首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to determine the effects of 1-methylcyclopropene, 1-MCP (1 μL L−1 for 24 h at 5 °C) on quality attributes and shelf life of fresh-cut strawberries. The 1-MCP was applied before (whole product) and/or after cutting (wedges), followed by storage in a continuous flow of air or air +1 μL L−1 C2H4. The combined effects of 1-MCP and CaCl2 dips (1% for 2 min) and/or CA (3 kPa O2 + 10 kPa CO2) were also examined. The application of only 1-MCP before and/or after cutting did not have a significant effect on firmness and appearance quality during storage for up to 12 days at 5 °C. The exposure to a continuous flow of 1 μL L−1 C2H4 in air during storage did not increase the softening rate. 1-MCP applied before cutting or both before and after cutting of the strawberries increased respiration rates but reduced C2H4 production rates. Exposure to 1-MCP had a synergistic effect when combined with CaCl2 plus CA. The combined treatment of 1-MCP + CaCl2 + CA slowed down softening, deterioration rates, TA and microbial growth. Compared to the control, which had a 6-day shelf life, the shelf life of fresh-cut strawberries subjected to the combination treatment was extended to 9 days at 5 °C.  相似文献   

2.
The influence of ultraviolet (UV-C) light (1.4–13.7 kJ m−2 at 254 nm) on the quality and microbial populations of fresh-cut watermelon [Citrulus lanatus (Thunb.) Matsum. and Nakai] was investigated and compared to that of common sanitizing solutions used for fresh-cut produce. Dipping cubes in chlorine (40 μL L−1) and ozone (0.4 μL L−1) was not effective in reducing microbial populations and quality was lower in cubes receiving these aqueous treatments compared to UV-irradiated cubes or control. In commercial trials, exposing packaged watermelons cubes to UV-C light at 4.1 kJ m−2 produced >1 log reduction in microbial populations by the end of the product's shelf life without affecting juice leakage, color and, overall visual quality. In further experimentation, lower UV-C dose (1.4 kJ m−2) reduced microbial populations to a lower degree and only when complete surface exposure was ensured. Higher UV-C doses did not show any difference in microbial populations (6.3 kJ m−2) or result in quality deterioration (13.7 kJ m−2). Spray applications of hydrogen peroxide (2%) and chlorine (40 μL L−1), without subsequent removal of excess water, failed to further decrease microbial load of cubes exposed to UV-C light at 4.1 kJ m−2. When properly utilized, UV-C light is the only method tested in this study that could potentially be used for sanitizing fresh-cut watermelon.  相似文献   

3.
In rape (Brassica napus L., cv. Global) seed growth mainly depends on husk CO2 assimilation. In irrigated plants, the net photosynthetic rate (Amax) was 10–13 μmol CO2 m−2 s−1 in non-maturing pods and correlated with nitrogen content. The stomatal conductance of water vapour (gH2O) was 0.3 mol m−2 s−1 in non-maturing pods. The photosynthetic nitrogen use efficiency (NUE) was 8.3 μmol CO2g−1 N s−1, about one-third of that in leaves. The photosynthetic water use efficiency (WUE; AmaxgH2O−1) was similar in pods and leaves. In severely droughted plants, the photosynthetic rate was reduced to 38%. The seed growth rate, however, was not influenced by intermittent periods of water stress, indicating translocation of assimilates to the seeds. The drought resistant character of the pods was due to low specific area, succulence, low stomatal conductance causing a small decrease of ΔΨ day−1 during soil drying and maintenance of high relative water content during severe drought. A mathematical formulation of the pod water release curve was undertaken. © (1997) Elsevier Science B.V.  相似文献   

