首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used the coupled forest and rockfall model PICUS Rock’n’Roll, linking a hybrid forest patch model and a 3D rockfall model, to assess the effects of four management scenarios (BAU: business as usual age class shelterwood approach; PFM1 and PFM2: rockfall protection management scenarios with slit-shaped gaps; NOM: no management scenario without any active silvicultural intervention) on rockfall protection and timber production on a 38 ha slope over 100 years. Compared to PFM1 and PFM2, we found slightly more harvested timber for the BAU scenario (BAU: 6.7 m³ha?1yr?1, PFM: 5.7–5.9 m³ha?1yr?1), but lower contribution margins (BAU: 55 €ha?1yr?1, PFM: 113–115 €ha?1yr?1). Overall, depending on rock size and forest state, 30–70% of the simulated rocks that would otherwise hit the road at the foot of the slope were stopped by the forest. While the PFM scenarios maintained a high rockfall protection level over 100 years (PE between 45–64%) the BAU showed periods of reduced protection (PE between 26–65%). The NOM scenario maintained favorable conditions in the beginning, but declining protection efficiency in the last decades of the century (PE 49–63%). We conclude that rockfall protection management can outperform BAU with regard to both timber production and rockfall protection.  相似文献   

2.
The effect of forest conservation on the organic carbon (C) stock of temperate forest soils is hardly investigated. Coarse woody debris (CWD) represents an important C reservoir in unmanaged forests and potential source of C input to soils. Here, we compared aboveground CWD and soil C stocks at the stand level of three unmanaged and three adjacent managed forests in different geological and climatic regions of Bavaria, Germany. CWD accumulated over 40–100 years and yielded C stocks of 11 Mg C ha?1 in the unmanaged spruce forest and 23 and 30 Mg C ha?1 in the two unmanaged beech–oak forests. C stocks of the organic layer were smaller in the beech–oak forests (8 and 19 Mg C ha?1) and greater in the spruce forest (36 Mg C ha?1) than the C stock of CWD. Elevated aboveground CWD stocks did not coincide with greater C stocks in the organic layers and the mineral soils of the unmanaged forests. However, radiocarbon signatures of the O e and O a horizons differed among unmanaged and managed beech–oak forests. We attributed these differences to partly faster turnover of organic C, stimulated by greater CWD input in the unmanaged forest. Alternatively, the slower turnover of organic C in the managed forests resulted from lower litter quality following thinning or different tree species composition. Radiocarbon signatures of water-extractable dissolved organic carbon (DOC) from the top mineral soils point to CWD as potent DOC source. Our results suggest that 40–100 years of forest protection is too short to generate significant changes in C stocks and radiocarbon signatures of forest soils at the stand level.  相似文献   

3.
The present study was conducted in five forest types of subtropical zone in the Northwestern Himalaya, India. Three forest stands of 0.1 ha were laid down in each forest type to study the variation in vegetation carbon pool, stem density, and ecosystem carbon density. The stem density in the present study ranged from (483 to 417 trees ha?1) and stem biomass from (262.40 to 39.97 tha?1). Highest carbon storage (209.95 t ha?1) was recorded in dry Shiwalik sal forest followed by Himalayan chir forest > chir pine plantation > lower Shiwalik pine forest > northern mixed dry deciduous forest. Maximum tree above ground biomass is observed in dry Shiwalik sal forests (301.78 t ha?1), followed by upper Himalayan chir pine forests (194 t ha?1) and lower in Shiwalik pine forests (138.73 t ha?1). The relationship with stem volume showed the maximum adjusted r2 (0.873), followed by total density (0.55) and average DBH (0.528). The regression equation of different parameters with shrub biomass showed highest r2 (0.812) and relationship between ecosystem carbon with other parameters of different forest types, where cubic function with stem volume showed highest r2 value of 0.873 through cubic functions. Our results suggest that biomass and carbon stocks in these subtropical forests vary greatly with forest type and species density. This variation among forests can be used as a tool for carbon credit claims under ongoing international conventions and protocols.  相似文献   

4.

