首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.

Key message

A generalized algebraic difference approach (GADA) developed in this study improved the estimation of aboveground biomass dynamics of Cunninghamia lanceolata (Lamb.) Hook and Castanopsis sclerophylla (Lindl.) Schott forests. This could significantly improve the fieldwork efficiency for dynamic biomass estimation without repeated measurements.

Context

The estimation of biomass growth dynamics and stocks is a fundamental requirement for evaluating both the capability and potential of forest carbon sequestration. However, the biomass dynamics of Cunninghamia lanceolata and Castanopsis sclerophylla using the generalized algebraic difference approach (GADA) model has not been made to date.

Aims

This study aimed to quantify aboveground biomass (AGB, including stem, branch and leaf biomass) dynamics and AGB increment in C. lanceolata and C. sclerophylla forests by combining a GADA for diameter prediction with allometric biomass models.

Methods

A total of 12 plots for a C. lanceolata plantation and 11 plots for a C. sclerophylla forest were selected randomly from a 100 m × 100 m systematic grid placed over the study area. GADA model was developed based on tree ring data for each stand.

Results

GADA models performed well for diameter prediction and successfully predicted AGB dynamics for both stands. The mean AGB of the C. lanceolata stand ranged from 69.4 ± 7.7 Mg ha?1 in 2010 to 102.5 ± 11.4 Mg ha?1 in 2013, compared to 136.9 ± 7.0 Mg ha?1 in 2010 to 154.8 ± 8.0 Mg ha?1 in 2013 for C. sclerophylla. The stem was the main component of AGB stocks and production. Significantly higher production efficiency (stem production/leaf area index) and AGB increment was observed for C. lancolata compared to C. sclerophylla.

Conclusion

Dynamic GADA models could overcome the limitations posed by within-stand competition and limited biometric data, can be applied to study AGB dynamics and AGB increment, and contribute to improving our understanding of net primary production and carbon sequestration dynamics in forest ecosystems.
  相似文献   

2.
Bioclimatic transition zones are supposed to encompass sensitive areas to global change effects on forest ecosystems. In this study, we attempt to detect shifts in the ranges of contrasting Iberian tree species in the submediterranean transition zone in Navarra, northern Spain. These shifts are analysed in the context of a significant increase in temperature over recent decades along with moderate land use changes. Data from national forest inventories (1971 and 2010) are compared through universal kriging (UK) and block kriging models to assess the shifts in the ranges of Quercus subpyrenaica, Quercus ilex, Pinus sylvestris and Fagus sylvatica. UK results predicted an increase in the presence probability of the four target species for the whole Navarra region. However, in the submediterranean zone, the presence probability of Q. subpyrenaica, P. sylvestris and F. sylvatica shows a shrinking trend, whereas Q. ilex is expanding its range, supporting a previous hypothesis of a “mediterranization” of this bioclimatic transition region. These trends are concomitant with recent elevational shift patterns towards higher elevations in the case of Q. subpyrenaica, P. sylvestris and F. sylvatica in the transition zone. Moreover, the expected increase in species richness as a consequence of geographical shifts and vegetation recovery is identified. The moderate human influence detected in the study area confirms the major role of climate warming as driver of species range shifts over the period. The results of this study highlight the suitability of bioclimatic transition zones for monitoring the effects of global change on natural ecosystems, providing evidences of the complex mechanisms affecting the distribution of forests.  相似文献   

3.

Key message

The high flammability of some companion species in Quercus suber forests, estimated in laboratory tests, could potentially generate an increase in fire vulnerability and in fire risk.

Context

Recurrent wildfire is one of the main causes of forest degradation, especially in the Mediterranean region. Increased fire frequency and severity due to global change could reduce the natural resilience of cork oak to wildfire in the future. Hence, it is important to evaluate the flammability of companion species in cork oak forests in the particularly dry bioclimatic conditions of North Africa.

Aims

This study aimed to assess and compare flammability parameters at laboratory scale among ten companion frequent species in cork oak forests.