4.
The physiological effects of elevated CO2 and/or O3 on Solanum tuberosum cv. Bintje were examined in Open-Top Chambers during 1998 and 1999 at experimental sites across Europe as part of the EU ‘Changing Climate and Potential Impacts on Potato Yield and Quality’ programme (CHIP). At tuber initiation (≈20 days after emergence, DAE) elevated CO2 (680 μl l−1) induced a 40% increase in the light saturated photosynthetic rate (Asat) of fully expanded leaves in the upper canopy. This was 16% less than expected from short-term exposures of plants grown under ambient CO2 (360 μl l−1) to elevated CO2, indicating that photosynthetic acclimation began at an early stage of crop growth. This effect resulted from a combination of a 12% reduction in stomatal conductance (gs) and a decline in photosynthetic capacity, as indicated by the significant reductions in the maximum carboxylation rate of Rubisco (Vcmax) and light-saturated rate of electron transport (Jmax) under elevated CO2. The seasonal decline in the promotion of photosynthesis by elevated CO2 reflected the concurrent decrease in gs. Vcmax and Jmax were both reduced in plants grown under elevated CO2 until shortly after maximum leaf area (MLA) was attained. Although non-photorespiratory mitochondrial respiration in the light (Rd) increased during the later stages of the season, net photosynthesis was consistently increased by elevated CO2 during the main part of the season. Photosynthetic rate declined more rapidly in response to elevated O3 under ambient CO2, and the detrimental impact of O3 was most obvious after MLA was attained (DAE 40–50). Several exposure indices were compared, with the objective of determining the critical ozone level required to induce physiological effects. The critical O3 exposure above which a 5% reduction in light saturated photosynthetic rate may be expected (expressed in terms of cumulative exposure above 0 nl l−1 O3 between emergence and specific dates during the season (AOT0-cum)) was 11 μl l−1 h; however this value should only be extrapolated beyond the CHIP dataset with caution. The interaction between O3 and stomatal behaviour was more complex, as it was influenced by both long-term and daily exposure levels. Elevated CO2 counteracted the adverse effect of O3 on photosynthesis, perhaps because the observed reduction in stomatal conductance decreased O3 fluxes into the leaves. The results are discussed in the context of nitrogen deficiency, carbohydrate accumulation and yield.  相似文献   

5.
Shiitake mushrooms (Lentinus edodes) were packaged under air in two macroperforated packages (A—9.0 × 103 perforations/m2, 0.1 mm2 surface and B—17 perforations/m2, 0.1 mm2 surface) and under two gas mixtures (15% and 25% O2) in polyethylene packages, and stored at 5 °C for 18 d. The sensory quality of the mushrooms was evaluated using a trained assessors panel.

Mushrooms packaged in macroperforated packages A showed the smallest deterioration rate. However, weight loss after 6 d of storage reached 15%, which is unacceptable. Besides, shelf life of shiitake mushrooms in active modified atmosphere was limited by off-odour development. Mushrooms in these packages developed off-odour after 12 d of storage due to the fact that O2 concentrations fall bellow 5%.

On the other hand, the shelf life of mushrooms packaged in macroperforated packages B was limited by their sensory deterioration, particularly by changes in the colour and uniformity of their gills. In this film, mushrooms could be stored for approximately 10 d with a weight loss lower than 2%.

Results from the present work suggest that during the first 6 d of storage all the evaluated packaging conditions were useful for reducing mushroom deterioration rate.  相似文献   


6.
The wide variability and complexity of olive orchards makes it difficult to provide solutions to the numerous management questions using a pure experimental approach. In this paper we calibrate and validate a simple model of olive orchard productivity based on the Radiation-Use Efficiency (RUE) concept of Monteith. A calibration experiment was performed in Cordoba from 1998 to 2001 with drip-irrigated olive trees cv. ‘Arbequina’. Destructive samples of 18 trees and non-destructive measurements on 80 trees were used to determine RUE and dry matter partitioning coefficients. Validation experiments were performed in 18 drip-irrigated orchards of seven locations in Southern Spain, including two cultivars (‘Arbequina’ and ‘Picual’). Average RUE was 0.86 g dry matter (MJ PAR)−1 which is equivalent to 1.56 g glucose (MJ PAR)−1. Aboveground accumulated biomass was allocated equally to fruits and vegetative growth, which in turn was partitioned into 30% for leaves and 70% for stems, branches and trunk. The fraction of oil in fruits was 0.38 which implies that the average ratio oil yield/intercepted PAR, which is an equivalent RUE for oil production (o), is 0.17 g oil (MJ PAR)−1. The prediction of oil yield as the product of 0.17 and total intercepted PAR was tested successfully in the validation experiments (relative RMSE = 0.26). Errors of this simple model were partly due to alternate bearing and partly to a decrease in o as canopy size increases, which deserves further research. The concept of o may be also useful for the evaluation of alternate bearing in olive trees.