Timber use in central Europe is expected to increase in the future, in line with forest policy goals to strengthen local wood supply for CO2-neutral energy production, construction and other uses. Growing stocks in low-elevation forests in Switzerland are currently high as exemplified by the Swiss canton of Aargau, for which an average volume of 346 ± 16 m3 ha−1 was measured in the 3rd Swiss National forest inventory (NFI) in 2004–2006. While this may justify a reduction of growing stocks through increased timber harvesting, we asked whether such a strategy may conflict with the sustainability of timber production and conservation goals. We evaluated a range of operationally relevant forest management scenarios that varied with respect to rotation length, growing stock targets and the promotion of conifers in the regeneration. The scenarios aimed at increased production of softwood, energy wood, the retention of potential habitat trees (PHTs) and the conversion to a continuous cover management system. They were used to drive the inventory-based forest simulator MASSIMO for 100 years starting in 2007 using the NFI sampling plots in Aargau. We analyzed model outputs with respect to projected future growing stock, growth, timber and energy yield and harvesting costs. We found growing stock to drop to 192 m3 ha−1 in 2106 if business-as-usual (BAU as observed between the 2nd and 3rd NFI) timber volumes were set as harvesting targets for the whole simulation period. The promotion of conifers and a reduction of rotation lengths in a softwood scenario yielded 25% more timber over the whole simulation period than BAU. An energy wood scenario that reduced growing stock to 200 m3 ha−1 by 2056 and promoted the natural broadleaved regeneration yielded 9% more timber than BAU before 2056 and 30% less thereafter due to decreasing increments. The softwood scenario resulted in higher energy yield than the energy wood scenario despite the lower energy content of softwood. Retaining PHT resulted in a reduction of timber harvest (0.055 m3 ha−1 yr−1 per habitat tree) and higher harvesting costs. Continuous cover management yielded moderate timber amounts throughout the simulation period, yet sustainably. Considering climate change, we discuss the risks associated with favoring drought- and disturbance-susceptible conifers at low elevations and emphasize that continuous cover management must allow for the regeneration of drought-adapted tree species. In conclusion, our simulations show potential for short-term increases in timber mobilization but also that such increases need to be carefully balanced with future forest productivity and other forest ecosystem services.

  相似文献   

5.
Aboveground biomass and carbon stock in the largest sacred grove of Manipur was estimated for trees with diameter [10 cm at 1.37 m height.The aboveground biomass,carbon stock,tree density and basal area of the sacred grove ranged from 962.94 to 1130.79 Mg ha~(-1),481.47 to 565.40 Mg ha~(-1) C,1240 to 1320 stem ha~(-1) and79.43 to 90.64 m~2 ha~(-1),respectively.Trees in diameter class of 30–40 cm contributed the highest proportion of aboveground biomass(22.50–33.73%).The aboveground biomass and carbon stock in research area were higher than reported for many tropical and temperate forests,suggesting a role of spiritual forest conservation for carbon sink management.  相似文献   

6.
Abstract

The present study was aimed to anticipate how forest composition, regeneration, biomass production, and carbon storage vary in the ridge top forests of the high mountains of Garhwal Himalaya. For this purpose five major forest types—(a) Pinus wallichiana, (b) Quercus semecarpifolia, (c) Cedrus deodara, (d) Abies spectabilis, and (e) Betula utilis mixed forests—were selected on different ridge tops in the Bhagirathi Catchment Area of the Uttarkashi District of Garhwal Himalaya. The highest species richness (10 species) and stand density (804 ± 184.5 stems ha?1) were recorded in Abies spectabilis forests, whereas lowest species richness (4 species) and species density (428 ± 144.7 stems ha?1) were found in Quercus semecarpifolia forests. The total basal cover (TBC) values were maximum (91.1 ± 24.4 m2 ha?1) in Cedrus deodara forests and minimum (26.5 ± 11.7 m2 ha?1) in Pinus wallichiana forests. The highest total biomass density (TBD) (464.2 ± 152.5 Mg ha?1) and total carbon density (TCD; 208.9 ± 68.6 Mg C ha?1) values were recorded for Cedrus deodara forests; however, lowest TBD (283.4 ± 74.8 Mg ha?1) and TCD (127.5 ± 33.7 Mg C ha?1) values for Quercus semecarpifolia forests. Our study suggests that Abies spectabilis-dominated forests should be encouraged for biodiversity enrichment and reducing carbon emissions on ridge top forests of high mountains.  相似文献   