Methods

Fuel samples were collected in a cork oak (Quercus suber L) forest in the southern part of the mountains of Tlemcen (Western Algeria). A series of flammability tests were carried out using a Mass Loss Calorimeter device (FTT ®). A cluster analysis to classify flammability of the selected species was conducted using the K-means algorithm.

Results

The results revealed differences in the four flammability parameters (ignitability, sustainability, combustibility and consumability), in both fresh and dried fine fuel samples from Quercus suber, Pinus halepensis, Quercus ilex, Quercus faginea, Erica arborea, Arbutus unedo, Pistacia lentiscus, Calicotome spinosa, Juniperus oxycedrus and Tetraclinis articulata. Application of the K-means clustering algorithm showed that C. spinosa, T. articulata, J. oxycedrus and P. halepensis are highly flammable because of their high combustibility and sustainability.

Conclusion

The findings identify species that could potentially increase the vulnerability of cork oak forests to forest fires.
  相似文献   

4.
Climate change is a threat to the stability and productivity of forest ecosystems throughout the Asia-Pacific region. The loss of forests due to climate-induced stress will have extensive adverse impacts on biodiversity and an array of ecosystem services that are essential for the maintenance of local economies and public health. Despite their importance, there is a lack of decision-support tools required to evaluate the potential effects of climate change on Asia-Pacific ecosystems and economies and to aid in the development of regionally appropriate adaptation and mitigation strategies. The project Adaptation of Asia-Pacific Forests to Climate Change, summarized herein, aims to address this lack of knowledge and tools and to provide support for regional managers to develop effective policy to increase the adaptive capacity of Asia-Pacific forest ecosystems. This objective has been achieved through the following activities: (1) development of a high-resolution climate downscaling model, ClimateAP, applicable to any location in the region; (2) development of climate niche models to evaluate how climate change might affect the distribution of suitable climatic conditions for regionally important tree species; (3) development and application of forest models to assess alternative management strategies in the context of management objectives and the projected impacts of climate change; (4) evaluation of models to assess forest fire risk and the relationship between forest fire and climate change; (5) development of a technique to assess ecosystem carbon storage using LiDAR; and (6) evaluation of how vegetation dynamics respond to climate change using remote sensing technology. All project outputs were developed with a focus on communication and extension to facilitate the dissemination of results to regional forest resource managers to support the development of effective mitigation and adaptation policy.  相似文献   

5.

Key message

In Abies alba Mill. stands and mixed stands of A. alba and Picea abies L. (H. Karst), microsites neighbouring the trunks of adult trees were more conducive to A. alba regeneration. Although at the stand level, the effect of Fagus sylvatica L. was positive; the local effect of the adult F. sylvatica neighbourhood was insignificant. Hence, forming mixed stands with a fine-grained mosaic of admixed species might better facilitate natural regeneration of A. alba than monospecific stands.

Context

The establishment of natural regeneration in Abies alba Mill. stands is a slow, spatially heterogeneous and stochastic process. Recent studies based on inventory data indicate that A. alba more readily regenerates in mixed stands than in monospecific stands.

Aims

The objective was to examine how this positive association evidenced at the stand level operates on the scale of microsites with contrasting local species composition and stand density.

Methods

In 8 monospecific and 22 mixed stands with Fagus sylvatica L. or Picea abies L. (H. Karst), microsites with a contrasting density of A. alba seedlings were selected and compared in terms of local species composition, stand density, canopy characteristics and topsoil properties.

Results

In A. alba stands, seedling density was positively associated with the proximity of adult trees. In mixed stands of A. alba and P. abies, adult trees of both species exerted a positive effect on A. alba regeneration, but the P. abies neighbourhood influenced regeneration occurrence more strongly than the A. abies neighbourhood. In mixtures with F. sylvatica, however, the effect of local stand density and local species composition was not evidenced at all.

Conclusion

Although at the stand level, P. abies and F. sylvatica exert a positive effect on A. alba regeneration, on the microsite scale, their influences differ. In stands with a dominance of A. alba, the hampered seedling establishment in gaps may be considered an inhibitive effect that facilitates the emergence of other species.
  相似文献   

6.

