首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Naringin, a bitter compound in citrus fruits, was transglycosylated by Bacillus stearothermophilus maltogenic amylase reaction with maltotriose to give a series of mono-, di-, and triglycosylnaringins. Glycosylation products of naringin were observed by TLC and HPLC. The major glycosylation product was purified by using a Sephadex LH-20 column. The sturcture was determined by using MALDI-TOF MS, methylation analysis, and (1)H and (13)C NMR. The major transglycosylation product was maltosylnaringin, in which the maltose unit was attached by an alpha-1-->6 glycosidic linkage to the D-glucose moiety of naringin. This product was 250 times more soluble in water and 10 times less bitter than naringin.  相似文献   

2.
Maltogenic amylase and alpha-glucanotransferase (alpha-GTase) were employed in an effort to develop an efficient process for the production of isomaltooligosaccharides (IMOs). Bacillus stearothermophilus maltogenic amylase (BSMA) and alpha-GTase from Thermotoga maritima were overexpressed in Escherichia coli using overexpression vectors. An IMO mixture containing 58% of various IMOs was produced from liquefied corn syrup by the hydrolyzing and transglycosylation activities of BSMA alone. When BSMA and alpha-GTase were reacted simultaneously, the IMO content increased to 68% and contained relatively larger IMOs compared with the products obtained by the reaction without alpha-GTase. Time course analysis of the IMO production suggested that BSMA hydrolyzed maltopentaose and maltohexaose most favorably into maltose and maltotriose and transferred the resulting molecules simultaneously to acceptor molecules to form IMOs. alpha-GTase transferred donor sugar molecules to the hydrolysis products such as maltose and maltotriose to form maltopentaose, which was then rehydrolyzed by BSMA as a favorable substrate.  相似文献   

3.
Here, we describe the enzymatic synthesis of novel inhibitors using acarviosine-glucose as a donor and 3-alpha-D-glucopyranosylpropen (alphaGP) as an acceptor. Maltogenic amylase from Thermus sp. (ThMA) catalyzed the transglycosylation of the acarviosine moiety to alphaGP. The two major reaction products were isolated using chromatographies. Structural analyses revealed that acarviosine was transferred to either C-7 or C-9 of the alphaGP, which correspond to C-4 and C-6 of glucose. Both inhibited rat intestine alpha-glucosidase competitively but displayed a mixed-type inhibition mode against human pancreatic alpha-amylase. The alpha-acarviosinyl-(1-->7)-3-alpha-D-glucopyranosylpropen showed weaker inhibition potency than acarbose against both alpha-glycosidases. In contrast, the alpha-acarviosinyl-(1-->9)-3-alpha-D-glucopyranosylpropen exhibited a 3.0-fold improved inhibition potency against rat intestine alpha-glucosidase with 0.3-fold inhibition potency against human pancreatic alpha-amylase relative to acarbose. In conclusion, alpha-acarviosinyl-(1-->9)-3-alpha-D-glucopyranosylpropen is a novel alpha-glucosidase-selective inhibitor with 10-fold enhanced selectivity toward alpha-glucosidase over alpha-amylase relative to acarbose, and it could be applied as a potent hypoglycemic agent.  相似文献   

4.
The use of soybean isoflavones in food products is limited due to their low hydrophilicity. To enhance its solubility, the isoflavone daidzin was transglycosylated as a model compound using Thermotoga maritima maltosyltransferase (MTase). Four novel transglycosylation products of daidzin were identified by TLC and MALDI-TOF MS: daidzein 7-O-triglucoside, daidzein 7-O-pentaglucoside, daidzein 7-O-heptaglucoside, and daidzein 7-O-nonaglucoside. The major product, daidzein 7-O-triglucoside, was purified by C(18) and gel filtration chromatography, and its molecular structure was determined using UV, IR, MALDI-TOF MS, and NMR. The solubility of daidzein 7-O-triglucoside was 7.5 x 10(4) times that of daidzin, suggesting that the transglycosylation greatly enhanced its water solubility.  相似文献   

