首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 122 毫秒
1.
采用室内生物测定和生化分析方法, 以采自甘肃兰州国家级森林公园兴隆山的二斑叶螨为敏感品系(SS), 研究二斑叶螨对阿维菌素的抗药性及抗性生化机理。结果表明:在室内用阿维菌素强化筛选24代, 获得了二斑叶螨抗阿维菌素品系(Ab-R24), 抗性指数(resistance index, RI)为321.5。对SS和Ab-R24解毒酶活性的分析表明, Ab-R24品系体内羧酸酯酶(CarE)、乙酰胆碱酯酶(AchE)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(ALP)、谷胱甘肽S-转移酶(GSTs)和多功能氧化酶(MFO)活性分别是SS品系的1.43、1.18、1.56、1.48、1.55倍和4.02倍, 差异达到显著水平(P < 0.05), 其中MFO的活性上升最为显著。对SS和Ab-R-24解毒酶动力学常数的分析表明, Ab-R-24品系体内AchE、GSTs和MFO的 Km分别是SS品系的1.14、2.31倍和2.58倍; Vmax分别是SS品系的1.19、2.34倍和1.76倍, 差异均达到显著水平(P <0.05)。说明二斑叶螨对阿维菌素抗性增高与MFO活性快速升高有关, AchE和GSTs也参与阿维菌素抗性的形成。  相似文献   

2.
朱砂叶螨的抗药性选育及其解毒酶活性研究   总被引:14,自引:2,他引:14       下载免费PDF全文
在室内模拟田间药剂的选择压力,用阿维菌素和甲氰菊酯对朱砂叶螨Tetranychus cinnabarinus 进行逐代处理,以选育其抗药性品系。阿维菌素品系选育至42代,抗性增长到8.7倍,甲氰菊酯品系选育至40代,抗性增长到68.5倍。阿维菌素抗性品系羧酸酯酶(CarE)、谷胱甘肽-S-转移酶(GSTs)、多功能氧化酶(MFO)的活性分别为敏感品系的2.7、3.4和1.4倍,差异达显著水平。推测3种解毒酶活性显著升高是朱砂叶螨对阿维菌素产生抗性的重要原因。甲氰菊酯抗性品系GSTs的活性为敏感品系的2.8倍,差异显著,表明该抗性品系的形成与GSTs活性增强有关。羧酸酯酶动力学测定结果表明,朱砂叶螨阿维菌素抗性品系体内存在变构的羧酸酯酶。  相似文献   

3.
研究了二斑叶螨抗甲氰菊酯、阿维菌素、螺螨酯混合品系(R)和敏感品系(S)的生长发育与生殖情况,比较种群的生物适合度。结果表明:与敏感品系(S)相比,抗性品系各螨态发育历期和产卵量均存在不同程度的下降,抗性品系的净生殖率(R0=12.765 9)远低于敏感品系(R0=42.420 3),相对适合度为敏感品系的0.300 9倍,存在适合度缺陷;其他生命表参数无种群差异。  相似文献   

4.
柑橘全爪螨对甲氰菊酯和阿维菌素的抗性选育及交互抗性   总被引:1,自引:0,他引:1  
何恒果  王进军 《植物保护》2015,41(6):195-198
通过室内抗性品系选育,研究了柑橘全爪螨对甲氰菊酯和阿维菌素的抗性发展情况,并就其与柑橘园常用11种杀螨剂的交互抗性进行了分析。结果表明:在柑橘全爪螨19代中用甲氰菊酯和阿维菌素分别不连续汰选16次和11次后,柑橘全爪螨对两者的抗性分别为29.92和3.80倍;甲氰菊酯抗性品系(FeR)对哒螨灵、三氯杀螨醇和三唑锡产生了明显的交互抗性,阿维菌素抗性品系(AbR)对甲维盐产生了明显的交互抗性。试验结果可为柑橘全爪螨抗性治理提供参考。  相似文献   