Estimated potential carbon sequestration by intensive irrigated olive orchards in Southern Spain was 7 t CO2 ha−1 year−1 which is much higher than that of other agricultural systems in Europe.

The simple model of growth and yield presented herein is the core of a complete model of olive growth and yield and may be useful not only for evaluating productivity at different scales but also for solving different management problems (nutrient requirements, plant protection, etc.)  相似文献   


7.
Two field experiments were carried out to investigate the effects of terminal drought on chickpea grown under water-limited conditions in the Mediterranean-climatic region of Western Australia. In the first experiment, five desi (small angular seeds) chickpeas and one kabuli (large round seeds) chickpea were grown in the field with and without irrigation after flowering. In the second experiment, two desi and two kabuli cultivars were grown in the field with either irrigation or under a rainout shelter during pod filling. Leaf water potential (Ψl), dry matter partitioning after pod set and yield components were measured in both experiments while growth before pod set, photosynthesis, pod water potential and leaf osmotic adjustment were measured in the first experiment only.

In the first experiment, total dry matter accumulation, water use, both in the pre- and post-podding phases, Ψl and photosynthesis did not vary among genotypes. In the rainfed plants, Ψl decreased below −3 MPa while photosynthesis decreased to about a tenth of its maximum at the start of seed filling. Osmotic adjustment varied significantly among genotypes. Although flowering commenced from about 100 days after sowing (DAS) in both experiments, pod set was delayed until 130–135 DAS in the first experiment, but started at 107 DAS in the second experiment. Water shortage reduced seed yield by 50 to 80%, due to a reduction in seed number and seed size. Apparent redistribution of stem and leaf dry matter during pod filling varied from 0 to 60% among genotypes, and suggests that this characteristic may be important for a high harvest index and seed yield in chickpea.  相似文献   


8.
The present study was conducted to investigate the possible interactive effects of rising atmospheric CO2 concentration [CO2] and drought stress on water use of wheat. Spring wheat (Triticum aestivum cv. “Minaret”) was grown either in 1 m diameter lysimeters with 0.4 m soil depth (1998) or in the field (1999) in open-top chambers under two CO2-concentrations (ambient, ambient + 280 ppm) and two watering regimes (well-watered = WW with a plant available water content PAW > 40 mm and drought stressed = DS, 10 mm < PAW < 30 mm) beginning after first node stage. Canopy evapotranspiration (EC) was measured continuously from first the node stage until the beginning of flag leaf senescence using four open-system canopy chambers (0.78 m3). Seasonal changes of the absorption of photosynthetically active radiation (APAR) of the canopy and root growth (1999) were also measured.

In both growing seasons leaf area index increased in response to elevated [CO2] in both water treatments. The related effects of [CO2] on canopy radiation absorption (APAR) were, however, smaller. EC was linearily related to APAR in both growing seasons. While elevated [CO2] reduced the slope of this relation under WW conditions by ca. 20% in both growing seasons, it was not reduced (1998) and even increased (1999) under drought. Canopy conductance (GC) calculated as EC divided by vapour pressure deficit of air, showed a non-linear relationship to APAR that was best explained by saturation curves. Under WW conditions, elevated [CO2] reduced the initial slope of GC versus APAR as well as GC at saturating light conditions (ca. −30%), while under DS conditions no effect of elevated [CO2] could be detected. Under high light conditions (PAR > 400 μmol m−2 s−1) a critical “threshold value” of PAW (TPAW, ca. 40 mm) could be identified above which GC did not respond to PAW. While in 1998 GC did not respond to elevated [CO2] at PAW < TPAW, it was slightly increased at low PAW values in the field experiments of 1999. The reduction of TPAW by elevated [CO2] may be explained by enhanced root growth (1999) that would have given the plants better access to soil water resources. The present results suggest that below a critical soil water content elevated [CO2] will not reduce canopy water loss of wheat or may even enhance it.  相似文献   