7.
The present study is a cost-benefit analysis of converting the current rotational forestry (RF) of Norway spruce stand into near-natural forestry (NNF) of beech, based on two representative soil conditions and visitors popular case areas in Denmark, considering welfare economic values of timber, recreation provision, and groundwater recharge. The study answers the major research question of how large the welfare economic values of recreation and groundwater benefits of the conversion are as compared with timber benefits. The net present values (NPV) of the benefits were calculated for an infinite time horizon at a 3 % discount rate. The results reveal that converting into NNF would result in a NPV of at least 6,832 € ha?1 from use values of recreation and water benefit on a site with good soil and a high visitor frequency, as is typical in the eastern part of Denmark. On a site in the west of the country, with poor growth conditions and a lower visitor frequency, the gain is still substantial, namely 5,581 € ha?1. These benefits though come at a cost of 3,375 and 6,206 € ha?1 from timber production, respectively. This means that the economic value of use values of recreation and water benefits outweighs the loss of timber on good soil conditions but not on poor soil conditions.  相似文献   

8.
Forest management influences several ecosystem processes, including carbon exchange between forest ecosystem and atmosphere. The aim of this paper was to study the carbon cycle over different age classes of two managed forests in the Italian Alps through direct measurements and modelling. For this purpose, ecosystem carbon dynamics of a beech forest (Fagus sylvatica L.) and of a spruce forest (Picea abies (L.) Karst.) were investigated using a chronosequence approach. In both forests, five forest development stages were identified (thicket, pole wood, young forest, mature forest and the regeneration phase) with an age spanning from 42 to 163?years for the beech forest and from 35 to 161?years for the spruce forest. Measured total ecosystem carbon stock increased up to 80–100?years, with a mean of 232?MgC?ha?1 in the beech forest and of 299?MgC?ha?1 in the spruce forest. Calculated net ecosystem production (NEP) was found to decrease linearly with age and had an average value of 2.2 and 4.4?MgC?ha?1?year?1 for beech and spruce forest, respectively. Model simulations reported an increase in NEP till 50–60?years followed by a decrease thereafter. The model also predicted a negative NEP for a short period (8–11?years) after the seed cut. Aboveground biomass was the main driver of carbon accumulation while soil carbon was not significantly influenced by both age and management system. Moreover, measured data and model showed that the applied shelterwood system allowed for a rapid recovery of the ecosystem after the disturbance (i.e. seed cut), bringing back forest to act as C sink in few years.  相似文献   

9.
In forests worldwide, ~10?40% of bird and mammal species require cavities for nesting or roosting. Although knowledge of tree cavity availability and dynamics has increased during past decades, there is a striking lack of studies from boreal Europe. We studied the density and characteristics of cavities and cavity-bearing trees in three categories of forest in a north-Swedish landscape: clearcuts with tree retention, managed old (>100 years) forest, and unmanaged old forest. Unmanaged old forests had significantly higher mean density of cavities (2.4?±?2.2(SD)?ha?1) than managed old forest (1.1?±?2.1?ha?1). On clearcuts the mean cavity density was 0.4?±?2.3?ha?1. Eurasian aspen (Populus tremula) had a higher probability of containing excavated cavities than other tree species. There was a greater variety of entrance hole shapes and a higher proportion of cavities with larger entrances in old forest than on clearcuts. Although studies of breeding success will be necessary to more accurately assess the impact of forest management on cavity-nesting birds, our results show reduced cavity densities in managed forest. To ensure future provision of cavities, managers should retain existing cavity-bearing trees as well as trees suitable for cavity formation, particularly aspen and dead trees.  相似文献   