5.
本研究通过生物测定检测了重庆潼南田间朱砂叶螨种群对5种杀虫杀螨剂的抗药性,并测定了主要代谢酶活性及抗性相关基因的表达量。抗性监测结果显示,朱砂叶螨对联苯肼酯和哒螨灵表现为中等水平抗性,对阿维菌素、丁氟螨酯和甲氰菊酯为低水平抗性。代谢酶活性检测结果显示:田间种群的P450和GST活性明显提高,且多个相关基因的表达也显著上调,而CarE的活性没有显著变化。综上所述,重庆潼南田间朱砂叶螨种群已对联苯肼酯、哒螨灵、阿维菌素、丁氟螨酯和甲氰菊酯产生了不同程度的抗药性,P450和GST活性提高和有关基因过表达是抗性产生的主要原因。  相似文献   

6.
采自甘肃兰州兴隆山公园的二斑叶螨(Tetranychus urticae Koch),用雌雄单系培养敏感品系(S),用螺螨酯处理二斑叶螨种群培养抗性品系(SP R),用室内生测法对二斑叶螨S和SP R品系进行室内毒力测定。结果表明,二斑叶螨对螺螨酯抗性发展初期较慢,中期稳定,后期较快,选育至26代抗性指数(RI)达58.83。SP R对甲氰菊酯、氯氰菊酯有一定的交互抗性,RI分别为11.54和10.03;对苯丁锡、四螨嗪、苦皮藤生物碱、阿维菌素、氯氟氰菊酯、哒螨&#8226;四螨嗪、哒&#8226;水胺硫磷、三唑锡、三氯杀螨醇、哒螨灵、氧化乐果无交互抗性(1<RI<5.00);对浏阳霉素、毒死蜱、噻螨酮、柴油、哒螨灵、唑螨酯可能存在负交互抗性(RI<1)。  相似文献   

7.
[目的] 探索二斑叶螨对甲氰菊酯和螺螨酯种群的抗性机理和抗性治理途径。 [方法] 采用室内生物测定法,以采自兰州兴隆山自然保护区的二斑叶螨为敏感种群(S),在室内用甲氰菊酯和螺螨酯分别对二斑叶螨进行抗性选育;用增效醚(PBO)、顺丁烯二酸二乙酯(DEM)、磷酸三甲苯酯(TPP)、有机硅、噻酮进行增效作用研究。[结果]二斑叶螨经室内甲氰菊酯和螺螨酯抗性选育45代和30代后,抗性倍数分别达到314.50倍和77.92倍。TPP、PBO、DEM 3种增效剂对二斑叶螨抗甲氰菊酯种群的抗敏增效比分别为12.15、7.78和3.09,推测其抗性机理涉及的主要解毒酶是羧酸酯酶和多功能氧化酶; DEM对二斑叶螨抗螺螨酯种群的抗敏增效比大于TPP和PBO,分别为4.87、3.67和1.91,二斑叶螨对螺螨酯产生抗性机理可能与谷胱甘肽转移酶和羧酸酯酶活性增强有关。有机硅和噻酮对二斑叶螨抗甲氰菊酯和螺螨酯种群的抗敏增效指数比分别为1.38、1.42和1.18、0.92,说明二斑叶螨的抗性与表皮通透性改变关系不密切。 [结论] 上述结果可以为二斑叶螨的抗性治理提供依据。  相似文献   

8.
桃蚜对噻虫嗪代谢抗性机制研究   总被引:1,自引:0,他引:1  
对桃蚜进行室内噻虫嗪抗性品系筛选,选育至15代后抗性倍数达到75.6倍。对噻虫嗪敏感品系(THI-S)和抗性品系(THI-R)桃蚜的谷胱甘肽S-转移酶(GSTs)、酸性磷酸酯酶(ACP)、碱性磷酸酯酶(ALP)、羧酸酯酶(CarE)、多功能氧化酶(MFO)O-脱甲基活性进行了比较,结果显示:敏感品系(THI-S)和抗性品系(THI-R)的谷胱甘肽S-转移酶比活力分别为3.127 5和3.215 9,差异不显著,桃蚜抗性品系体内酸性磷酸酯酶、碱性磷酸酯酶、羧酸酯酶和多功能氧化酶O-脱甲基活性均显著高于敏感品系,分别达到了1.57、2.10、6.12、2.03倍。表明桃蚜对噻虫嗪抗性的产生与酸性磷酸酯酶、碱性磷酸酯酶、羧酸酯酶和多功能氧化酶O-脱甲基的活性相关。  相似文献   