5.
Lipid oxidation and color stability of meats treated with irradiated phytic acid were investigated during storage for 2 weeks at 4 degrees C. The phytic acid in deionized distilled water (DDW) was degraded by irradiation at 10 and 20 kGy, and the irradiated phytic acid showed a strong antiradical activity. For measuring the antioxidant effects of irradiated phytic acid in food models, beef and pork were prepared with DDW (control), irradiated (10 and 20 kGy) or non-irradiated phytic acid, and ascorbic acid as a model system. Irradiated phytic acid significantly inhibited the lipid oxidation in meats compared to the control and ascorbic acid treated samples during storage (P < 0.05). The redness of the meats treated with phytic acid had a higher value than did the control and ascorbic acid treated samples, but a significant difference was not observed in the samples treated with phytic acid regardless of irradiation treatment. Irradiated phytic acid was also effective in inhibiting the loss of heme iron and metmyoglobin formation during storage. Results indicated that irradiation might be helpful for improving the antioxidant activity of phytic acid in meats.  相似文献   

6.
Fillets of herring (Clupea harengus) were kept on ice for 0, 3, 6, and 9 days prior to storage at -18 degrees C for 0, 21, 42, 63, and 84 days. At each storage point, peroxide value (PV), absorbance at 268 nm (A(268)), fluorescent products (FP), alpha-tocopherol, glutathione peroxidase (GSH-px) activity, and ascorbic acid were measured. As shown by regression analyses, samples held for 6 days on ice formed oxidation products at the highest rate during frozen storage, followed by, for PV and FP, the 9-day samples. These data indicate that severe changes that negatively affect the oxidation process took place in the herring muscle between 3 and 6 days after catch. Both the initial antioxidant levels and the rate of antioxidant loss at -18 degrees C decreased with increased prefreezing holding time, the latter being most obvious for GSH-px activity and ascorbic acid. alpha-Tocopherol showed the largest losses and had disappeared entirely from the 6- and 9-day samples at the end of the frozen storage. Partial least-squares regression analysis of the data showed that ice storage had a greater effect than frozen storage on changes in PV, A(268), FP, alpha-tocopherol, and ascorbic acid. For GSH-px activity, frozen storage had the greatest effect.  相似文献   

7.
In this study the impact of achenes on polyphenolic compounds, ascorbic acids, and antioxidant activities in strawberry purees at production and after storage at 6 and 22 degrees C for 8 and 16 weeks was investigated. Strawberry purees were made from flesh, berry, and achene-enriched homogenate and contained 0, 1.2, and 2.9% achenes, respectively. At production, strawberry purees made from flesh contained more anthocyanins, p-coumaroyl glycosides, and ascorbic acids, whereas increasing achene levels caused increasing levels of ellagic acid derivatives, proanthocyanidins, flavonols, total phenolics (TP), and antioxidant activities. In addition, the anthocyanins, TP, and ferric reducing ability power (FRAP) in purees with more achenes were better retained during storage. Ascorbic acids and anthocyanins declined rapidly during storage, whereas other polyphenols and antioxidant activities were more stable; that is, the contributions from anthocyanins and ascorbic acids to TP and antioxidant activities decreased. The findings that achenes contributed significantly to polyphenol content and stability of strawberry purees may be interesting in a nutritional and, thus, commercial, perspective.  相似文献   

8.
9.
Antioxidant activity of capsinoids   总被引:3,自引:0,他引:3  
Hot peppers are a good source of dietary antioxidants, encompassing, apart from widespread compounds (flavonoids, phenolic acids, carotenoids, vitamin A, ascorbic acid, tocopherols), also specific constituents such as the pungent capsaicinoids (capsaicin, dihydrocapsaicin, and related analogues). We have shown that capsinoids also show remarkable antioxidant activity. These benign analogues of capsaicin could protect linoleic acid against free radical attack in simple in vitro systems, inhibiting both its autoxidation and its iron- or EDTA-mediated oxidation. These properties were retained in some simple synthetic analogues (vanillyl nonanoate and its dimerization products). Capsiate, dihydrocapsiate, and their analogues were devoid of pro-oxidant activity and showed a highly significant antioxidant activity in all systems investigated. Vanillyl nonanoate, a simple capsinoid mimic, was also tested on cell cultures for cytotoxic activity and the capacity to inhibit FeCl(3)-induced oxidation.  相似文献   

