首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
分别以新疆天山的西部昭苏林场、东部哈密林场和中部板房沟林场的各10棵云杉标准解析木的树高、年龄和胸径数据为研究基础,选用6种常见胸径-树高、胸径-年龄和年龄-树高生长曲线建立回归方程。结果表明,(1)在各林场中,6条曲线回归模型均达到极显著性水平(P0.01),各方程可达到对该区域胸径、树高和年龄的预测;(2)昭苏林场、哈密林场和板房沟林场树高-胸径的最优曲线方程为幂函数模型,关系式分别为D=0.708 4H~(1.271 3)、D=1.017H~(1.18)、D=0.686 6H~(1.316 7);(3)昭苏林场、哈密林场和板房沟林场树高-年龄的最优曲线方程为三次曲线模型,其回归方程分别为A=0.012 7H~3-0.682 9H~2+14.361H-49.333,A=0.028 2H~3-1.015 7H~2+15.263H-21.557,A=-0.029 2D~3+1.644 8D~2-25.589D+163.26;(4)昭苏林场、哈密林场和板房沟林场年龄-胸径的最优曲线方程为三次曲线模型,关系式分别为A=-0.000 8D~3+0.11D~2-3.050 4D+70.078,A=-0.001 9D~3+0.189 1D~2-2.296 2D+47.431,A=-0.003D~3+0.307 6D~2-7.922 7D+104.37。  相似文献   

2.
以豫杂一号泡桐健壮组培苗为研究材料,从低温锻炼时间、预处理时间、装载液处理时间、玻璃化液处理时间及液氮保存时间5个方面研究其茎尖玻璃化法超低温保存方法。结果表明,豫杂一号泡桐茎尖玻璃化法超低温适宜的保存方法为,2 cm的茎尖在附加0.4 mol·L-1甘油和0.3 mol·L-1蔗糖的MS培养基上预培养2天,然后剥取2~3 mm的茎尖,用装载液(MS+2 mol·L-1甘油+0.4 mol·L-1蔗糖)装载60 min,再用玻璃化溶液(PVS2)于0℃下处理1.5 h,换1次玻璃化溶液后迅速投入液氮,保存l h后于40℃水浴中化冻70 s,再转到室温下用去装载液(MS+1.2 mol·L-1蔗糖)洗涤2次,每次10 min。以TTC法检测,豫杂一号泡桐茎尖成活率最高可达85.74%,保存效果较好。  相似文献   

3.
以黑液固形物和松木粉为原料,经炭化、磺化制备得到黑液固形物磺化固体酸(BLSBC)和松木粉磺化固体酸(WMBC),采用扫描电镜(SEM)、热重分析(TG)、红外光谱(FT-IR)及元素分析对2种生物质炭基固体酸进行表征,并将BLSBC和WMBC催化对苯二酚(HQ)烷基化合成2-叔丁基对苯二酚(2-TBHQ),考察了原料种类和炭化温度对生物基固体酸催化性能的影响。研究结果表明:生物炭固体酸催化剂200℃以内的热稳定性良好,功能基团—SO_3H被成功接枝;催化剂C元素含量的增加及H~+交换容量的降低则归结于温度的影响,同温度条件下WMBC的H~+交换容量高于BLSBC。HQ转化率随着催化剂的H~+交换容量的降低而不断降低,而2-TBHQ选择性则取决于H~+交换容量与羟基含量的协同效应;与商业催化剂Amberlyst-15树脂、732树脂相比,450℃制备得到的WMBC(WMBC-450)表现出更高的催化活性,2-TBHQ有最高的选择性(83.8%)和产率(57.6%)。  相似文献   

4.
猪笼草组织培养育苗技术的研究   总被引:1,自引:0,他引:1  
本试验研究了本地野生种(Nepenthes m irabilis)〔1〕带芽茎段的组织培养及植株再生,筛选出最佳培养基:(1)启动培养:M S+6BA1.0 ̄2.0m g·L-1+NAA0.1m g·L-1(以下单位相同)+蔗糖3%+椰汁10%;(2)增殖培养:1/2M S+6BA1+NAA0.1+蔗糖3%(3)生根培养基:1/2M S+IBA0.5+NAA1.5+蔗糖3%.  相似文献   

