首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 328 毫秒
1.
发展低碳农业 减缓温室气体排放   总被引:1,自引:0,他引:1  
"低碳经济"是以低能耗、低污染、低排放为基础的绿色经济,成为应对全球气候变化的根本出路。农业作为国民经济的基础产业,应该积极响应气候变暖的"低碳经济"。本文概述了农业生产和气候变化间的相互关系及相互影响,并归纳出有利于减缓温室气体排放和增加碳汇的主要低碳农业措施。  相似文献   

2.
发展循环农业是低碳经济的重要途径   总被引:10,自引:1,他引:9  
低碳经济是当前世界应对全球气候变化问题倡导的新的经济发展思路,农业节能减排是发展低碳农业的重大任务。本文认为发展循环农业是农业节能减排的重要路径。主要体现在:发展农田循环生产模式,增强农田碳汇功能,实现物质减量化投入,促进低碳农业发展;发展农牧结合循环模式,减少废弃物污染,提高牧业竞争力;发展农菌循环链,延长农田产业链,提高农民收入;发展复合生物循环模式,增加生物多样性,提高农业自然资源利用效率;发展农业企业循环产业模式,实现农业节能减排的工程化。  相似文献   

3.
农业既是温室气体排放源,也是温室气体的吸收汇,随着气候变化对全球环境和生态系统的影响日益加深,发展低碳农业以保证农业的可持续发展显得尤为必要;作为农业大国,树立可持续发展的理念,促进农业的生态化、有机化、绿色化,  相似文献   

4.
农业面源污染是太湖水污染的重要来源,在对江苏太湖流域农业结构现状调查分析的基础上,结合气候变化对江苏农业产生的影响,采取定性和定量、理论分析和实证研究相结合的方法,对江苏太湖流域不同低碳农业模式对温室气体二氧化碳当量减排效果进行了探索性的分析研究,提出了江苏太湖流域低碳农业发展的若干合理化对策建议,为江苏太湖流域乃至类似区域低碳农业发展、控制农业面源污染提供了思路和借鉴。  相似文献   

5.
在全球变暖的大背景下,构建低碳社会成为当今社会的发展趋势。农业土壤是温室气体重要的源和汇,合理的种植管理手段可以减少农田系统的碳排放量。由于有机农业有着固碳减排的作用,有机农业已成为实现低碳经济的重要途径。本文通过阐述农田生态系统碳循环与全球气候变化的关系,强调了土地利用方式的改变对全球变化的促进作用,引出有机农业这种新兴的节能减排型农业生产方式,并通过进一步分析有机种植系统中土壤的固碳减排作用机理,为在低碳经济背景下我国有机农业的发展提供理论依据。  相似文献   

6.
低碳农业是在应对全球气候变化中应运而生的新生事物,是一种生态高值农业模式。低碳农业是节约型农业,具有低能耗特点.尽可能节约各种资源的消耗.减少人力、物力、财力的投入;低碳农业是安全型农业.具有低污染、低排放的特点,采取多种措施.将农业产前、产中、产后全过程中可能带来的不良影响降到最低限度;  相似文献   

7.
低碳技术在农作物秸秆利用中的应用   总被引:1,自引:0,他引:1  
为了应对全球气候变化,各国均以减少二氧化碳排放为目标,积极发展低碳技术。中国作为农业大国,秸秆资源丰富且农作物秸秆开发利用技术已经得到一定的发展,秸秆综合利用可避免因秸秆露天焚烧造成的环境问题,有利于农田生态系统的稳定,有利于节能减排、防治污染、保护环境,促进循环经济发展与社会主义新农村建设。本文从农作物秸秆利用技术的3个主要方面入手,分析低碳技术在其中的应用,同时大力倡导开发农作物秸秆利用技术,减少温室气体排放,实现农业可持续发展。  相似文献   