Key message

High-elevation forests in the Alps protect infrastructure and human lives against natural hazards such as rockfall, flooding, and avalanches. Routinely performed silvicultural interventions maintain the required stand structure but are not commercially viable in remote forests due to high operational costs. Financial subsidies for the management of high-elevation protection forests are an efficient strategy to ensure sustainable forest cover.

Context

Presently, many high-elevation forests in the Alps are managed in order to ensure the provision of ecosystem services with emphasis on the minimization of natural hazards.

Aims

We studied the possible economic performance of a high-elevation protection forest from an owner’s perspective. We investigated whether the increase in productivity due to climate change and a favorable market for the dominating cembran pine (Pinus cembra L.) are sufficient for profitable timber production in protection forests.

Methods

We simulated the standing timber stock and the soil carbon pool for a 100-year period with climate-sensitive models and compared harvesting costs with expected revenues. Our scenarios included different climates, intensities of timber extractions, parameters of the timber market, and the availability of government subsidies.

Results

Overall, the productivity of forests increases by approximately 15% until the end of the century. In a zero-management scenario, the forest accumulates carbon both in the aboveground biomass and the soil. In the case of an extensive management with moderate timber extractions every 50 years, the carbon stocks decline both in biomass and soil. A more intensive management scenario with extractions every 30 years leads to substantial losses of the soil and biomass carbon pools. In addition, the stand structure changes and the protective function of the forest is not sustainably ensured. Timber production can be economically successful only with high selling prices of cembran pine timber and the availability of governmental subsidies for forest management. The admixed European larch (Larix decidua Mill.) contributes only marginally to the economic success. The main challenge are harvesting costs. The costs of timber extraction by a long-distance cableway logging system exceed the value of the harvested timber.

Conclusion

The intensification of forest management cannot be recommended from the perspective of timber production, sustainable forest management, and protection against natural hazards. Our simulation experiment shows that the extraction of timber at decadal intervals depletes the carbon stock that is insufficiently replenished from aboveground and belowground litterfall. Leaving the forest unmanaged does not impose a particular threat to stand stability and is under the encountered situation, a justified strategy.
  相似文献   

7.

? Key message

Intensive measurements of basic specific gravity and relative water content of lumens show that within-stem variations strongly depend on species and cannot be summarised through the typical patterns reported in the literature; breast height measurements are not always representative of the whole stem.

? Context

Knowledge of the distribution of wood properties within the tree is essential for understanding tree physiology as well as for biomass estimations and for assessing the quality of wood products.

? Aims

The radial and vertical variations of basic specific gravity (BSG) and relative water content of lumens (RWC L ) were studied for five species: Quercus petraea/robur, Fagus sylvatica, Acer pseudoplatanus, Abies alba and Pseudotsuga menziesii. The observations were compared with typical patterns of variations reported in the literature.

? Methods

Wood discs were sampled regularly along tree stems and X-rayed in their fresh and oven-dry states.

? Results

At breast height, BSG was found to clearly increase radially (pith to bark) for two species and to decrease for one species. For F. sylvatica and A. alba, the radial variations of BSG were rather U-shaped, with in particular inner wood areas showing respectively lower and higher BSG than the corresponding mature wood. RWC L increased generally from inner to outer area but wet sapwood was clearly distinguishable only for the coniferous species. Vertical variations of BSG and RWC L were strongly dependant on the species with usually non-linear patterns.

? Conclusion

The observed variations of BSG were only partially in agreement with the reported typical radial patterns. Despite the vertical variations, the mean BSG of a cross-section at breast height appeared to be a good estimator of the mean BSG of the whole stem (although the difference was statistically significant for coniferous species), whereas breast height measurement of RWC L was not representative of the whole stem.
  相似文献   

8.