9.
杀虫剂亚致死剂量对小菜蛾羧酸酯酶的影响   总被引:11,自引:2,他引:11  
就阿维菌素和高效氯氰菊酯亚致死剂量对小菜蛾Plutella xylostella Linneae羧酸酯酶(CarE)活性的影响进行了研究。用亚致死剂量的阿维菌素和高效氯氰菊酯分别处理阿维菌素敏感和抗性小菜蛾,使敏感品系CarE比活力上升,抗性品系CarE比活力下降。酶动力学研究表明,两种药剂亚致死剂量处理对小菜蛾CarE与底物α-NA亲和力的影响存在差异。在敏感品系中,阿维菌素和高效氯氰菊酯处理前后CarE的Km值无明显变化;抗性品系中,用阿维菌素亚致死剂量处理后,小菜蛾体内CarE的Km值显著高于对照,即其对α-NA的亲和力比对照组明显降低,高效氯氰菊酯处理组CarE的Km值与对照相比无明显变化。  相似文献   

10.
以兰州吐鲁沟公园金花忍冬植物上采集的二点叶螨为敏感种群,在室内盆栽菜豆苗上饲养繁殖后分别用氧乐果、甲氰菊酯、四螨嗪及螨嗪菊酯(甲氰菊酯 四螨嗪)混剂喷雾处理20代,获得二点叶螨抗氧乐果种群(抗性指数RF=35.84倍)、抗甲氰菊酯种群(RF=479.79倍)、抗四螨嗪种群(RF=67.26倍)以及抗混剂螨嗪菊酯种群(RF=26.75倍)。用生化法测定离体酶活性的结果表明,上述四个抗性种群的形成与体内羧酸酯酶、磷酸酯酶、谷胱甘肽转移酶的活力增加及乙酰胆碱酯酶的活性降低有关。4个抗性种群对常用15种供试药剂交互抗性测定结果表明,氧乐果、甲氰菊酯与联苯菊酯、三氟氯氰菊酯、水胺硫磷、久效磷、氰久合剂有交互抗性,甲氰菊酯还与螨蚧克有交互抗性;四螨嗪与三氯杀螨醇(RF=14.15倍)、齐螨素(RF=10.26倍)有交互抗性;螨嗪菊酯与双甲脒、氧乐菊酯有负交互抗性,RF值分别为0.85、0.71倍。  相似文献   

11.
A Tetranychus cinnabarinus strain was collected from Chongqing, China. After 42 generations of selection with abamectin and 20 generations of selection with fenpropathrin in the laboratory, this T. cinnabarinus strain developed 8.7- and 28.7-fold resistance, respectively. Resistance to abamectin in AbR (abamectin resistant strain) and to fenpropathrin in FeR (fenpropathrin resistant strain) was partially suppressed by piperonyl butoxide (PBO), diethyl maleate (DEM) and triphenyl phosphate (TPP), inhibitors of mixed function oxidase (MFO), glutathione S-transferases (GST), and hydrolases, respectively, suggesting that these three enzyme families are important in conferring abamectin and fenpropathrin resistance in T. cinnabarinus. The major resistant mechanism to abamectin was the increasing activities of carboxylesterases (CarE), glutathione-S-transferase (GST) and mixed function oxidase (MFO), and the activity in resistant strain developed 2.7-, 3.4- and 1.4-fold contrasted to that in susceptible strain, respectively. The activity of glutathione-S-transferase (GST) in the FeR strain developed 2.8-fold when compared with the susceptible strain, which meant the resistance to fenpropathrin was related with the activity increase of glutathione-S-transferase (GST) in T. cinnabarinus. The result of the kinetic mensuration of carboxylesterases (CarE) showed that the structure of CarE in the AbR has been changed.  相似文献   