8.
金辰  孙波  赵其国  李辉信 《土壤》2014,46(1):7-14
针对我国保障粮食安全和应对全球变化的双重目标,分析了我国发展低碳农业存在的主要问题,并提出了发展对策。建议基于生态农业、循环农业和生态高值农业的原则,从政策、法规和技术3个方面促进我国低碳农业的发展。发展对策主要包括:贯彻中央一号文件,制定完善的政策法律法规体系及财政补贴;立足各地农情,大力发展区域低碳农业适应性体系;推广低成本低碳农业适应性技术,发展农村低碳农业合作组织;优化低碳农业发展外部环境,提高公众低碳农业认知意识。  相似文献   

9.
低碳农业是在农业生产、经营中排放最少的温室气体,同时获得最大社会效益的农业发展模式,有利于实现农业持续协调全面发展。本文阐述了发展低碳农业的必要性与可能性,提出发展低碳农业的基本途径。  相似文献   

10.
气候变暖已成为全球面临的共同难题。面对这一难题,世界各国已达成发展低碳经济、减少温室气体排放的共识。农业是温室气体排放的第二大重要来源。观光体闲农业作为现代农业的重要组成部分,它的低碳化发展是实现低碳经济中一个重要途径。本文在介绍低碳经济这一热点问题的基础上,提出了实现观光休闲农业低碳化发展的思路与对策,旨在为应对气候变暖,促进农业可持续发展提供参考。  相似文献   

11.
Carbon(C) is a key constitutive element in living organisms(plants, microbes, animals, and humans). Carbon is also a basic component of agriculture because it plays a dynamic role in crop growth, development, nutrient cycling, soil fertility, and other agricultural features. The presence of C enhances soil physical, chemical, and biological properties. The C cycle supports all life on the Earth by transferring C between living organisms and the environment. The global climate is changing, and th...  相似文献   

12.
Implications of climate change for tillage practice in Australia   总被引:1,自引:0,他引:1  
The world is experiencing climate change that in no way can be considered normal, and the challenge that this brings to agriculture is twofold. The first challenge relates to the continuing need to reduce greenhouse gas emissions that generate the changes to climate. Australia's National Greenhouse Gas Inventory estimates that agriculture produces about one-quarter of Australia's total greenhouse gas emissions (including land clearing). The main gases emitted are carbon dioxide, methane, and nitrous oxide. These gases are derived from high-value components within the agricultural production base, so reducing emissions of greenhouse gases from agriculture has the potential to provide production and financial benefits, as well as greenhouse gas reduction. Methane essentially derives from enteric fermentation in ruminants. Nitrous oxide and carbon dioxide, on the other hand, are strongly influenced, and perhaps even determined by a range of variable soil-based parameters, of which the main ones are moisture, aerobiosis, temperature, amount and form of carbon, organic and inorganic nitrogen, pH, and cation exchange capacity. Tillage has the potential to influence most of these parameters, and hence may be one of the most effective mechanisms to influence rates of emissions of greenhouse gases from Australian agriculture. There have been substantial changes in tillage practice in Australia over the past few decades – with moves away from aggressive tillage techniques to a fewer number of passes using conservative practices. The implications of these changes in tillage for reducing emissions of greenhouse gases from Australian agriculture are discussed.

The second challenge of climate change for Australian agriculture relates to the impacts of climate change on production, and the capacity of agriculture to adapt where it is most vulnerable. Already agriculture is exposed to climate change, and this exposure will be accentuated over the coming decades. The most recent projections for Australia provided by the CSIRO through the Australian Climate Change Science Programme, indicate that southern Australia can expect a trend to drying due to increased temperatures, reduced rainfalls, and increased evaporative potentials. Extremes in weather events are likely also to become more common. We anticipate that climate change will become an additional driver for continued change in tillage practice across Australia, as land managers respond to the impacts of climate change on their production base, and governments undertake a range of activities to address both emissions reduction and the impacts of climate change in agriculture and land management.  相似文献   