5.
【目的】探索施加硅(Si)以提高檀香紫檀苗木抗寒性的矿质营养吸收与分配基础,为进一步Si营养提高苗木抗寒性的作用提供参考。【方法】以12月龄苗木为试材,测试分析2种施Si量栽培6个月的苗木体内8种矿质元素的含量变化,(-3±0. 5)℃胁迫下细胞内H~+和Ca~(2+)浓度,质膜和类囊体膜H~+-ATP酶、Ca~(2+)-ATP酶活性及类囊体膜蛋白含量与磷脂酶D活性的响应。【结果】施Si苗木S、Cl元素相对含量降低,K元素相对含量显著降低,Mg、P、Fe元素相对含量升高,Si、Ca元素相对含量大幅升高;施Si苗木质膜H~+-ATP酶、Ca~(2+)-ATP酶活性显著高于对照,低温胁迫下降低幅度小,特别是叶片质膜H~+-ATP酶;低温胁迫下,不施Si苗木类囊体膜蛋白质含量及H~+-ATP酶、Ca~(2+)-ATP酶活性下降幅度大、显著低于施Si苗木,同时,磷脂酶D(PLD)活性强、低温胁迫下显著升高。【结论】施Si改善檀香紫檀苗木对矿质元素的吸收、微域分布及平衡性,Si介导低温胁迫下苗木质膜和类囊体膜离子泵等生化组分及其功能的稳定性。  相似文献   

6.
巨桉芽器官离体培养与快繁体系建立的研究   总被引:35,自引:0,他引:35  
研究了以巨桉 (Eucalyptusgrandis)优树的带芽茎段为外植体诱导丛生芽发生以及植株再生的过程 ,对培养过程中新芽及丛生芽的发生类型进行了探讨。通过正交实验及单因素试验 ,确定了巨桉快繁体系的最适培养条件 :(1 )初代培养基 :S +BA0 5mg·L- 1 +NAA0 0 5mg·L- 1 +蔗糖 3 % ;(2 )丛生苗诱导培养基 :S +BA1 0mg·L- 1 +NAA0 0 5mg·L- 1 +蔗糖 3 % ;(3 )有效苗诱导培养基 :S+BA0 5mg·L- 1 +NAA0 1mg·L- 1 +生物素 2 0 +蔗糖 4% ;(4 )壮苗培养基 :MS(铁盐、有机物 1 5倍 ) +蔗糖 4% ;(5 )生根培养基 :1 2MS +ABT生根粉 (1号 ) 1 0mg·L- 1 +蔗糖 2 %。  相似文献   

7.
以钟花樱(Cerasus campanulata)的嫩枝作外植体进行组织培养技术研究。结果表明:适合不定芽诱导的培养基为MS+6-BA 1.0 mg·L~(-1)+NAA 0.1 mg·L~(-1)+蔗糖30 g·L~(-1)+卡拉胶6.5 g·L~(-1),诱导率为44.44%,适合增殖培养的培养基为MS+6-BA 1.0 mg·L~(-1)+NAA 0.05 mg·L~(-1)+GA3 0.5 mg·L~(-1)+蔗糖30 g·L~(-1)+卡拉胶6.5 g·L~(-1),增殖倍数为3.70,适合生根培养的培养基为1/2 MS+IBA 1.5 mg·L~(-1)+NAA 0.1 mg·L~(-1)+蔗糖30 g·L~(-1)+卡拉胶6.5 g·L~(-1)+活性碳0.5 g·L~(-1),生根率为82.23%。  相似文献   

8.
目的]建立裂叶垂枝桦组织培养离体繁殖再生体系。[方法]以裂叶垂枝桦带腋芽或顶芽的茎段为试材,经过外植体消毒、初代培养、继代培养、增殖培养、生根培养,最后获得再生植株,并对裂叶垂枝桦组培快繁影响因素进行分析。[结果]表明:裂叶垂枝桦幼嫩茎段离体培养最适培养基和激素组合为:MS+0.5 mg·L~(-1)6-BA+0.05 mg·L~(-1)NAA+0.2 mg·L~(-1)GA_3+20 g·L~(-1)蔗糖+6 g·L~(-1)琼脂;最适生根培养基为:1/2MS+0.1 mg·L~(-1)NAA+20g·L~(-1)蔗糖+6 g·L~(-1)琼脂。将生根的无菌苗移植至草炭土和细沙比例3∶1的已灭菌的基质中,15 d后,组培苗生长健壮,成活率达到80%以上。[结论]采用组织培养技术对裂叶垂枝桦进行离体快繁,建立了离体快繁再生体系,为裂叶垂枝桦良种选育奠定了研究基础。  相似文献   

9.
以瑞典花楸侧芽为外植体进行组织培养技术研究,结果表明:外植体最佳灭菌时间为0.1%升汞处理5 min;最佳诱导培养基为MS+6-BA 0.8 mg·L~(-1)+NAA 0.2 mg·L~(-1)+蔗糖30 g·L~(-1),最佳分化培养基为MS+6-BA 0.5 mg·L~(-1)+IBA 0.2 mg·L~(-1)+蔗糖30 g·L~(-1),最佳生根培养基为1/2 MS+NAA0.1 mg·L~(~(-1))+IBA 0.1 mg·L~(-1)+蔗糖25 g·L~(-1)。  相似文献   