10.
In the context of global carbon cycle management, accurate knowledge of carbon content in forests is a relevant issue in contemporary forest ecology. We measured the above-ground and soil carbon pools in the darkconiferous boreal taiga. We compared measured carbon pools to those calculated from the forest inventory records containing volume stock and species composition data. The inventory data heavily underestimated the pools in the study area(Stolby State Nature Reserve, central Krasnoyarsk Territory, Russian Federation). The carbon pool estimated from the forest inventory data varied from 25(t ha-1)(low-density stands) to 73(t ha-1)(highly stocked stands). Our estimates ranged from 59(t ha-1)(lowdensity stands) to 147(t ha-1)(highly stocked stands). Our values included living trees, standing deadwood, living cover, brushwood and litter. We found that the proportion of biomass carbon(living trees): soil carbon varied from99:1 to 8:2 for fully stocked and low-density forest stands,respectively. This contradicts the common understanding that the biomass in the boreal forests represents only16–20 % of the total carbon pool, with the balance being the soil carbon pool.  相似文献   

11.
Tropical forests store a large part of the terrestrial carbon and play a key role in the global carbon (C) cycle. In parts of Southeast Asia, conversion of natural forest to cacao agroforestry systems is an important driver of deforestation, resulting in C losses from biomass and soil to the atmosphere. This case study from Sulawesi, Indonesia, compares natural forest with nearby shaded cacao agroforests for all major above and belowground biomass C pools (n = 6 plots) and net primary production (n = 3 plots). Total biomass (above- and belowground to 250 cm soil depth) in the forest (approx. 150 Mg C ha?1) was more than eight times higher than in the agroforest (19 Mg C ha?1). Total net primary production (NPP, above- and belowground) was larger in the forest than in the agroforest (approx. 29 vs. 20 Mg dry matter (DM) ha?1 year?1), while wood increment was twice as high in the forest (approx. 6 vs. 3 Mg DM ha?1 year?1). The SOC pools to 250 cm depth amounted to 134 and 78 Mg C ha?1 in the forest and agroforest stands, respectively. Replacement of tropical moist forest by cacao agroforest reduces the biomass C pool by approximately 130 Mg C ha?1; another 50 Mg C ha?1 may be released from the soil. Further, the replacement of forest by cacao agroforest also results in a 70–80 % decrease of the annual C sequestration potential due to a significantly smaller stem increment.  相似文献   

12.
In the Sustainable Forest Management, deadwood is a fundamental substrate for numerous species, and a key factor in carbon and nutrient cycles. The main aim of the paper is to estimate the amount of deadwood in two Calabrian pine forests (Monte Morello in Italy; Xanthi in Greece) characterized by different stand conditions and management practices. The second aim is to compare two different sampling methods to estimate the volume of lying deadwood: the fixed-area sampling (FAS) method and the line intersect sampling (LIS) method. The results show that the Monte Morello peri-urban forest is characterized by a high quantity of deadwood (75.1 m3 ha?1) divided in 80% of lying deadwood, 18% of standing dead trees, and 2% of stumps. The Xanthi peri-urban forest is characterized by a total amount of deadwood of 9.21 m3 ha?1 divided in 34% of lying deadwood, 18% of standing dead trees and 48% of stumps. The mean volume of lying deadwood in Monte Morello estimated using the FAS is 59.91 m3 ha?1, while using the LIS the mean volume is 64.9 m3 ha?1. In the Xanthi, the mean volume of lying deadwood is 3.11 m3 ha?1 using FAS and 5.49 m3 ha?1 using LIS.  相似文献   