9.
The growth and production of sweet sorghum [Sorghum bicolor (L.) Moench] crops under semi-arid conditions in the Mediterranean environment of southern Italy are constrained by water stress. The effects of temporary water stress on growth and productivity of sweet sorghum were studied during three seasons at Rutigliano (Bari, Italy). The aim of this research was to evaluate the sensitivity of phenological stages subjected to the same water deficit. In a preliminary study it was observed that stomata closed when pre-dawn leaf water potential (Ψb) became lower than −0.4 MPa. This criterion was used in monitoring plant water status in three different plots: one never stressed and two stressed at different phenological stages (‘leaf’ and ‘stem’) when mainly leaves or stems were growing, respectively. An evaluation of the sensitivity of phenological stages subjected to identical water stress was obtained by comparing the above-ground biomass and WUE of drought crops with those of the well-irrigated crop (up to 32.5 t ha−1 of dry matter and 5.7 g kg−1). The sensitivity was greatest at the early stage (‘leaf’), when a temporary soil water stress reduced the biomass production by up to 30% with respect to the control and WUE was 4.8 g kg−1 (average of three seasons). These results help quantify the effects of water constraints on sweet sorghum productivity. An irrigation strategy based on phenological stage sensitivity is suggested.  相似文献   

10.
Potato cv. Bintje was grown in open-top-chambers and free-air-CO2-enrichment systems at 7 sites across Europe for 2 years (1998–99). The effect of different treatments (CO2 enrichment and O3 fumigation) on the chlorophyll content of fully expanded upper and lower canopy leaves was investigated collecting Minolta SPAD-502 meter readings. In both CO2 treated and O3 fumigated plants, leaves had lower chlorophyll content than those in ambient air controls; season-long chlorophyll averages were 9.3% lower in the ‘CO2’ treatments, 9.1% lower in ‘O3’ treatments and 12.3% lower in ‘CO2+O3’ treatments. The analysis of chlorophyll content in three different growth phases (Emergence–Tuber Initiation; Tuber Initiation–Maximum Leaf Area; Maximum Leaf Area–Harvest) showed that in the early growth period, i.e. before tuber initiation there was a slight indication for an higher chlorophyll content at elevated CO2 (+3.8%) or O3 (+1.7%). However, from tuber initiation onwards the leaves of plants grown under elevated CO2 or O3 showed a progressively lower chlorophyll content (−4.8% for CO2 treatments and −2.6% for O3 treatments) indicating a faster senescence of leaves that increased during the late growth period (−12.8% for CO2 treatments and −12.7% for O3 treatments) and that was enhanced by CO2–O3 interaction (−17.8%).  相似文献   

11.
Manganese deficiency symptoms are more often observed in crops at early stages of growth since Mn2+ can be easily mobilized from the surface soil. The objectives of this study were to evaluate some of the popular rotation crops grown in Hungary for tolerance to low external Mn2+ levels and to determine the critical tissue concentration for Mn2+ deficiency during early stages of growth. Indicator plants of sunflower (Helianthus annuus L.) were grown with NPKCaMg-fertilization induced of 0.0425–0.0700 g kg−1; of tobacco (Nicotiana tabacum L.) 0.0237–0.0337 g kg−1; of triticale (x Triticosecale W.) 0.0103–0.0327 g NH4-acetate + EDTA extractable soil Mn2+ kg−1; and were grown for 73, 50, and 191 days. The minimum Mn2+ concentration required in soil nutrient contents was 0.0425 g kg−1 for sunflower, 0.0243 g kg−1 for tobacco, and 0.0103 g kg−1 for triticale. Sunflower, tobacco and triticale achieved optimum growth from 0.048 to 0.065 g Mn2+ kg−1, from 0.0249 to 0.0321 g Mn2+ kg−1, and from 0.0287 to 0.0296 g Mn2+ kg−1, respectively. Critical ABP's dry weight Mn2+ concentration at early stages of growth was 0.0536 g kg−1 in sunflower, 0.458 g kg−1 in tobacco, and 0.1938 g kg−1 in triticale. Our results demonstrate that the tolerance to low external Mn2+ (triticale <0.0302 g kg−1; sunflower <0.0562 g kg−1; tobacco <0.0693 g kg−1) and the critical tissue Mn2+ levels for deficiency varied significantly among crop species tested.  相似文献   

