yield in medium duration group in kabuli chickpea. The dominant and recessive genes controlling grain yield are asymmetrically distributed in early and medium maturity groups in kabuli chickpea. The implications of the inheritance pattern of pod borer resistance and grain yield are discussed in the context of strategies to enhance pod borer resistance and grain yield in desi and kabuli chickpea cultivars.  相似文献   

9.
Summary When grain sorghum is grown in saline soils, one cause of low yield is poor crop establishment. The objectives of this study were to assess the response of grain sorghum to salinity in the germination-emergence stages, study the inheritance of salt tolerance at this stage, and determine the relative contribution to final emergence of salt effects during imbibition, and after onset of germination. Twelve inbred lines and 18 F1 hybrids, resulting from an incomplete 6×6 factorial mating design, were tested for germination and emergence in folded paper at 10 salt concentrations, from 1.8 to 36 dSm-1. The mean EC50 (the electrical conductivity at which the variable score declines by 50%) for emerged seedlings production was 21.2 dSm-1. Large genotypic differences were observed for salt tolerance at germination and emergence stages, which were not related to the viability of seeds, and poorly related to seed weight (considered as an estimate of intrinsic seed vigor). In the hybrids, these differences were due to SCA and female GCA for emergence, and female GCA for germination, though the male GCA was also significant for both characters. Line per se performance was significantly correlated to individual GCA estimates for emergence, but not for germination. Heterosis was only detected in three crosses for final emergence and in one cross for germination. The genetic differences in final emergence were mainly due to effects occurring after the onset of germination rather than a consequence of effects during imbibition.  相似文献   

10.
Summary The relationship between the genetic distance of parents and both the heterosis of F1 hybrids and the variance of F5 lines was investigated in 72 crosses of pea (Pisum sativum L.). The genetic distance between each pair of parents was estimated, using isozyme (GDi), morphological (GDm) or quantitative (GDq) markers and finally a combination of isozyme and morphological markers (GDi+m). GDm was poorly correlated with the other measures of genetic distance, which in turn were strongly correlated with each other. Genetic distance was moderately correlated with the level of heterosis for yield over midparent in the F1 generation, with the highest correlation obtained from GDi+m. GD was not significantly correlated with heterosis for yield over the better or best parent but it was significantly correlated with all three measures of heterosis for pods per plant and hundred seed weight. There was no correlation between genetic distance and the level of heterosis for yield and total dry matter in the F2 generation, but GDi, GDi+m and GDq were predictive for the level of inbreeding depression in grain yield and total dry matter. When parents were high in genetic distance, crosses produced highly transgressive segregants for basal branches per plant, hundred seed weight, harvest index and onset of flowering. Genetic distance between parents was thus a useful measure for predicting a portion of hybrid performance and also of the variance of derived inbred lines. It was concluded that when choosing parents for a cross, consideration should be given to their genetic distance as well as their overall adaptation and their yield. There is considerable potential for optimising choice of parental combinations in the development of improved pea cultivars.  相似文献   

11.
Summary The production of seed of the maize single cross hybrid F68*NE2 is uneconomic because of the low grain yield of the maternal line. Therefore the aim was to produce it from newly developed inbred lines obtained by reshuffling the genes in the hybrid, accompanied by selection. Thus in open pollinating generations derived from this hybrid, i.e. in C0, C1, C2, C3 and C4, honeycomb selection for grain yield improvement was applied. Selfing of one ear and open pollination of another ear of selected prolific C4 plants yielded 20 pairs of S1/half sib progenies. Plants grown from remnant S1 seed corresponding to superior progeny pairs were selfed. In each S2-line a single plant was selected and selfed. The S3-lines were evaluated for yield. Two S3-lines, i.e. 6D and 2B, attracted attention because they yielded two and a half times as much as the best commercial inbred line B73.The S1-and S2-lines were tested for combining ability with the related inbred lines NE2 and F68 by means of honeycomb design experiments and for combining ability with unrelated, freely available inbred lines by means of randomized complete block designs. Two S2-lines, i.e. 5C and 6E, were selected for their good combining ability. The six single cross hybrids produced by crossing the four S3-lines 6D, 2B, 5C, and 6E were compared with the original hybrid F68*NE2 in a honeycomb design at two sites. The grain yields of the single cross hybrids 6D*6E and 5C*6E were similar to that of F68*NE2. However, these two reconstructed hybrids can be produced in a cheaper way because the new maternal inbred lines yield as good as B73 (line 5C) or much better (line 6D).  相似文献   