13.
Narrowing the uncertainties in carbon (C) and nitrogen (N) dynamics during decomposition of coarse woody debris (CWD) can significantly improve our understanding of forest ecosystem functioning. We examined C, N and pH dynamics in the least studied CWD component—tree bark in a 66-year-long decomposition chronosequence. The relative C concentration decreased by ca. 32% in pine bark, increased by ca. 18% in birch bark and remained stable in spruce and aspen bark. Nitrogen increased in bark of all tree species. In conifer bark, it increased along with epixylic succession. Over 45 years, the relative C/N ratio in bark decreased by 63 and 45% for coniferous and deciduous species, respectively. Bark pH did not change. Due to bark fragmentation, the total C and N amounts in bark of individual logs of aspen, birch, pine and spruce decreased at average rates of 0.03, 0.02, 0.26 and 0.05 year?1, and 0.02, 0.02, 0.03 and 0.03 year?1, respectively. At the forest stand level, the total amounts of C and N in log bark were 853 and 21 kg ha?1 or 11.2 and 45.5% of the C and N amounts stored in downed logs and ca. 2.3–3.8 and 2.2–2.4%, respectively, of total C and N amounts stored in forest litter. In boreal forests, decomposing log bark may act as a long-term source of N for wood-inhabiting communities.  相似文献   

14.
Macro- (C, N, P, K, Ca and Mg) and micronutrient (Fe, Mn, Cu and Zn) reservoirs were estimated in the O (Oi+Oe+Oa) and in the A (0–10 cm depth) soil horizons of four stands of Nothofagus pumilio (lenga) from Tierra del Fuego which differ in their forestry characteristics. The type of soil layer (O and A) and the forest structure, as related to above-ground biomass storage, were assessed as a factor of variation in the nutrient reservoirs of both soils layers. Nutrient reservoirs showed similar ranges in both soil layers for total organic C (34–65 Mg ha?1), total N (1.5–3.5 Mg ha?1), rapidly available Ca (1.3–2.7 Mg ha?1) and Mg (0.18–0.36 Mg ha?1). Rapidly available K, available P, and medium-term available Fe and Cu were accumulated preferentially in A the horizons, whereas medium-term available Mn and Zn were mainly stored in the O horizons. The forest structure was not a statistically significant factor of variation on the nutrient reservoirs in the O horizons, although a legacy effect of the accumulated above-ground biomass on nutrient reservoirs in this soil layer can not be discarded. On the contrary, the pools of total organic C, total N, rapidly available K and medium-term available Cu and Zn in the A horizons varied significantly with the different forest structure. In terms of lenga forests sustainability, uppermost soils layers should be preserved as they accumulate most of the soil fertility which is essential for lenga regeneration after logging. The inclusion of the assessment of soil fertility in the management plans of the lenga forests in the ecotone of the Argentinean Tierra del Fuego is strongly recommended, as it will contribute to ensure a successful regeneration of lenga in logged areas.  相似文献   

15.
The decomposition of harvest residues (brash) in managed forests has an important influence on the carbon (C) and nitrogen (N) stocks of these ecosystems. The brash input from thinning events in a 25-year-old Sitka spruce plantation was determined. A litter-bag method was used to determine the mass loss and decomposition rate of brash left on the forest floor. The changes in C and N concentrations and the C:N ratio of the needles and branches were also monitored as decomposition progressed for 2.5 years. Using the decomposition rate (k b) and estimated brash inputs, we then determined the total cumulative stock of C that the brash could supply to the deadwood pool over a 41-year rotation period. The three thinning events resulted in the addition of 37.99 t C ha?1 and 0.61 t N ha?1 to the forest floor. A significant mass loss of 44 % was recorded from brash decomposition bags after 2.5 years, with a rapid loss of 35 % in the first year, after which the rate of decomposition slowed. The k b-value and residence time (95 % decomposition) were 0.311 year?1 and 9.6 years, respectively. There was a 69 % increase in the N concentration of needles after 1.5 years, while an increase of 185 % in the N concentration of branches was recorded after 2.5 years. The C concentration (48.55 ± 0.20 %) did not differ significantly between the needles and branches over time. The accumulated C stock from decomposing brash at clearfell was estimated at 18.51 t C ha?1.  相似文献   