10.
【目的】火焰卫矛因其秋季叶色变红、树形优美而成为一种极具经济价值的园艺观赏植物。本文探究了培养基类型、植物生长调节剂及蔗糖浓度对火焰卫矛不定芽增殖及不定根诱导的影响,以获得火焰卫矛外植体的最佳培养条件。【方法】采用正交实验及单因素多水平实验方式,观察培养基类型、植物生长调节剂及蔗糖浓度对火焰卫矛组织培养不同阶段的影响;通过方差分析及Duncan多重比较等方法,分析各因素的显著性,并确定不同阶段的最佳培养条件。【结果】培养基类型、6-苄基腺嘌呤(6-BA)及蔗糖浓度对火焰卫矛不定芽增殖影响显著,最佳增殖培养基为DKW+6-BA 4.0 mg·L~(-1)+吲哚丁酸(IBA)0.05 mg·L~(-1)+蔗糖30 g·L~(-1),繁殖系数为3.73;蔗糖浓度、IBA浓度及培养基类型对生根诱导有显著影响,最佳生根培养基Ⅰ为1/4 WPM+IBA2.0 mg·L~(-1);最佳生根培养基Ⅱ为1/4 WPM+蔗糖10 g·L~(-1)+活性炭2.0 g·L~(-1),生根率可达98.89%。芽休眠小植株4℃处理3个月,芽休眠解除率为93.3%。【结论】火焰卫矛适宜培养于低无机盐培养基(DKW及WPM培养基);在增殖阶段宜加入高浓度蔗糖,而在生根阶段Ⅰ不宜加入蔗糖,阶段Ⅱ宜加入低浓度蔗糖。本研究获得了火焰卫矛组织培养的最佳条件,并建立了较为完整的微型快繁技术,可为卫矛的近缘物种组织培养提供借鉴。  相似文献   

11.
从叶保水力及维持膨压两个方面,对21个不同耐旱机理树种的耐旱生理特点进行了比较研究。结果表明:高水势延迟脱水耐旱树种(油松、樟子松、长白松、华山松、白皮松、火炬树、二白杨、华北落叶松)具有很强的保水力和维持膨压的能力;低水势忍耐脱水耐旱树种(山杏、山桃、栾树、文冠果、花椒、白榆、新疆杨、杜仲、红柳、沙枣、毛条、胡杨)则表现出较弱的保水力和维持膨压的能力。  相似文献   

12.
To determine the relationship between phloem transport and changes in phloem water content, we measured temporal and spatial variations in water content and sucrose, glucose and fructose concentrations in phloem samples and phloem exudates of 70- and 30-year-old Norway spruce trees (Picea abies (L.) Karst.). Large temporal and spatial variations in phloem water content (1.4-2.6 mg mg(dw)(-1)) and phloem total sugar concentration (31-70 mg g(dw)(-1)) paralleled each other (r(2) = 0.83, P < 0.0001 for the temporal profile and r(2) = 0.96, P < 0.008 for the spatial profile), indicating that phloem water content depends on the total amount of sugar to be transferred. Changes in phloem water content were unrelated to changes in bark thickness. Maximum changes in phloem water content calculated from dendrometer readings were only 8-11% of the maximum measured changes in phloem water content, indicating that reversible changes in bark thickness did not reflect changes in internal water relations. We also studied the relationship between xylem sap velocity and changes in bark thickness in 70-year-old trees during summer 1999 and winter 1999-2000. Sap flow occurred sporadically throughout the winter, but there was no relationship between bark shrinkage or swelling and sap velocity. In winter, mean daily xylem sap velocity was significantly correlated with mean daily vapor pressure deficit and air temperature (P < 0.0001, in both cases). Changes in bark thickness corresponded with both short- and long-term changes in relative humidity, in both winter and summer. Under controlled conditions at > 0 degrees C, changes in relative humidity alone caused changes in thickness of boiled bark samples. Because living bark of Norway spruce trees contains large areas with crushed and dead sieve cell zones-up to 24% of the bark is air-filled space-we suggest that this space can compensate for volume changes in living phloem cells independently of total tissue water content. We conclude that changes in bark thickness are not indicative of changes in either phloem water capacitance or xylem sap flow.  相似文献   