10.
Attacks of thiyl radicals on the double bonds of unsaturated fatty acids lead to stereomutation (cis-, trans-isomerization without double-bond migration) and addition reactions (thioether formation). On the basis of these findings, an in vitro test system has been developed which allows the study of the effectiveness of specific antioxidants in preventing thiyl radical-induced attacks on unsaturated fatty acids. The test involves thermal treatment of a mixture of oleic (cis-9-octadecenoic) acid and 1-tetradecanethiol with the antioxidant, followed by measurement of the extent of formation of the products of stereomutation and addition (i.e., elaidic (trans-9-octadecenoic) acid and isomeric 9(10)-S-tetradecylstearic acids, respectively) by gas chromatography of their methyl esters as a function of antioxidant concentration. Antioxidants such as octyl gallate, ascorbic acid 6-O-palmitate, ubiquinone 50 (coenzyme Q(10)), rac-alpha-tocopherol, and 2,6-di-tert-butyl-4-methylphenol (BHT) were tested for their ability to protect the >C=C< double bond of oleic acid against attacks of thiyl radicals generated from 1-tetradecanethiol by heating. The results show that octyl gallate, ascorbic acid 6-O-palmitate and, to some extent, ubiquinone 50 (coenzyme Q(10)) were highly effective in preventing reactions of free thiyl radicals with oleic acid, whereas rac-alpha-tocopherol and BHT were moderately effective.  相似文献   

11.
Two oxidation systems were examined for the oxidation of three groups of phenolic antioxidants; five cinnamic acids, two benzoic acids, and two phenols characteristic of olive fruits. Periodate oxidation, which is reported to produce products similar to polyphenol oxidase, was contrasted with the reactivity of the Fenton system, an inorganic source of hydroxyl radicals. Reaction products were identified as various quinones, dimers, and aldehydes, but the nature of the products differed between the two oxidation systems. Structure-activity effects were also observed for the different phenols. All cinnamic acids in this study reacted with the Fenton reagent to produce benzaldehydes as the main products, with the exception of 5-caffeoylquinic acid. In contrast, periodate oxidation gave no reaction with some of the cinnamic acids. Quinone formation was observed for the two compounds, caffeic acid and 5-caffeoylquinic acid, possessing o-hydroxy groups. Caffeic acid was unusual in that dimer formation was the main initial product of reaction. Benzoic acids were readily oxidized by both systems, but no identifiable products were isolated. Oleuropein was oxidized by both oxidants used in this study, resulting in quinones in each system, whereas little or no oxidation of tyrosol was observed. This highlights the importance of conjugation between the alkene double bond and the hydroxy group. The results question the validity of many existing methods of testing antioxidant activity.  相似文献   

12.
This work describes a new potentiometric method to evaluate the resistance to oxidation of white wines. Reduction and oxidation titrations were made, and coefficient of variation obtained were 10.87 and 2.65%, respectively. The antioxidant powers of ascorbic acid (Aas) and sulfur dioxide (SO(2)) were evaluated by this method, SO(2) proving to be much less active in this respect than ascorbic acid. The two agents did not demonstrate any antioxidant synergy. A relationship between oxygen present and ascorbic acid was found by the proposed method (1 mmol of O(2) <--> 0.84 mmol of Aas). This method enables the distinction of different wines on the basis of their resistance to oxidation.  相似文献   

13.
A spectrophotometric method was developed to measure antioxidant free-radical scavenging capacity. Rhodamine B (RhB) was oxidized by hydroxyl radical generated via the Fenton reaction to yield a photoinactive RhB product. RhB absorption at 550 nm was restored when antioxidant agents scavenged hydroxyl radical to protect RhB from oxidation. On the basis of the dose response of antioxidant recovery capacity, a model was developed to calculate the free-radical scavenging ability. This method was sensitive to a wide range of antioxidant activity with ascorbic acid reference set as one; the antioxidant recovery capacity of quercetin was 635 compared to 2 for benzoic acid.  相似文献   