13.
ABSTRACT

The concern about global climate change continues to increase research interest regarding carbon and nitrogen dynamics in the soil. This is based on their role in maintaining soil fertility, which can instead be a source of greenhouse gas emissions if not managed properly, while threatening food security. Humid tropical conditions enable intensive agricultural cultivation with various cropping systems to fulfill the demand for agriculture products. Such climate accelerates the soil organic matter decomposition rate so that it strongly influences soil carbon and nitrogen dynamics. However, inappropriate implementation of intensive agricultural systems that does not consider the balance between carbon and nitrogen input and output, negatively affects soil fertility, mainly decreasing soil organic carbon and total soil nitrogen, changing the composition of carbon and nitrogen owing to the loss of soil organic matter through erosion and leaching, thus, causing soil degradation. Mitigation strategies can be performed by using organic matter and crop residue, crop rotation and improvement of crop pattern, soil tillage and fertilization, cover crops and mulch. Sustainable land management for maintenance of soil organic carbon and total soil nitrogen dynamics should be locally and globally developed and adopted for a more sustainable agricultural system. Recovery of soil capacity to accumulate carbon is a strategic step to reduce the impact of climate change. Hence, an intensive study on efficient soil organic carbon management is required to improve food production and mitigation of climate change to attain sustainable development goals in 2030.  相似文献   

14.
通过整合农业科学界从不同行业产业角度和不同的影响方面对气候变化可能带来农业生产影响的分析资料,梳理和辨析了气候变化对农业生产影响的途径和机理,提出了气候变化对中国国家尺度农业影响的“发酵”效应假设:气候变化因子间相互作用与交错叠加,产业的传递和反馈,可能带来不利效应的严重放大;未来气候变化下中国农业面临的基本问题将是:农业技术进步的迟滞性和农业生产能力的波动性,稳定农业生产水平和粮食供应能力将愈来愈困难。讨论和建议了应对气候变化的若干国家战略,这些战略应基于气候变化对中国农业生产的影响的敏感性行业和地区,气候变化的突出性趋势的认识。防患和应对极端性气象灾害事件将成为应对气候变化对农业影响的首要任务,需要加强研究和技术储备,同时迫切需要新的组织和运行机制全面开展气候变化对中国农业生产影响的试验和技术开发研究。  相似文献   

15.
环境土壤学是一门新兴的、土壤学和环境科学交叉融合的综合性学科,其研究重点从早期服务于农业安全生产发展至现在的土壤环境与健康,本文从土壤外源物质侵袭和土壤质量演变对土壤环境影响等方面回顾了环境土壤学发展历程。土壤污染物对土壤环境质量影响是以土壤元素背景值和环境现状调查为基础,以明确污染物形态,揭示土壤反应过程机制,评估污染效应,开展土壤环境修复工程为主线不断发展更新。土壤质量演变研究中碳、氮、硫、磷元素循环从土壤肥力和农业非点源污染的探讨拓展至土壤对全球气候变化的适应与响应;土壤退化研究则从对土壤生产力或功能丧失的研究发展至全球气候变化背景下农业发展可持续性及土壤生态功能的研究。环境土壤学在今后有四个重要发展趋势:提倡多学科交叉融合;评估全球气候变化对土壤元素循环的潜在影响;完善土壤健康评价框架中的土壤环境评价指标建立;学科发展服务于国家重大需求。  相似文献   