12.
解毒酶系在小菜蛾对阿维菌素抗性中的作用   总被引:16,自引:1,他引:16  
对阿维菌素敏感 (ABM- S)和抗性 (ABM- R)种群小菜蛾的羧酸酯酶 (Car E)、谷胱甘肽 S-转移酶 (GST)和多功能氧化酶 (MFO) O-脱甲基活力进行了比较。结果显示 ,除 1~ 2龄外 ,ABM- R种群的 Car E活力显著高于 ABM- S种群 ,显著性随幼虫龄期的增长而增大 ,ABM- R种群 4龄末期幼虫的 Car E比活力为 ABM- S种群的 2.25倍。动力学研究表明 ,可能是低龄幼虫中酶分子的变构起主要作用 ,而随着虫龄增长 ,酶分子数量的增加对抗性的作用逐渐增大。从酯酶同工酶等电聚焦电泳得出 ,ABM- R种群的 E7、E13和 E15同工酶活力显著提高是导致 ABM- R种群酯酶活力提高的主要原因。ABM- S和 ABM- R种群 GST的活力差异在1~ 2龄期最大 ,为 2.09倍 ,随幼虫龄期的增大而降低 ,4龄幼虫期的 GST无种群差异。未检测到多功能氧化酶的 O-脱甲基活力的种群差异。  相似文献   

13.
小菜蛾对阿维菌素的抗性机制及交互抗性研究   总被引:29,自引:3,他引:29  
用叶片药膜法研究了阿维菌素抗性小菜蛾 Plutella xylostella (L.)品系 对常用药剂的交互抗性谱以及增效醚(PB)和磷酸三苯酯(TPP)的增效作用。小菜蛾对阿 维菌素与高效氯氰菊酯、溴氰菊酯、氰戊菊酯和联苯菊酯等菊酯类药剂间具有比较低的交互 抗性,对后者抗性为3~20倍,对阿维菌素的抗性为575.6倍;对氟虫脲和氟啶脲没有交互抗 性。PB和TPP对阿维菌素分别增效8.2和5.5倍,说明小菜蛾对阿维菌素的抗性可能与多功能 氧化酶(MFO)和羧酸酯酶有关。通过差光谱技术测定了阿维菌素抗性和敏感小菜蛾细胞色 素P450的含量,抗性品系是敏感品系的1.38倍。  相似文献   

14.
Experiments have been carried out to confirm the cross-resistance between abamectin and tebufenozide in Plutella xylostella and demonstrate its mechanism. The results showed that the resistant strain of P. xylostella selected by tebufenozide (RF 99.38) really showed high cross-resistance to abamectin (RF 29.25). When this strain was subjected to resistance decaying treatment, breeding without contacting any insecticides, and abamectin resistance selection for 20 generations, the former resulted in decrease of its resistance to both tebufenozide and abamectin to about one third of the original (RF 35.03 and 11.67, respectively), and the later enhanced its resistance to abamectin dramatically (RF 303.77), but not to tebufenozide(RF 50.04). PBO showed high synergism to abamectin (SR 2.11-12.23), and the synergism ratio positively related to the resistance level among different strains. Enzyme analysis also proved that the activity of cytochrome P450 monooxygenase (MFO) was notable enhanced in the strains resistant to both tebufenozide and abamectin (1.71- to 3.01-fold). Based on discussion, it was concluded that tebufenozide selection could resulted in significant cross-resistance of P. xylostella to abamectin. The major mechanism for the cross-resistance should be the enhancement of MFO activity. For resistance management, tebufenozide and abamectin would not recommend for rotational use.  相似文献   