16.
Tropical forests play a critical role in mitigating climate change because they account for large amount o terrestrial carbon storage and productivity.However,there are many uncertainties associated with the estimation o carbon dynamics.We estimated forest structure and carbon dynamics along a slope(17.3°–42.8°)and to assess the relations between forest structures,carbon dynamics,and slopes in an intact lowland mixed dipterocarp forest,in Kuala Belalong,Brunei Darussalam.Living biomass,basa area,stand density,crown properties,and tree family composition were measured for forest structure.Growth rate,litter production,and litter decomposition rates were also measured for carbon dynamics.The crown form index and the crown position index were used to assess crown properties,which we categorized into five stages,from very poor to perfect.The living biomass,basal area and stand density were 261.5–940.7 Mg ha~(-1),43.6–63.6 m~2ha~(-1)and 6,675–8400 tree ha~(-1),respectively.The average crown form and position index were 4,which means that the crown are mostly symmetrical and sufficiently exposed for photosynthesis.The mean biomass growth rate,litter production,litter decomposition rate were estimated as11.9,11.6 Mg ha~(-1)a~(-1),and 7.2 g a~(-1),respectively.Biomass growth rate was significantly correlated with living biomass,basal area,and crown form.Crown form appeared to strongly influence living biomass,basal area and biomass growth rate in terms of light acquisition.However,basal area,stand density,crown properties,and biomass growth rate did not vary by slope or tree family composition.The results indicate that carbon accumulation by tree growth in an intact lowland mixed dipterocarp forest depends on crown properties.Absence of any effect of tree family composition on carbon accumulation suggests that the main driver of biomass accumulation in old-growth forests of Borneo is not species-specific characteristics of tree species.  相似文献   

17.
This study analyses the trade-off between bioenergy production and soil conservation through thinning operations in Norway spruce (Picea abies L. Karst) plantations in Denmark. Thinning operations were evaluated under different regimes and intensities for a complete rotation period of sixty years and for different site qualities (site-classes I–VI). Applying a dynamic forest growth modeling tool, evolution of forest structure was predicted to observe the potentials for biomass production and inevitable soil degradation. Results showed thinning from below, with a higher utilization (maintenance of a minimum basal area of 25 mha?1) could produce more bioenergy. However, these operations require simultaneous severe forest soil degradation. Therefore, the optimum thinning for bioenergy production under preservation constraints was thinning from above with a lower intensity (maintenance of a minimum basal area of 45 m2 ha?1). The ratio of bioenergy win (kWh) to soil-loss (mha?1) was calculated for this regime varying between 74,894 kWh m?3 in a high quality site (site-class I) and 6,516 kWh m?3 in a low quality site (site-class VI) with an average of 44,282 kWh m?3. However, this could not always preserve the highest amount of growing stock essential for natural dynamics of forest ecosystem with an exception of the low quality sites (site-class VI). Thus, when aiming at bioenergy production through thinning operations, trade-offs with soil conservation and growing stock preservation should be regarded to prevent environmental degradation.  相似文献   

18.
The aim of this study was to estimate fine root production (FP) and fine root mortality (FM) at 0–10, 10–20, and 20–30 cm soil depths using minirhizotrons in a 75-year-old Pinus densiflora Sieb. et Zucc. forest located in Gwangneung, Korea. We developed the conversion factors (frame cm?2) of three soil depths (0.158 for 0–10 cm, 0.120 for 10–20 cm, and 0.131 for 20–30 cm) based on soil coring and minirhizotron data. FP and FM were estimated using conversion factors from March 26, 2013 to March 2, 2014. The annual FP and FM values at the 0–30 cm soil depth were 3200.2 and 2271.5 kg ha?1 yr ?1, respectively. The FP estimate accounted for approximately 17 % of the total net primary production at the study site. FP was highest in summer (July 31–September 26), and FM was highest in autumn (September 27–November 29). FP was positively correlated with seasonal change in soil temperature, while FM was not related to that change. The seasonality of FP and FM might be linked to above-ground photosynthetic activity. Both FP and FM at the 0–10 cm depth were significantly higher than at 10–20 and 20–30 cm depths, and this resulted from the decrease in nutrient availability with increasing soil depth. The minirhizotron approach and conversion factors developed in this study will enable fast and accurate estimation of the fine root dynamics in P. densiflora forest ecosystems.  相似文献   

19.