14.
Furan has recently received attention as a possibly hazardous compound occurring in certain thermally processed foods. Previous model studies have revealed three main precursor systems producing furan upon thermal treatment, i.e., ascorbic acid, Maillard precursors, and polyunsaturated lipids. We employed proton transfer reaction mass spectrometry (PTR-MS) as an on-line monitoring technique to study furan formation. Unambiguous identification and quantitation in the headspace was achieved by PTR-MS/gas chromatography-mass spectrometry coupling. Ascorbic acid showed the highest potential to generate furan, followed by glyceryl trilinolenate. Some of the reaction samples generated methylfuran as well, such as Maillard systems containing alanine and threonine as well as lipids based on linolenic acid. The furan yields from ascorbic acid were lowered in an oxygen-free atmosphere (30%) or in the presence of reducing agents (e.g., sulfite, 60%), indicating the important role of oxidation steps in the furan formation pathway. Furthermore, already simple binary mixtures of ascorbic acid and amino acids, sugars, or lipids reduced furan by 50-95%. These data suggest that more complex reaction systems result in much lower furan amounts as compared to the individual precursors, most likely due to competing reaction pathways.  相似文献   

15.
The objective of this study was to investigate the influence of the two antioxidants, ascorbic acid and (+)catechin, on the oxidation of 2'-deoxyguanosine (dG), using an iron-mediated Fenton reaction. The oxidation products 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) and 8,5'-cyclo-2'-deoxyguanosine, together with the secondary oxidation products guanidinohydantoin and dehydro-guanidinohydantoin, were identified and quantified through the use of an LC-MS/MS system. The results obtained showed that catechin inhibited the oxidation better than ascorbic acid did, indicating that the chelating ability of catechin rather than the radical scavenging mechanism alone is vital for the observed antioxidative efficiency. The correlation between the different oxidation products was found to be quite low, primarily because of the instability of 8-oxodG, making it prone to further oxidation. This led to apparent anti- and pro-oxidative results being obtained, emphasizing the potential problems in evaluating oxidative stress, by use of a single marker.  相似文献   

16.
Neohesperidin dihydrochalcone (NHDC), a sweet compound derived from citrus fruits, was modified to a series of its oligosaccharides by transglycosylation activity of Bacillus stearothermophilus maltogenic amylase (BSMA). Maltotriose as a donor was reacted with NHDC as an acceptor to glycosylate for the purpose of increasing the solubility of NHDC. Maltosyl-NHDC was a major transglycosylation product among the several transfer products by TLC analysis. The structure of the major transglycosylation product was determined to be maltosyl-alpha-(1,6)-neohesperidin dihydrochalcone by MALDI-TOF/MS and (1)H and (13)C NMR. Maltosyl-NHDC was 700 times more soluble in water and 7 times less sweet than NHDC.  相似文献   

17.
The impact of processing on nonenzymatic antioxidant degradation and lipid oxidation leading to off-flavor development in potato flakes during storage was investigated. Lipoxygenase activity measurements in parallel with the analysis of lipid oxidation products (oxylipins) profiles using HPLC showed that the processing conditions used inhibited efficiently enzymatic lipid oxidation. However, nonenzymatic lipid oxidation products were found throughout processing and in fresh potato flakes. Furthermore, these autoxidative processes cannot be inactivated by the main endogenous nonenzymatic antioxidants in potato tubers (ascorbic acid, phenolic compounds and carotenoids), as these antioxidants are degraded during processing. Indeed, leaching and thermal treatments taking place during processing lead to a decrease of about 95%, 82% and 27% in the content of ascorbic acid, phenolic compounds and carotenoids, respectively. Therefore, storage is a critical step to prevent off-flavor development in potato flakes. Specific attention has thus to be paid on the use of efficient exogenous antioxidants as well as on storage conditions.  相似文献   