Key message

Soil texture and temperature-related variables were the variables that most contributed to Nothofagus antarctica forest height in southern Patagonia. This information may be useful for improving forest management, for instance related to the establishment of silvopastoral systems or selection of suitable sites for forest reforestation in southern Patagonia.

Context

Changes in forest productivity result from a combination of climate, topography, and soil properties.

Aims

The relative importance of edaphic and climatic variables as drivers of productivity in Nothofagus antarctica forests of southern Patagonia, Argentina, was evaluated.

Methods

A total of 48 mature stands of N. antarctica were selected. For each study site, we measured the height of three mature dominant trees, as an indicator of productivity. Seven soil, five spatial, and 19 climatic features were determined and related to forest productivity. Through partial least squares regression analyses, we obtained a model that was an effective predictor of height of mature dominant trees in the regional data set presented here.

Results

The four variables that most contributed to the predictive power of the model were altitude, temperature annual range, soil texture, and temperature seasonality.

Conclusion

The information gathered in this study suggested that the incidence of the soil and temperature-related variables on the height of dominant trees, at the regionally evaluated scale, was higher than the effect of water-related variables.
  相似文献   

9.

Key message

A negative productivity-diversity relationship was determined for biomass-dominant species at the community level. This study thus supports the hypothesis in which the effects of individual species on the productivity-diversity relationships at the community level are related to their biomass density, an important functional trait.

Context

The productivity-diversity relationships have been extensively studied in various forest ecosystems, but key mechanisms underlying the productivity-diversity relationships still remain controversial.

Aims

The objective of this study is to explore the productivity-diversity relationships at the community level, and to investigate the roles of individual species in shaping the community-level relationships between productivity and diversity under different forest types.

Methods

The study was conducted in two fully stem-mapped temperate mixed forest plots in Northeastern China: a natural secondary forest plot, and an old-growth forest plot. An individual-based study framework was used to estimate the productivity-diversity relationships at both species and community levels. A homogeneous Thomas point process was used to evaluate the significance of productivity-diversity relationship deviating from the neutral.

Results

At the species level, most of the studied species exhibit neutral productivity-diversity relationship in both forest plots. The percentage of species showing negative productivity-diversity relationship approaches linearly a peak value for very close neighborhoods (the secondary forest plot: r?=?3 m, 38%; the old-growth forest plot: r?=?4 m, 42%), and then decreases gradually with increasing spatial scale. Interestingly, only a few species displayed positive productivity-diversity relationship within their neighborhoods. Dominant species mainly exhibit negative productivity-diversity relationship while tree species with lower importance values exhibit neutral productivity-diversity relationship in both forests. At the community level, a consistent pattern of productivity-diversity relationship was observed in both forests, where tree productivity is significantly negatively associated with local species richness. Four biomass-dominant species (Juglans mandshurica Maxim., Acer mono Maxim.,Ulmus macrocarpa Hance and Acer mandshuricum Maxim.) determined a negative productivity-diversity relationship at the community level in the secondary forest plot, but only one species (Juglans mandshurica) in the old-growth forest plot.

Conclusion

The productivity-diversity relationship is closely related to the dominance of individual species at the species level. Moreover, this analysis is the first to report the roles of biomass-dominant species in shaping the productivity-diversity relationship at the community level.
  相似文献   

10.

Key message

LiDAR data (low-density data, 0.5 pulses m ?2 ) represent an excellent management resource as they can be used to estimate forest stand characteristics in short-rotation willow coppice (SRWC) with reasonable accuracy. The technology is also a useful, practical tool for carrying out inventories in these types of stands.

Context

This study evaluated the use of very low-density airborne LiDAR (light detection and ranging) data (0.5 pulses m?2), which can be accessed free of charge, in an SRWC established in degraded mining land.

Aims

This work aimed to determine the utility of low-density LiDAR data for estimating main forest structural attributes and biomass productivity and for comparing the estimates with field measurements carried out in an SRWC planted in marginal land.

Methods

The SRWC was established following a randomized complete block design with three clones, planted at two densities and with three fertilization levels. Use of parametric (multiple regression) and non-parametric (classification and regression trees, CART) fitting techniques yielded models with good predictive power and reliability. Both fitting methods were used for comprehensive analysis of the data and provide complementary information.