12.
Despite the well-recognized importance of grain yield in high-oil maize (Zea mays L.) breeding and production, few studies have reported the application of QTL mapping of such traits. An inbred line of high-oil maize designated ‘GY220’ was crossed with two dent maize inbred lines to generate two connected F2:3 populations with 284 and 265 F2:3 families. Our main objective was to evaluate the influence of genetic background on QTL detection of grain yield traits through comparisons between the F2:3 populations. The field experiments were conducted during the spring in Luoyang and summer in Xuchang, Henan, China. Two genetic linkage maps were constructed with a genetic distance of 2111.7 and 2298.5 cM using 185 and 173 polymorphic SSR markers, respectively. In total, 18 and 15 QTL were detected for six grain yield traits in the two populations. Only one common QTL marker was shared between the two populations. A QTL cluster associated with five traits was identified at bin 1.05–1.06, including the shared QTL for 100GW, which demonstrated the largest effect (16.7%). Among the detected QTL, 12 digenic interactions were identified. Our results reflect the substantial influence of dent maize genetic background on QTL detection of grain yield traits.  相似文献   

13.
Sorghum head bug, Calocoris angustatus Lethiery is one of the most important pests of grain sorghum in India. Head bug damage increases the severity of grain molds, which renders the grain unfit for human consumption. Therefore, we studied the gene action for resistance to head bugs and grain molds in a diverse array of male-sterile lines and testers in a line × tester mating design under natural infestation. Mean squares for parents, parents vs crosses, lines, testers, and lines × testers were significant for head bug damage and grain mold severity. General combining ability (GCA) effects were significant and negative for ICSA 88019 for head bug damage, and ICSA 88019 and ICSA 88020 for grain molds (except for ICSA 88020 in 1993). General combining ability effects were positive for ICSA 42 and 296 A. GCA effects of lines and testers for head bug damage and grain mold severity were in the same direction (+ve or −ve). Head bug damage in the grain was significantly correlated with grain mold severity. Testers IS 8891, IS 15107, and TAM 2566 (with colored grain and less susceptibility to molds) produced mold-resistant hybrids in combination with all the male-sterile lines, while the reverse was true in the case of Swarna and ICSV 112. Resistance to head bugs showed dominance to partial dominance type of gene action, while in the case of grain molds, it showed dominance to over dominance. Resistance to these pests is governed by both additive and nonadditive types of gene action. The implications of these results are discussed in relation to need for crop improvement in sorghum. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
Summary Relationships among the traits protein percentage, grain yield, and protein yield of oats were studied with F2-derived lines in F3 and F4 from 27 matings obtained by crossing high-protein with high-yield oat lines. High-protein parents were (a) selections from an Avena sativa bulk, (b) selections from three-way matings in which an initial parent was A. sterilss, and (c) cultivars. High-yield parents were derived from backcross populations involving A. sterilis accessions as donor parents.Significnnt genetic variation existed among F2-derived lines for grain and protein yield in all matings and for protein percentage in all but one mating.Protein percentage had a highly significant negative correlation with grain yield (r=–0.33**) when pooled over all matings, but in five, these two traits were not correlated. Overall, protein percentage showed a small negative correlation with protein yield (r=–0.09*), and protein and grain yields had a high positive association (r=0.98**). F2-derived lines with both high protein percentage and high grain yield were obtained.High transgressive segregates for protein percentage occurred in two matings, for grain yield in nine, and for protein yield in 14. Most high transgressive segregates for protein yield were high because of high grain yield only, but in four matings, lines were found where protein yield was increased by concurrent increases in both protein percentage and grain yield.Only a few specific parental combinations between high-protein and high-yield parents produced segregates in which increased protein percentage contributed materially to high-protein yields.Journal Paper No. J-11264 of the Iowa Agriculture and Home Economics Experiment Stn., Ames, Iowa 50011. Project 2447.  相似文献   

15.
M. Bencheikh  A. Gallais 《Euphytica》1996,90(3):257-264
Summary Six lines of Pisum were tested in vitro for their ability to produce somatic embryos from apices. Significant quantitative variation was observed. Inheritance of the ability to form somatic embryos was studied using a diallel cross among six different lines. About 80% of the observed genotypic variation was due to additive effects. There is a tendency for the favourable genes to be recessive. It appears that there are two genetic systems involved. Analysis of the distribution of F3 families means from a cross among two extreme lines seems to indicate the presence of a few major genes in the control of somatic embryogenesis of pea.  相似文献   

16.
Experiments were undertaken to determine the inheritance of pod length in a cross with spring rapesecd, Brassica napus, and to assess the value of pod length as a criterion of selection for high seed yield. Analyses of patterns of variation in F2; and backcross populations derived from a cross between a short-pod line TB42 and long-pod line CA553 indicated that much of the variation in pod length could be attributed to two major genes interacting in a complementary manner. Short-pods were produced when cither one or both genes were homozygous for the recessive allele. Analyses of F3 progenies of selected F2 and inbred-backcross lines derived from the same cross supported the two-gene hypothesis but also indicated that the effects of the major genes on pod length were possibly modified by genes of minor effect. Field testing of families derived from random intermating between F2, plants of the TB42 × CA553 cross showed that number of pods per plant varied independently of pod length, but seed weight per pod tended to increase with increasing pod length. As a result, families with the longest pods generally had significantly higher yields than those with short pods. It was concluded that yield improvement in B. napus could be achieved through introgression of long-pod genes into cultivars with an appropriate genetic background to ensure that selection for the long-pod character would be accompanied by an increase in seed weight per pod with little or no reduction in number of pods per plant.  相似文献   