12.
Irrigated crops of ‘Grasslands Kaituna’ lucerne were grown for 5 years in a temperate climate at Lincoln University, Canterbury, New Zealand (43°38′S, 172°28′E). From these the response of the components of leaf area index (LAI) to environmental factors was determined. A broken stick temperature threshold with a base temperature (Tb) of 1 °C at air temperatures (Ta) <15 °C and a Tb = 5 °C for Ta ≥ 15 was required to accumulate thermal time (Tt). Using this, the appearance of nodes on the main-stem (phyllochron) was constant in Tt within a re-growth cycle (30–42 days). The phyllochron was 37 ± 7 °Cd but declined from 60 to 37 °Cd as photoperiod decreased from 15.7 to 11.4 h. Branching began at the appearance of the fifth main-stem node with 2.5 secondary nodes produced per main-stem node in spring re-growth cycles but only 1.7 produced in summer. Leaf senescence increased from 0.3 to 1.08 leaves per main-stem node after the appearance of the ninth node. Spring re-growth cycles had a mean individual leaf area of 170 mm2 compared with 400 mm2 for summer re-growth cycles. These results demonstrate systematic variation in LAI components and suggest they need to be considered separately in response to environmental factors to provide a quantitative framework for crop simulation analyses of lucerne canopy development.  相似文献   

13.
Spring wheat cv. Minaret crop stands were grown under ambient and elevated CO2 concentrations at seven sites in Germany, Ireland, the UK, Belgium and the Netherlands. Six of the sites used open-top chambers and one used a controlled environment mimicking field conditions. The effect of elevated CO2 for a range of N application regimes, O3 concentrations, and growth temperatures on flag leaf photosynthesis was studied. Before anthesis, flag leaf photosynthesis was stimulated about 50% by 650 compared with 350 μmol mol−1 CO2 at all sites, regardless of other treatments. Furthermore, there was no evidence of a decrease in photosynthetic capacity of flag leaves due to growth at elevated CO2 before anthesis, even for low N treatments. However, photosynthetic capacity, particularly carboxylation capacity, of flag leaves was usually decreased by growth at elevated CO2 after anthesis, especially in low N treatments. Acclimation of photosynthesis to elevated CO2 therefore appears to occur only slowly, consistent with a response to changes in sink–source relationships, rather than a direct response. Effect of elevated CO2 on stomatal conductance was much more variable between sites and treatments, but on average was decreased by ˜10% at 650 compared with 350 μmol mol−1 CO2. Carboxylation capacity of flag leaves was decreased by growth at elevated O3 both before and after anthesis, regardless of CO2 concentration.  相似文献   

14.
A field study was conducted to assess the effect of N fertilizer application to wheat (Triticum aestivum L.), tillage system and crop rotation on total denitrification N losses, N2O and CO2 emissions under Mediterranean conditions in a long-term trial started 18 years ago on a Vertisol soil. The tillage system consisted of conventional tillage vs. no-tillage and the crop rotation system consisted of two different 2-years rotations: wheat–sunflower (Helianthus annuus L.) (WS) and wheat–faba bean (Vicia faba L.) (WF). Fertilizer rates were 0 and 100 kg N ha−1 applied to wheat splitted in two amendments of 50 kg N ha−1 each. Two different fertilization systems were studied. In the old fertilized plots system fertilizer had been applied for 18 years since the beginning of the trial, and in the new fertilized plots system fertilizer was applied for the first time when this experiment was started. Measurements were carried out after fertilizer applications.