Results

The results of multiple regression analysis indicated close relationships (Rfit 2 = 0.63–0.97) between LiDAR-derived metrics and the field measured data for the variables studied (H, D20, D130, FW, and DW). High R 2 values were obtained for models fitted using the CART technique (R 2 = 0.73–0.94).

Conclusion

Low-density LiDAR data can be used to model structural attributes and biomass yield in SRWC with reasonable accuracy. The models developed can be used to improve and optimize follow-up decisions about the management of these crops.
  相似文献   

11.

Key message

The genetic structure of Juniperus phoenicea in the Mediterranean Basin is inferred using amplified fragment length polymorphism markers (AFLP) markers. As other Mediterranean conifers, J. phoenicea populations show moderate levels of genetic diversity and interpopulational differentiation. The pattern of distribution of genetic diversity seems highly influenced by the climatic fluctuations which occurred in the Pleistocene.

Context

It has been stated that the genetic structure of Mediterranean conifers is mediated by the historical climatic changes and the geological rearrangements which occurred in the Mediterranean Basin. J. phoenicea provides an excellent example to test how its genetic structure is influenced by these events.

Aims

In this work, we study the amount and distribution of genetic diversity of J. phoenicea complex, in order to evaluate its taxonomic status and to reveal underlying phylogeographic patterns.

Methods

The molecular diversity was analyzed for 805 individuals from 46 populations throughout its distribution range using AFLP markers. Principal coordinate analysis, analysis of molecular variance (AMOVA), and Bayesian-based analysis were applied to examine the population structure.

Results

AFLP markers revealed moderate levels of intrapopulation genetic diversity, pairwise genetic differentiation, and a clear pattern of isolation by distance. Bayesian analysis of population structure showed five clusters related to the taxonomic status of J. phoenicea and J. turbinata, and a geographic pattern of genetic structure in J. turbinata.

Conclusion

All the analysis separate J. phoenicea from J. turbinata. For J. turbinata, up to four groups can be distinguished from a phylogeographic point of view. The genetic structure of J. turbinata seems highly influenced by climatic and geologic fluctuations occurring since the Oligocene.
  相似文献   

12.

· Key message

We observed coordinated differences in water-use efficiency, 13 C isotope composition, and whole-plant transpiration efficiency among nine Acacia species, although the up scaling from leaf to whole-plant level resulted in different relationships in Sahelian and Australian species.

· Context

The genus Acacia sensu lato contains a large variety of tropical to Mediterranean species adapted to habitats ranging from mesic to arid in Africa and Australia.

· Aims

We checked whether transpiration efficiency differed among a range of nine Sahelian and Australian species and whether it was related to the degree of aridity of the original area or to their type of foliage (pinnate leaves or phyllodes).

· Methods

Intrinsic water-use efficiency (W I) was recorded from leaf gas exchange and whole-plant transpiration efficiency (TE) from biomass production and water consumption of potted seedlings. Both W I and TE were compared to 13C discrimination (Δ13C) computed from either bulk foliage or extracted cellulose.

· Results

At leaf level, Δ13C matched closely W I across species, while at the whole-plant level, the relationship between TE and either Δ13C or W I differed between the Sahelian and the Australian species. Large interspecific differences were found but they were not related to the aridity of the origin nor to the type of foliage.