17.
Use of DNA-based markers can accelerate cultivar development in variable cultivation environments since, in contrast to phenotype, DNA markers are environment-independent. In an effort to elucidate the genetic basis of genotype-by-environment interaction (G × E) for yield of rice (Oryza sativa L.), the associations between 139 AFLP markers and grain yield were determined for rice grown in fresh water (EC of 0.65 dS m−1) and saline conditions (EC of 4–8 dS m−1) with 0 kg ha−1 or 100 kg ha−1 nitrogen fertilizer in the years 2000 and 2001. A population of recombinant inbred lines of rice, developed from an IR29 × Pokkali cross, was used in the study. Both genotype × salinity and genotype × nitrogen level interactions were significant, with the genotype × salinity interaction being stronger. Through multiple regression analysis using a stepwise procedure for selecting markers, 36 markers were detected for grain yield in the four test conditions and of these 28 were detected in only one test condition implying strong environmental specificity for yield QTL expression. However, the fact that eight QTLs were detected in more than one test condition points to the existence of wide-adaptability genes in this cross. Markers with significant associations with yield explained between 37% and 48% of the yield variation in each test condition. Superior genotypes of rice were identified in all four test conditions based on their marker signatures. Furthermore, across N fertilizer regimes, yield predicted from summed additive effects of QTLs were significantly correlated with observed yield in the same year and across years. Thus marker-assisted selection can help breeders overcome the problem of low selection efficiency encountered during phenotypic selection for yield in stress environments.  相似文献   

18.
Summary To study the genetic control of hullability in sunflower (Helianthus annuus L.), 36 hybrids, produced by a factorial cross of six male sterile and six restorer lines, were evaluated in two locations in Spain and one in France. Hullability was calculated as the ratio of the quantity of hull removed by a mechanical huller compared with total hull content. In dry conditions in Spain, hullability was twice (83.1%) that observed in France (41.5%). In all locations, male, fernale and interaction effects were significant. Estimates of narrow sense heritability varied between 0.78 and 0.82, values similar to those for other seed characters such as oil content. There were positive genetic and phenotypic correlations between hullability and 1000 seed weight (means 0.81 and 0.74, respectively) but negative correlations with seed oil content (–0.73 and –0.68, respectively). It is concluded that selection in early segregating generations of crosses involving good hulling material needs a specific strategy in order to maintain reasonable levels of oil and protein contents in the seed of the selected genotypes.  相似文献   

19.
Summary In studies of the inheritance of resistance, pea seedlings of seven lines in which stems and leaves were both resistant to Mycosphaerella pinodes were crossed with a line in which they were both susceptible. With seven of the crosses resistance was dominant to susceptibility. When F2 progenies of five crosses were inoculated on either stems or leaves independently, phenotypes segregated in a ratio of 3 resistant: 1 susceptible indicating that a single dominant gene controlled resistance. F2 progenies of one other cross gave ratios with a better fit to 9 resistant: 7 susceptible indicating that two co-dominant genes controlled resistance. The F2 progeny of another cross segregated in complex ratios indicating multigene resistance.When resistant lines JI 97 and JI 1089 were crossed with a susceptible line and leaves and stems of each F2 plant were inoculated, resistance phenotypes segregated independently demonstrating that leaf and stem resistance were controlled by different genes. In two experiments where the F2 progeny of the cross JI 97×JI 1089 were tested for stem and leaf resistance separately, both characters segregated in a ratio of 15 resistant:1 susceptible indicating that these two resistant lines contain two non-allelic genes for stem resistance (designated Rmp1 and Rmp2) and two for leaf resistance (designated Rmp3 and Rmp4). Evidence that the gene for leaf resistance in JI 1089 is located in linkage group 4 of Pisum sativum is presented.  相似文献   

20.
Inheritance of salt tolerance in rice   总被引:7,自引:0,他引:7  
Summary The genetic behavior of salt tolerance was studied in artificially salinized conditions at the International Rice Research Institute.Divergent selection, carried out at a salinity level where the ECe was 15.2 mmhos/cm at 25 C in F3 lines from two crosses confirmed the effects of salt tolerance on F4 progeny with realized heritability values of 0.39 and 0.62, respectively.In a cross between two tolerant cultivars there was clear over-dominance for tolerance, despite the high environmental fluctuation which resulted in a low genetic response as indicated by a low but significant repeatability of 0.20–0.25, and many progeny lines more tolerant than the parents were recovered. The superior tolerance of these progenies compared to the parents was confirmed subsequently at 3 different salt levels. In the same experiment a cross between tolerant and susceptible cultivars produced some progeny of comparable tolerance with tolerant sources.In a 6×6 diallel cross experiment with two tolerant, moderate, and susceptible varieties each, both general and specific combining ability were significant.The findings indicate the possibility of breeding rices more tolerant than existing tolerant cultivars through cumulative crosses of tolerant cultivars. Further improvement can be attained by crossing highly tolerant lines with donors of good agronomic traits and pest and disease resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号