In the long term, continued fertilizer application produced a higher soil total N content. Nevertheless, no increase in denitrification potential, N2O + N2 production by denitrification, N2O or CO2 emissions was observed either by the recent application of N or by the continued application during 18 years. The soil presented a higher potential to denitrify up to N2 than up to N2O. So, denitrification was probably occurring mainly in the form of N2, while N2O emissions were occurring in a great manner by nitrification, both denitrification and nitrification occurring simultaneously at soil field capacity (60–70%) expressed as water filled pore space (WFPS). Conventional tillage induced an increase in soil total N content and in the potential to denitrify up to N2 with respect to no-tillage. This higher potential was translated into higher N2O + N2 production by denitrification presumably stimulated in the short time by the higher available carbon provided by decomposing roots and by the subsequent creation of soil anaerobic microsites. Contrarily, no effect of tillage was observed on N2O emissions because of being produced in an important manner by nitrification, which does not depend on carbon availability. The wheat–faba bean rotation induced higher soil nitrate contents than the wheat–sunflower, although the effect in the long time was not observed regarding soil total N content. The same as for the fertilizer effect, this increase in nitrate content was not followed by a higher denitrification potential or higher N2O + N2 production by denitrification because of the lack of organic matter, while an increase was observed in N2O emissions.  相似文献   


15.
Central to the CHanging climate and potential Impacts on Potato yield and quality project (CHIP) was the consideration of the potential impacts of ozone and CO2 on growth and yield of future European Potato crops. Potato crops, cv. Bintje, were exposed to ambient or elevated ozone; targeted daily average, 60 nl l−1 for 8 h, and ambient or elevated CO2; targeted 680 μl l−1 averaged over the full growing season, in open top chambers (OTCs) at six European sites in 1998 and 1999, or to elevated CO2 (550 μl l−1) in Free Air Carbon dioxide Enrichment facilities (FACE) at two sites in both years. Some OTC experiments included 550 μl l−1. Above and below ground biomass were measured at two destructive harvests; at maximum leaf area (MLA) and at final-harvest. Final-harvest fresh weight yields of marketable-size tubers, >35 mm diameter, from ambient conditions ranged from 1 to 12 kg m−2. There was no consistent (P>0.1) CO2×O3 interaction for growth or yield variables at either harvest. No consistent effects of ozone were detected at the maximum-leaf-area harvest. However, at final harvest, ozone had reduced both above-ground biomass and tuber dry weight (P<0.05), particularly of the largest (>50 mm) size class. These yield losses showed linear relationships both with accumulated ozone exposure; AOT40 expressed as nl l−1 h over 40 nl l−1, and with yields from chambered ambient-ozone treatments (P<0.05) but, because of partial confounding between the treatment AOT40s and the ambient-ozone yields in the data, the two relationships were not completely independent. Yields from ambient-ozone treatments, however, explained a significant (P<0.01) amount of the residual variation in ozone effects unexplained by AOT40. When averaged over all experiments, mean dry weights and tuber numbers from both harvests were increased by elevated CO2. Only green leaf number at the MLA harvest was reduced. The CO2 responses varied between sites and years. For marketable-size tubers, this variation was unrelated to variation in ambient-CO2 treatment yields. Yield increases resulting from the 680 μl l−1 and 550 μl l−1 treatments were similar. Thus elevating [CO2] from 550 to 680 μl l−1 was less effective than elevating [CO2] from ambient to 550 μl l−1. On average, CO2 elevation to 680 μl l−1 increased the dry weight of marketable-size tubers by about 17%, which far exceeded the average ozone-induced yield loss of about 5%. The net effect of raising CO2 and O3 concentrations on the European potato crop would be an increase marketable yield.  相似文献   