· Conclusion

Δ13C captured well the variability of W I among several Acacia species while species differences in carbon-use efficiency (the fraction of carbon assimilated recovered in plant biomass) or the relative nocturnal transpiration may disrupt the relationship between TE and Δ13C.
  相似文献   

13.
Elevational changes in patterns of diversity are important to understanding of the influence of global changes, yet few studies have addressed the distribution of microorganisms, e.g. soil micro-fungi. We studied the diversity of the forest soil micro-fungi in four vegetation belts along an elevation gradient on the north slope of Changbai Mountain in Changbai National Nature Reserve.The four belts were characterized as coniferous–deciduous mixed forest, coniferous forest, Erman's birch forest, and alpine tundra. We estimated the quantity and distribution of the fungal species in each belt and calculated three indices,viz. Shannon–Wiener diversity(H'), Pielou's evenness(J'),and Margalef's abundance(E), to depict fungal species diversity. A total of 932 strains were recorded and identified, representing 53 genera, and 108 species. Among these, Penicillium, Aspergillus, Trichoderma, Mucor, Rhizopus and Fusarium were the dominant genera. With increasing elevation, the quantity of fungi and values of H',E, and J' gradually declined.  相似文献   

14.

Key message

Despite the fact that the technique of application of bioinoculants improved the quality of Quercus suber L. seedlings produced in nurseries, these benefits are dependent on the ecological conditions of the site and the composition of the applied inoculum, which interferes with the profile of the local fungal community.

Context

Quercus suber L. plays a key ecological and socio-economical role in the Iberian Peninsula. Symbiotic ectomycorrhizal fungi-ECM are crucial partners of several tree species, and assessing the efficacy of bioinoculants at nursery stage helps devising tools to increase plant resilience.

Aims

The aim of this study was to compare the effects of two inocula formulations of mixed ECM fungi and bacteria on the quality of seedlings produced in two forest nurseries, differing in environmental conditions and forest embedment.

Methods

Quercus suber L. seedlings were inoculated with a commercial product containing Pisolithus tinctorius (Pers) Coker & Couch, Scleroderma sp., and six bacterial species and with a non-commercial fungal and bacterial dual inoculum (Suillus granulatus (L.) Roussel + Mesorhizobium sp.). Biometric and nutritional parameters and morphological quality indexes were determined on seedlings. The ECM community was assessed by denaturing gradient gel electrophoresis and cloning-sequencing.

Results

In both nurseries, the seedling quality index in inoculated was up to 2-fold higher than in non-inoculated seedlings. Plant biomass differed significantly among nurseries. The inoculum influenced the profile of the fungal community. S. granulatus and P. tinctorius persisted for 6 months in the inoculated seedlings.

Conclusion

The nursery ecosystem influenced plant growth. Inoculation treatments increased plant performance; however, the dual inoculum resulted in more consistent improvements of Q. suber at nursery stage, highlighting the importance of inocula selection.
  相似文献   

15.

Key message

The radial wood growth curves of Cinnamomum kanehirae Hayata (an endangered species of subtropical Taiwan) exhibit an S shape. The dominant trees displayed a larger radial growth than the codominant trees, and their growth was more sensitive to air temperature.

Context

Knowledge of wood radial growth is important for evaluating the factors that limit tree growth performance. The relevant experiments have mostly been conducted in cold and temperate ecosystems, but rarely in subtropical ecosystems.

Aims

In this study, we aimed to construct a unified radial growth model for Cinnamomum kanehirae Hayata and to identify its sensitivity to temperature.

Methods

The wood radial increments were quantified for 3 years by either pinning or microcoring. The radial wood growth curves were modelled integratively by semiparametric regression and individually by curve fitting. The effects of tree social class, interannual and environmental factors on radial growth were analysed quantitatively.

Results

A unified S-shaped growth model for C. kanehirae was successfully constructed. By including the social class effect, the model was significantly improved. The maximum radial increment (A) was significantly correlated with the maximum growth rate (μ); both A and μ were significantly higher in dominant than in codominant trees. The time-varying radial growth rate was more sensitive to air temperature in dominant than in codominant trees.