? Context

Coarse woody debris (CWD, ≥10 cm in diameter) is an important structural and functional component of forests. There are few studies that have estimated the mass and carbon (C) and nitrogen (N) stocks of CWD in subtropical forests. Evergreen broad-leaved forests are distributed widely in subtropical zones in China.

? Aims

This study aimed to evaluate the pools of mass, C and N in CWD in five natural forests of Altingia gracilipes Hemsl., Tsoongiodendron odorum Chun, Castanopsis carlesii (Hemsl.) Hayata, Cinnamomum chekiangense Nakai and Castanopsis fabri Hance in southern China.

? Methods

The mass of CWD was determined using the fixed-area plot method. All types of CWD (logs, snags, stumps and large branches) within the plot were measured. The species, length, diameter and decay class of each piece of CWD were recorded. The C and N pools of CWD were calculated by multiplying the concentrations of C and N by the estimated mass in each forest and decay category.

? Results

Total mass of CWD varied from 16.75 Mg ha?1 in the C. fabri forest to 40.60 Mg ha?1 in the A. gracilipes forest; of this CWD, the log contribution ranged from 54.75 to 94.86 %. The largest CWD (≥60 cm diameter) was found only in the A. gracilipes forest. CWD in the 40–60 cm size class represented above 65 % of total mass, while most of CWD accumulations in the C. carlesii, C. chekiangense and C. fabri forests were composed of pieces with diameter less than 40 cm. The A. gracilipes, T. odorum, C. carlesii and C. chekiangense forests contained the full decay classes (from 1 to 5 classes) of CWD. In the C. fabri forest, the CWD in decay classes 2–3 accounted for about 90 % of the total CWD mass. Increasing N concentrations and decreasing densities, C concentrations, and C:N ratios were found with stage of decay. Linear regression showed a strong correlation between the density and C:N ratio (R 2?=?0.821). CWD C-stock ranged from 7.62 to 17.74 Mg ha?1, while the N stock varied from 85.05 to 204.49 kg ha?1. The highest overall pools of C and N in CWD were noted in the A. gracilipes forest.

? Conclusion

Differences among five forests can be attributed mainly to characteristics of the tree species. It is very important to preserve the current natural evergreen broad-leaved forest and maintain the structural and functional integrity of CWD.  相似文献   

20.
Most tropical forests outside protected areas have been or will be selectively logged because the timber industry is a main income-generating resource for many developing countries. Therefore, understanding the composition of commercial timber species and logging types is key for sustainable forest management in countries like Vietnam as they move toward fulfilling Reducing Emissions from Deforestation and Forest Degradation (REDD+) agreements. Seven 1-ha plots were surveyed in the Central Highland of Vietnam, and 18 commercial tree species from these plots, whose timber is widely used by local people for housing and furniture making and timber is easily sold at local markets for high prices, were analyzed. In total, 151 tree species with a diameter at breast height (DBH) of ≥?10 cm were recorded. The 18 commercially valuable species assessed in this study accounted for 33.2% of all stems (total of 524 stems ha?1 for all species), 47.1% of basal area (total of 34.35 m2 ha?1 for all species), and 50.8% of aboveground biomass/AGB (total of 262.68 Mg ha?1 for all species). Practicing diameter-limit harvesting of all commercially valuable species with DBH of ≥?40 cm, which is widely performed in Vietnam, will reduce the number of stems by 7%, basal area by 31.6%, and AGB by 38.2%. Because such harvesting practices cause severe ecological impacts on the remaining forest, logged forests may require >?40 years to recover the structure status of a pre-logged forest. In addition, the recovery of the 18 commercially valuable species may require a much longer time because they comprised 33.2% of stems. Permission for logging natural forests should be given in Vietnam to sustain lives of local communities, where logging has been prohibited. However, alternative harvesting systems, such as reduced-impact logging systems, should be considered. The systems selected must simultaneously generate economic returns for local people and respect the REDD+ agreements with regard to protecting biodiversity and reducing carbon emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号