18.
Several fresh orange juices, obtained from five different Citrus sinensis (L.) Osbeck varieties (three pigmented varieties, Moro, Sanguinello, and Tarocco, and two blond varieties, Valencia late and Washington navel), were subjected to antioxidant profile determination (including total polyphenols, flavanones, anthocyanins, hydroxycinnamic acids, and ascorbic acid). The antioxidant activity of these juices was then assessed by means of different "in vitro" tests (bleaching of the stable 1,1-diphenyl-2-picrylhydrazyl radical; peroxidation, induced by the water-soluble radical initiator 2,2'-azobis(2-amidinopropane) hydrochloride, on mixed dipalmitoylphosphatidylcholine/linoleic acid unilamellar vesicles; scavenging activity against nitric oxide; total antioxidant status). All orange juices tested showed an evident antioxidant effect. Our findings indicate the following: (1) the antioxidant efficiency of orange juices may be attributed, in a significant part at least, to their content of total phenols, (2) while ascorbic acid seems to play a minor role; (3) the antioxidant activity of orange juices is related not only to structural features of phytochemicals contained in them, but also to their capability to interact with biomembranes; (4) finally, as to pigmented juices, their antioxidant efficiency appears to be widely influenced by the anthocyanin level. One could speculate that the supply of natural antioxidant phenols through daily consumption of orange juice might provide additional protection against in vivo oxidation of cellular biomolecules.  相似文献   

19.
Postmenopausal women have an increased risk of coronary heart disease. Oxidation of low-density lipoprotein (LDL) has been implicated in atherogenesis, and the presence of modified LDL (LDL(-)) in plasma appears to represent LDL oxidation in vivo. Because previous studies have demonstrated a strong antiatherogenic effect of estrogen due to its antioxidant activity and similar antioxidant activity was found for specific isoflavones derived from soy extract, the antioxidant activity of a phytoestrogen extract derived from soy and alfalfa was studied. Copper-mediated LDL oxidation was inhibited in the presence of soy and alfalfa extracts, and this effect was further enhanced in the presence of acerola cherry extract, which is rich in ascorbic acid. Male rabbit aortic endothelial cells pretreated with soy extract were resistant to the toxic effects of high levels of LDL and LDL(-), and a lesser, but significant protection, was also afforded by alfalfa extract. Cell-mediated oxidation of LDL, measured by LDL(-) formation, was inhibited in the presence of soy extract but not alfalfa extract. However, in the presence of acerola cherry extract, both soy and alfalfa extracts potently inhibited the formation of LDL(-). These findings show that acerola cherry extract can enhance the antioxidant activity of soy and alfalfa extracts in a variety of LDL oxidation systems. The protective effect of these extracts is attributed to the presence of flavonoids in soy and alfalfa extracts and ascorbic acid in acerola cherry extract, which may act synergistically as antioxidants. It is postulated that this synergistic interaction among phytoestrogens, flavonoids, and ascorbic acid is due to the "peroxidolitic" action of ascorbic acid, which facilitates the copper-dependent decomposition of LDL peroxides to nonradical products; this synergy is complemented by a mechanism in which phytoestrogens stabilize the LDL structure and suppress the propagation of radical chain reactions. The combination of these extracts markedly lowers the concentrations of phytoestrogens required to achieve significant antioxidant activity toward LDL.  相似文献   

20.
Glutathione was assessed individually, and in combination with ascorbic acid, for its ability to act as an antioxidant with respect to color development in an oxidizing model white wine system. Glutathione was utilized at concentrations normally found in wine (30 mg/L), as well as at concentrations 20-fold higher (860 mg/L), the latter to afford ascorbic acid (500 mg/L) to glutathione ratios of 1:1. The model wine systems were stored at 45 °C without sulfur dioxide and at saturated oxygen levels, thereby in conditions highly conducive to oxidation. Under these conditions the results demonstrated the higher concentration of glutathione could initially provide protection against oxidative coloration, but eventually induced color formation. In the period during which glutathione offered a protective effect, the production of xanthylium cation pigment precursors and o-quinone-derived phenolic compounds was limited. When glutathione induced coloration, polymeric pigments were formed, but these were different from those found in model wine solutions without glutathione. In the presence of ascorbic acid, high concentrations of glutathione were able to delay the decay in ascorbic acid and inhibit the reaction of ascorbic acid degradation products with the wine flavanol compound (+)-catechin. However, on depletion, the glutathione again induced the production of a range of different polymeric pigments. These results highlight new mechanisms through which glutathione can offer both protection and spoilage during the oxidative coloration of a model wine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号