Conclusion

Semiparametric models revealed an S-shaped growth curve of C. kanehirae and confirmed the higher temperature sensitivity of dominant trees compared to codominant trees in humid subtropical areas.
  相似文献   

16.
紫金山两种主要林型有机物层中丝状真菌多样性   总被引:5,自引:0,他引:5  
本文对紫金山两种主要林型,栓皮栎林(Quercus variabilis)和马尾松-枫香(Pinus massoniana-Liguidam barformasana)混交林的有机物层(L, F, H层及土壤淋溶A层)可培养丝状真菌多样性进行了研究。通过分离鉴定,共得到真菌67种,其中接合菌3种、子囊菌5种、半知菌类56种和未确定种3种,半知菌类最为丰富。两种林型分解真菌优势种群为链格孢(Alternaria sp.)、曲霉(Aspergillus spp.)、枝孢(Cladosporium sp.)、毛霉(Mucor sp.)、青霉(Penicillium sp.)、木霉(Trichoderma spp.)、根霉(Rhizopus sp.)、粘帚霉(Gliocladium sp.)。混交林型中真菌的种类和数量明显高于栓皮栎林。两个林型均以F层真菌种类最多,但F层之间和L层之间真菌多样性差异较大。在混交林型中从马尾松针叶上分离的真菌种类和数量比从枫香上分离得到的少; 从马尾松针叶上分离的真菌丰富度随着有机物层深度增加而增加,枫香则反之。比较两个林型以及混交林的两种落叶上真菌种类发现,随着有机物层深度的增加,真菌的种类差异性却随之减少,即同时出现在两个林型或两种针叶上的真菌种类增多。真菌种类随着分解过程的进行具有明显的演替现象。混交林型中同一层内不同落叶上分解真菌多样性的差异,表明凋落物基质的差异是决定真菌种类和数量的重要因素  相似文献   

17.

Key message

Historic transfer of larch from Alpine sources to Southern and Eastern Carpathians has been verified by means of nuclear genetic markers. Tyrolean populations can be differentiated into a north-western and south-eastern group, while Romanian populations are separated according to the Southern and Eastern Carpathians. Low-level introgression from Alpine sources is found in autochthonous Carpathian populations.

Context

Large scale human mediated transfer of forest reproductive material may have strongly modified the gene pool of European forests. Particularly in European larch, large quantities of seeds from Central Europe were used for plantations in Southern and Eastern Europe starting in the mid nineteenth century.

Aims

Our main objective was to provide DNA marker based evidence for the anthropogenic transfer of Alpine larch reproductive material to native Carpathian populations.

Methods

We studied and compared 12 populations (N?=?771) of Larix decidua in the Alps (Austria, Italy) and in the Southern and Eastern Carpathians (Romania) using 13 microsatellites.

Results

High genetic diversity (He?=?0.752; RS?=?9.4) and a moderate genetic differentiation (FST?=?0.13; GST?=?0.28) among populations were found; Alpine and Carpathian populations were clearly separated by clustering methods. A Tyrolean origin of plant material was evident for one out of four adult Romanian populations. In the transferred population, a genetic influence from Carpathian sources was found neither in adults nor in juveniles, while the natural regeneration of two Romanian populations was genetically affected by Alpine sources to a minor degree (2.2 and 2.9% allochthonous individuals according to GeneClass and Structure, respectively).

Conclusion

Tracing back of plant transfer by means of genetic tools is straightforward, and we propose further studies to investigate gene flow between natural and transferred populations.
  相似文献   

18.

Key message

Quercus secondary forests show a gradual transition toward mixed forests, with sweet chestnut ( Castanea sativa ) becoming increasingly abundant in the western Spanish Central System. Additionally, in chestnut-dominated stands, it shows a certain resistance to competitive displacement by Quercus pyrenaica . Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.

Context

Sweet chestnut, Castanea sativa, is a component of European broadleaf forests and is one of the most managed trees. Due to a reduction in cultural inputs, chestnut-dominated stands tend to be invaded by other species, and it is unclear how chestnut is able to persist in natural mixed forests.

Aims

Our work aimed to identity the main factors that limit the establishment of C. sativa and to analyze the recruitment and mortality processes of C. sativa trees.

Methods

The age, growth ring patterns, regeneration density, and the spatial structure of trees and saplings in 11 plots in the Spanish Central System were analyzed.