13.
The growth of scions and rootstocks of compatible (Prunus persica L. Batsch cv. Springtime/Prunus cerasifera L. Ehrh. cv. myrobolan P2032) and incompatible (Prunus persica L. Batsch cv. Springtime/Prunus cerasifera L. Ehrh. cv. myrobolan P18) peach/plum grafts were compared. The composition of soluble carbohydrates in phloem and cortical tissues of both peach/plum grafts and ungrafted plums and the translocation of these compounds across the union of grafted plants were examined. Sorbitol and sucrose were the dominant sugars in the phloem and cortical tissues of plum. A cyanogenic glycoside, prunasin, was present in peach tissues in amounts equivalent to those of sorbitol or sucrose, whereas only small amounts of prunasin were detected in plum tissues. The concentration of prunasin was significantly higher in the phloem of the P18 rootstock of the incompatible graft. Sorbitol was the only sugar significantly depleted in rootstock tissues of the incompatible graft when the first foliar symptoms of graft incompatibility became evident. Translocation studies with 1-(14)C-deoxyglucose showed that the relative distribution of radioactivity across the graft union was similar in both compatible and incompatible grafts. However, the total amount of radioactivity translocated across the incompatible graft was less than one-third of that translocated across the compatible graft. The results are consistent with the hypothesis of a progressive poisoning of the root system in the incompatible graft by a compound synthesized in peach foliage. The role of prunasin as a possible candidate is discussed.  相似文献   

14.
Water relation parameters of bare-root seedlings of Chinese fir (Cunninghamia lanceolata Hook.)and Masson pine (Pinus massoniana Lamb.)were measured and changes of root growth potential as well as field survival rate of both species were studied after the bare-root seedlings were exposed in a sunny field condition.the results showed that masson pine had a lower osmotic potential(-2.07Mpa) at turgor loss point and at full turgor(-1.29Mpa),compared with Chinese fir(-1.80Mpa and -1.08Mpa respectively).The parameter Vp/Vo(63.27%) of Masson pine was higher than that of chinese fir (58.03%).This means that Masson pine has a stronger ability to tolerate desiccation,compared to Chinese fir according to analysis of above water relation parameters.Root growth potential and field survival rate decreased with prolonging duration of exposure.The field survival rate of both species was reduced to less than 40% after the seedling being exposed only two hours.Water potentials of -1.60 Mpa and -1.70 Mpa were suggested to be critical values for Chinese fir and Masson pine respectively in successful reforestation.  相似文献   

15.
As of today, the functions of fusoid cell, and the transport and loading pathways of photoassimilate in bamboo leaves are still not clear. In this paper, the leaves of Fargesia yunnanensis from a greenhouse and the wild were respectively used as samples to analyze the anatomical characteristics of fusoid cells and vascular bundles. The results showed that the bamboo leaves from greenhouse got shorter and thinner with fewer layers of palisade parenchyma cells than those from the wild. The volumes of fusoid cells were also increased. Fusoid cells originated from a huge parenchyma cell as testified by the observed nuclei. Several fusoid cells usually formed one cell complex close to the midrib. Crystals were detected in fusoid cells but no pits or plasmodesmata on their walls, suggesting that fusoid cells had the function of regulating water. The presence of fusoid cells determined the major difference between a leaf blade and sheath. There were prominent chloroplasts with simple stroma lamellae in the parenchymatous bundle sheath cells and starch grains were also observed in these chloroplast. Photoassimilates could be transported across vascular bundle sheath via symplasmic pathways for an abundant of plasmodesmata in sheath cell walls, and transported into phloem tube by apoplastic pathway as there were no pits in the walls of companion cells and phloem tubes.  相似文献   

16.
As of today, the functions of fusoid cell, and the transport and loading pathways of photoassimilate in bamboo leaves are still not clear. In this paper, the leaves of Fargesia yunnanensis from a greenhouse and the wild were respectively used as samples to analyze the anatomical characteristics of fusoid cells and vascular bundles.The results showed that the bamboo leaves from greenhouse got shorter and thinner with fewer layers of palisade parenchyma cells than those from the wild. The volumes of fusoid cells were also increased. Fusoid cells originated from a huge parenchyma cell as testified by the observed nuclei. Several fusoid cells usually formed one cell complex close to the midrib. Crystals were detected in fusoid cells but no pits or plasmodesmata on their walls, suggesting that fusoid cells had the function of regulating water. The presence of fusoid cells determined the major difference between a leaf blade and sheath. There were prominent chloroplasts with simple stroma lamellae in the parenchymatous bundle sheath cells and starch grains were also observed in these chloroplast. Photoassimilates could be transported across vascular bundle sheath via symplasmic pathways for an abundant of plasmodesmata in sheath cell walls, and transported into phloem tube by apoplastic pathway as there were no pits in the walls of companion cells and phloem tubes.  相似文献   