16.
Water deficit is an important constraint for wheat yield generation under Mediterranean environments. However, nitrogen (N) availability could limit yield in a more important way than poor water conditions. The aim of the work was to analyze, using the Ceres-Wheat crop simulation model, to what degree N fertilization constitutes a tool for reducing the gap between attainable and potential yield. Firstly, the model was calibrated and validated under a wide range of N and water conditions for the region of the Ebro Valley (NE Spain). Anthesis and maturity date were adequately predicted by the model. Predictions of yield tended to be quite accurate in general, though under severe water deficits precision was lower. We then assessed the gap between attainable and potential yield considering different N availabilities at sowing taking into account a weather database of 17 years for the location of Agramunt (NE Spain), representative of cereal growing conditions of the Mediterranean Catalonia. Potential yield ranged between 3.5 and 8.1 Mg ha−1. Variations in potential yield were explained by the duration of the period from sowing to anthesis and by the level of incident radiation during the period immediately previous to anthesis. Average attainable yield was 1.8 Mg ha−1 for N availability of 50 kgN ha−1; but increased to 2.8 Mg ha−1 for higher N availabilities (100–250 kgN ha−1). In the 25% of the worst years there was no effect of N availability on attainable yield. Increasing N availability beyond 100 kgN ha−1 generated a gain in yield only in 6% of the years. Variations between years in attainable yields were mainly explained by rainfall during the period from sowing to anthesis, whereas differences in attainable yield between N treatments increased with increases in rainfall. The gap between potential yield and attainable yield was higher in years with higher potential yield. On the other hand, the higher the attainable yield, the lower the gap. Thus, the proportion of the yield gap ascribed to N availability varied depending on the conditions of the growing season. In the high-yielding potential years, the main restriction for growth was water shortage, and fertilizing only slightly reduced the gap. Conversely, in rainy years characterized by low potential yields and mild water stresses, N management may constitute a simple tool for effectively reducing yield gap under rain-fed conditions.  相似文献   

17.
The objective was to determine the critical N dilution curve of linseed, which is the minimal total N concentration in shoots necessary to produce the maximal shoot dry matter, and to explain possible differences with other C3 species. One main experiment was carried out in 1998/1999 on winter linseed with four levels of fertilizer N. Two plant densities were also studied, the recommended one (600 seeds m−2) and the minimum for canopy closure (150 seeds m−2), in order to investigate the stability with plant density of the critical N dilution curve. Shoot dry weights (WS) and shoot N contents expressed in percentage (NS) were measured for the determination of the critical dilution curve, along with organ N percentages and relative weights. The results of four other experiments were used to validate the critical N dilution curve. Three of these four trials were conducted on winter linseed (one in 1996/1997 and two in 1997/1998) with five levels of fertilizer N, and one on spring linseed in 1999 with six levels of fertilizer N.

The critical N dilution curve of linseed was different from those of other C3 species. The curve was steeper, indicating a greater decrease in the critical shoot N concentration (NSC) as the critical shoot dry weight (WSC) increased. This linseed curve determined with the data of the main experiment was relevant when compared to the data of the four other experiments. Organ weight ratios and N concentration of organs were investigated in a fertilizer N treatment resulting in NS close to the critical N values, NSC. In this treatment, the decrease in NS was the result of both a decrease in the N percentage of all organs and a decrease in the leaf weight ratio. The difference between linseed and other C3 species was mainly due to an acceleration of the dilution of N when leaf emission stopped and the flower bud emission began. At this stage of development, the leaf weight ratio of linseed was less than that of wheat, resulting in lower NS. For a given WS, no significant differences in NS, organ N percentages nor organ weight ratios were observed between the two plant densities. This indicates that the difference between linseed and other C3 species could not result from very high plant densities in linseed. Hence, it is concluded that the linseed N accumulation in shoot is different from other C3 species.  相似文献   