Results

Chestnut seedling density increased with C. sativa basal area, but transition toward the sapling stage appeared limited owing to light availability. In Quercus pyrenaica secondary forests, sparse canopies did not constrain chestnut regeneration, and in old chestnut stands, C. sativa showed a certain resistance to competitive displacement. By contrast, mixed young coppices showed a high mortality, most likely due to competition with other vigorous resprouters.

Conclusion

Quercus secondary forests showed a gradual transition toward mixed forests with sweet chestnut becoming increasingly more abundant. In old stands, C. sativa is likely to persist under a gap-phase mode of regeneration. Our results partially refute the traditional view that C. sativa is unable to recruit in the absence of cultural inputs.
  相似文献   

19.

Key message

The changes in the relative biomass allocation to roots in juvenile stands of fast-growing ( Leucaena leucocephala Lam., Moringa oleifera Lam., and Jatropha curcas L.) and slow-growing ( Anacardium occidentale L. and Parkia biglobosa Jacq.) afforestation species are driven mainly by ontogeny rather than resource availability. However, silvicultural management aiming at increasing availability of water and particularly nutrients enhances biomass production in all species.

Context

Understanding the patterns of biomass allocation among tree species in response to ontogeny and to variation in resource availability is key to the successful restoration of degraded land using forest plantations.

Aims

This study assessed the effects of resource availability and ontogeny on biomass accumulation and partitioning in five semi-arid afforestation species.

Methods

The aboveground and belowground biomass production of fast-growing Leucaena leucocephala Lam., Moringa oleifera Lam., and Jatropha curcas L. and slow-growing Anacardium occidentale L. and Parkia biglobosa Jacq. was monitored following the application of manure (1 kg plant?1) and/or supplemental irrigation (0.5 L per sapling daily) during the first two rainy seasons and the intervening dry season on degraded cropland in Northern Benin.

Results

Biomass accumulation in the fast-growing species was positively impacted by fertilization and irrigation during both rainy seasons. The slow-growing species responded positively to the silvicultural treatments during the dry and second rainy season. The application of fertilizer alone increased the biomass of P. biglobosa by up to 335% during the dry season. Fifteen months after planting, manure-treated L. leucocephala accumulated the most biomass (2.9 kg tree?1). The root fraction decreased with increasing tree size in all species. The comparison of root versus shoot allocation in trees of equal size indicated that the treatment-induced shifts in biomass partitioning were controlled by ontogeny, which explained 86–95% of the variation in root-shoot biomass relationships.

Conclusion

While ontogeny was the main driver of biomass partitioning, increased resource availability induced a larger production of biomass, overall leading to greater aboveground production in all species.
  相似文献   

20.

Key message

Water availability and soil pH seem to be major constraints for enzyme activities in calcareous soils under Pinus halepensis and acidic soils under Pinus sylvestris plantations respectively. Proposals for improving enzyme activities may include the promotion of broadleaf species to increase soil pH and the modulation of stand density or the implementation of soil preparation techniques to facilitate water infiltration.

Context

Soil enzymes play a key role in nutrient turnover in forest ecosystems, as they are responsible for the transformation of organic matter into available nutrients for plants. Enzyme activities are commonly influenced by temperature, humidity, nutrient availability, pH, and organic matter content.

Aims

To assess the differences between enzyme activities in calcareous soils below Pinus halepensis and acidic soils below Pinus sylvestris plantations in Spain and to trace those differences back to edapho-climatic parameters to answer the questions: Which environmental factors drive enzyme activities in these soils? How can forest management improve them?

Methods

The differences in climatic, soil physical, chemical, and biochemical parameters and the correlations between these parameters and enzyme activities in soils were assessed.

Results

Low pH and high level of phenols in acidic soils under Pinus sylvestris and water deficit in calcareous soils under Pinus halepensis plantations appeared to be the most limiting factors for enzyme activities.

Conclusion

Options such as the promotion of native broadleaf species in the Pinus sylvestris stands and the modulation of Pinus halepensis stand density or the implementation of soil preparation techniques may improve enzyme activities and, therefore, nutrient availability.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号