17.
Source-sink relationships of field-grown plants of Coffea arabica L. cultivar 'Caturra' were manipulated to analyze the contribution of soluble sugars to sink feedback down-regulation of maximal leaf net CO2 assimilation rate (Amax). Total soluble sugar concentration (SSCm) and Amax were measured in the morning and afternoon on mature leaves of girdled branches bearing either high or low fruit loads. Leaf Amax was negatively correlated to SSCm, increased with fruit load and decreased during the day, indicating that limiting sink demand for carbohydrates caused SSCm to accumulate in the leaf tissue which results in down-regulation of Amax. To further analyze source-sink feedback on Amax, we compared Amax of mature, non-sink-limited coffee leaves fed with water or sucrose for 5, 10 or 30 min with that of non-fed control leaves. Sucrose-feeding reduced Amax compared with the control and water-feeding treatments, indicating that down-regulation of Amax is related to phloem sucrose concentration in coffee source leaves, independent of SSCm concentration in other leaf tissues. Although sucrose appeared to be more closely related to the mechanism underlying sink feedback down-regulation of Amax in coffee leaves than SSCm, Amax was closely related to SSCm by a nonlinear equation that may be useful for integrating sink limitations in coffee leaf photosynthetic models.  相似文献   

18.
为了深入研究枸杞果实糖代谢机制,结合有关文献资料,对枸杞果实中糖的种类、积累及其蔗糖代谢与运输等方面的研究情况进行了综述。枸杞果实中的单糖主要有果糖、鼠李糖、阿拉伯糖、葡萄糖、木糖、甘露糖等,其中的寡糖有麦芽糖、蔗糖和一种低聚糖,其多糖物质包括枸杞多糖、纤维素、半纤维素;枸杞果实糖分积累的方式为己糖积累型;枸杞叶片的光合产物主要以蔗糖形式经过韧皮部长距离运输至库,韧皮部后运输主要以质外体途径为主;蔗糖在枸杞果实中进行转化,其中关键酶为蔗糖磷酸合成酶(SPS)、蔗糖合成酶(SS)、转化酶(Ivr);影响枸杞果实糖分积累和代谢的环境因子主要有土壤肥力、盐分含量、水分状况、光照、大气CO_2浓度等。  相似文献   

19.
Transport phloem is no longer associated with impermeable pipes, but is instead considered as a leaky system in which loss and retrieval mechanisms occur. Local stem chilling is often used to study these phenomena. In this study, 5-cm- lengths of stems of 3-year-old oak trees (Quercus robur L.) were locally chilled for 1 week to investigate whether observations at stem and leaf level can be explained by the leakage-retrieval mechanism. The chilling experiment was repeated three times across the growing season. Measurements were made of leaf photosynthesis, carbohydrate concentrations in leaves and bark, stem growth and maximum daily stem shrinkage. Across the growing season, a feedback inhibition in leaf photosynthesis was observed, causing increased dark respiration and starch concentration. This inhibition was attributed to the total phloem resistance which locally increased due to the cold temperatures. It is hypothesized that this higher phloem resistance increased the phloem pressure above the cold block up to the source leaves, inducing feedback inhibition. In addition, an increase in radial stem growth and carbohydrate concentration was observed above the cold block, while the opposite occurred below the block. These observations indicate that net lateral leakage of carbohydrates from the phloem was enhanced above the cold block and that translocation towards regions below the block decreased. This behaviour is probably also attributable to the higher phloem resistance. The chilling effects on radial stem growth and carbohydrate concentration were significant in the middle of the growing season, while they were not at the beginning and near the end of the growing season. Furthermore, maximum daily shrinkages were larger above the cold block during all chilling experiments, indicating an increased resistance in the xylem vessels, also generated by low temperatures. In conclusion, localized stem chilling altered multiple carbon processes in the source leaves and the main stem by changing hydraulic resistances.  相似文献   

20.
桉树插条生根解剖研究*   总被引:13,自引:1,他引:13       下载免费PDF全文
对刚果12号W5、雷林1号8051、尾叶桉插条生根解剖研究证明:桉树插条内未见潜伏根原基,必须用各种技术措施才能诱导生根。从维管形成层、韧皮薄壁组织细胞、韧皮射线、困射线、愈伤组织以及由维管形成层、韧皮射线、韧皮薄壁组织细胞组成的复合组织等部位都可产生诱导根原基;在适宜的环境条件下,诱导根原基可分化成不定根。即皮部生根和愈伤组织生根。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号