18.
Spring wheat cv. Minaret was grown in open-top chambers at four sites across Europe. The effect of different treatments (CO2 enrichment, O3 fumigation, drought stress and temperature) on the chlorophyll content of the flag leaf was investigated using the MINOLTA SPAD-502 meter. Under optimum growth conditions the maximum chlorophyll content, which was reached at anthesis, was consistent among the sites ranging from 460 to 500 mg chlorophyll m−2. No significant effect of elevated CO2 or O3 was observed at anthesis. Leaf senescence, indicated by the chlorophyll breakdown after anthesis, was relatively constant in the control chambers. Under control conditions, thermal time until 50% chlorophyll loss was reached was 600°C day. Elevated CO2 caused a faster decline in chlorophyll content (thermal time until 50% chlorophyll loss was reduced to 500–580°C day) indicating a faster rate of plant development at two experimental sites. The effect of ozone on chlorophyll content depended on the time and dose of O3 exposure. During grain filling, high O3 concentrations induced premature senescence of the flag leaves (up to −130°C day). This deleterious effect was mitigated by elevated CO2. Drought stress led to faster chlorophyll breakdown irrespective of CO2 treatment.  相似文献   

19.
The effect of delays of 1, 5, 10 or 15 d after harvest in establishing a static controlled atmosphere (SCA) or dynamic controlled atmosphere (DCA) on the quality of ‘Hass’ avocados (Persea americana Mill.) was investigated. Fruit were stored at 5 °C in SCA (5% O2/5% CO2) or DCA (<3% O2/0.5% CO2) for 6 weeks and compared with fruit stored in air. In addition, to determine whether increasing the CO2 in the DCA would affect the fruit quality, DCA-stored fruit were compared with fruit held in a DCA with 5% CO2 (DCA + CO2) established 1 d after harvest. The quality of fruit was assessed at the end of storage and after ripening at 20 °C. DCA-stored fruit ripened in 4.6 d compared with 7.2 d for SCA-stored fruit, or 4.8 d for air-stored fruit. In addition, the incidences of stem end rot (SER), body rot (BR) and vascular browning (VB) were lower in DCA-stored fruit (35%, 29% and 29%, respectively) than in SCA-stored fruit (57%, 52% and 49%, respectively), or air-stored fruit (76%, 88% and 95%, respectively). Delaying the establishment of both SCA and DCA for 15 d resulted in significantly more advanced skin colour at the end of storage (average rating score 11.9) compared with other delay periods (4.6–5.1). There was no significant effect of delay on the time to ripen, skin colour when ripe or any ripe fruit disorder incidence. The incidence of diffuse flesh discolouration (DFD) was not only <1% when averaged over all delays but only occurred at >0.5% incidence in the 15 d delay treatment in DCA (4.8%) and not in SCA. The incidence of diffuse flesh discolouration was 62% in air-stored fruit. Inclusion of 5% CO2 in DCA retarded fruit ripening from 4.7 to 6.9 d and increased the incidence of rots at the end of storage from 5% to 14%, and increased the incidence in ripe fruit of SER from 30% to 56% and of BR from 27% to 55%. It is concluded that fruit quality was better after CA storage than after air storage, and that DCA storage was better than SCA. The effect of DCA is to independently reduce the time to ripen after storage and the incidence of rots when ripe. Delaying the application of SCA or DCA did not affect the expression of rots, but may increase the incidence of DFD. Inclusion of CO2 at 5% in CA retarded fruit ripening but stimulated rot expression and should not be used for CA storage of New Zealand grown ‘Hass’ avocados.  相似文献   

20.
A major objective of the ESPACE—wheat programme was to perform by means of open-top chambers (OTCs) ‘standardised’ experimental investigations of spring wheat responses to increased atmospheric CO2 and O3 concentrations and to other environmental stresses at different locations in Europe, representing a broad range of different climatic conditions. From 1994 to 1996 a total number of 25 OTC experiments were carried out. In addition, four growth chamber experiments focusing on key physiological processes of wheat growth in CO2-enriched air were performed. According to the specific needs for subsequent modelling purposes, environmental data were collected during experiments, i.e. air temperature, global radiation, humidity and trace gas concentrations. In the present paper results of these measurements are summarised. It was shown, that the OTC-experiments covered a considerable range of growing season mean-air-temperatures (13.0–23.4°C) and global irradiances (10.8–18.1 MJ m−2 d−1), the most important driving variables for crop growth simulation models. Mean concentrations of CO2 and O3 in ambient air and in different treatments illustrated the observed variability of trace gas exposures between different experiments. Implications for subsequent analyses of biological response data are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号