15.
BACKGROUND: Laodelphax striatellus (Fallén) is a major pest of cultivated rice and is commonly controlled in China with the organophosphate insecticides. To develop a better resistance management strategy, a chlorpyrifos‐resistant strain of L. striatellus was selected in the laboratory, and its cross‐resistance to other insecticides and possible mechanisms of the chlorpyrifos resistance were investigated. RESULTS: After 25 generations of selection with chlorpyrifos, the selected strain of L. striatellus developed 188‐fold resistance to chlorpyrifos in comparison with the susceptible strain, and showed 14‐ and 1.6‐fold cross‐resistance to dichlorvos and thiamethoxam respectively. There was no apparent cross‐resistance to abamectin. Chlorpyrifos was synergised by the inhibitor triphenyl phosphate; the carboxylesterase synergistic ratio was 3.8 for the selected strain, but only 0.92 for the susceptible strain. The carboxylesterase activity of the selected strain was approximately 4 times that of the susceptible strain, whereas there was no significant change in the activities of alkaline phosphatase, acid phosphatase, glutathione S‐transferase and cytochrome P450 monooxygenase between the strains. The Michaelis constant of acetylcholinesterase, maximum velocity of acetylcholinesterase and median inhibitory concentration of chlorpyrifos‐oxon on acetylcholinesterase were 1.7, 2.5 and 5 times higher respectively in the selected strain. CONCLUSION: The high cross‐resistance to the organophosphate dichlorvos in the chlorpyrifos‐resistant strain suggests that other non‐organophosphate insecticides would be necessary to counter resistance, should it arise in the field. Enhanced activities of carboxylesterase and the acetylcholinesterase insensitivity appear to be important mechanisms for chlorpyrifos resistance in L. striatellus. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
The mechanisms for multiple resistances had been studied with two field resistant strains and the selected susceptible and resistant strains of Spodoptera litura (Fabricius). Bioassay revealed that the two field strains were both with high resistance to pyrethroids (RR: 63-530), low to medium resistance to organophosphates and carbamates, AChE targeted insecticides (RR: 5.7-26), and no resistance to fipronil (RR: 2.0-2.2). Selection with deltamethrin in laboratory could obviously enhance the resistance of this pest to both pyrethroids and AChE targeted insecticides. Synergism test, enzyme analysis and target comparison proved that the pyrethroid resistance in this pest associated only with the enhanced activity of cytochrome P450 monooxygenase (MFO) and esterase. However the resistance to the AChE targeted insecticides depended on the target insensitivity and also the enhanced activity of MFO and esterase. Thus, the cross-resistance between pyrethroids and the AChE targeted insecticides was thought to be resulted from the enhanced activity of MFO and esterase.  相似文献   

17.
小菜蛾对杀虫双的抗性遗传研究   总被引:14,自引:1,他引:13  
利用室内选育的敏感品系和抗杀虫双品系为亲本,采用剂量对数—死亡机率值回归线(LD-P线)分析法,研究了小菜蛾对杀虫双的抗性遗传方式。结果表明,小菜蛾对杀虫双的抗性为多基因、常染色体遗传,正、反交F_1的显性度(D)值分别为0.39、0.28,即其主效基因为不完全显性。小菜蛾对杀虫双的抗性现实遗传力较低,h~2=0.052,产生抗性的速率较慢,室内选育119代,抗性仅达122.8倍。抗杀虫双品系和遗传杂交后代(F_1、F_2、BC)对拟除虫菊酯类、氨基甲酸酯类、有机磷类的代表杀虫剂溴氰菊酯、灭多威、敌敌畏等的交互抗性测定结果表明,它们对3种杀虫剂无交互抗性;亲本和杂交后代的多功能氧化酶环氧化活性与杀虫双的抗性水平呈正相关性;乙酰胆碱酯酶活性要比敏感品系低;羧酸酯酶活性与敏感品系无明显差异。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号