16.
农田生态系统是陆地生态系统的重要组成部分,在维系生命的生长发育和环境的动态平衡等方面起着至关重要的作用,在其生长发育和环境演变的过程中储存大量的环境变化信息,能够反映古农业的发展变迁。植硅体是一种长期稳定存在于土壤中的非晶质二氧化硅颗粒物,它可以指示气候变化。近年来,植硅体分析主要应用在农业考古、古气候重建、生物地球化学循环和全球碳汇潜力估算的研究中。世界上作物分布广泛,作物栽培历史悠久,研究作物植硅体与植硅体碳,对探讨农业起源与发展,估算农田生态系统植硅体碳汇潜力,应对全球气候变化具有重要意义。本文在查阅国内外与作物植硅体研究相关文献的基础上,综述了作物植硅体的形态研究、植硅体在考古学中的应用、作物植硅体碳含量与分布、碳汇潜力以及植硅体碳汇在全球碳汇中的贡献,阐明了作物植硅体未来的研究方向。1)不同作物产生的植硅体形态不同,而且对作物植硅体形态的研究较多处于优势的禾本科中,其他作物的研究较少;2)作物植硅体碳含量与其本身的固碳能力和效率有关,不完全由植硅体含量的多少决定,此外,植硅体碳含量的多少也可能受生长环境和植物基因型的影响;3)不同生态系统中气候、地表植被、土壤环境等诸多因素直接或间接地影响区域植硅体的碳汇潜力;4)农田生态系统不同作物植硅体碳汇存在显著差异,施加硅肥或硅-磷复合肥、种植高植硅体含量和高植硅体碳含量的作物等均可显著提高农田生态系统碳汇潜力。今后应进一步研究不同作物植硅体碳汇,以帮助识别过去的农业碳汇,评估当前农业碳汇潜力;加强植物、根系、土壤迁移规律的探讨,进一步分析不同作物植硅体积累与碳汇效应;阐明不同植物吸硅机制、植物根系硅化过程与其植硅体含量、植硅体碳含量间的关系;了解西南喀斯特生态脆弱区农业碳汇潜力,以期为作物科学种植、农田生态系统碳汇估算等提供参考。  相似文献   

17.
This paper discusses the vulnerability and adaptation of the agricultural sector of China to global warming. Based on a summarization of Chinese agricultural and general circulation model trends, adverse impacts on China's agriculture caused by a warming and drying climate were identified. Because of limited irrigation potential, the sustainable development of Chinese agriculture will be difficult. Six sensitive agricultural areas located on the edges of different agroecological zones, and seven provinces with high vulnerability to the impacts on agriculture, were identified. On the basis of an estimation ofthe potential supply of agricultural products and demand for food, the annual incremental costs for adaptation to climate change would be US$0.8–3.48 billion; without adaptation, the annual agricultural loss due to global warming would be US$1.37–79.98 billion from 2000 to 2050. Adaptive measures discussed include intensive management and the possibility of a tripartite structure of planting that would entail coordinated development of gain crops, feed crops, and cash crops.  相似文献   

18.
东北地区农业及环境对气候变化的响应与应对措施   总被引:5,自引:0,他引:5  
气候变化在东北地区对农业生产和生态环境产生了重要影响。本文总结了东北地区农业生产和生态环境对气候变化的响应, 并从调整农业种植结构、采用农业节水技术措施、实施保护性耕作、采取水土保持措施、加强生态?经济型防护林体系建设等方面分析东北地区对气候变化所采取的应对措施及应对效果。在此基础上, 分析了未来气候变化可能对东北地区农业生产和生态环境造成的影响, 并针对这两个重点领域从调整农业结构和种植制度、选育抗逆性强的品种、调整农业生产管理措施、加强水资源管理、加强生态建设、发展生态经济、综合调控水源和完善监测机制等方面提出了未来应对气候变化的建议。  相似文献   

19.
ABSTRACT

The increase in atmospheric concentration of carbon dioxide from 278 ppm in the pre-industrial era to 405 ppm in 2018, along with the enrichment of other greenhouse gases, has already caused a global mean temperature increase of 1°C. Among anthropogenic sources, historic land use and conversion of natural to agricultural eco-systems has and continues to be an importance source. Global depletion of soil organic carbon stock by historic land use and soil degradation is estimated at 133 Pg C. Estimated to 2-m depth, C stock is 2047 Pg for soil organic carbon and 1558 Pg for soil inorganic carbon, with a total of 3605 Pg. Thus, even a small change in soil organic carbon stock can have a strong impact on atmospheric CO2 concentration. Soil C sink capacity, between 2020 and 2100, with the global adoption of best management practice which creates a positive soil/ecosystem C budget, is estimated at 178 Pg C for soil, 155 Pg C for biomass, and 333 Pg C for the terrestrial biosphere with a total CO2 drawdown potential of 157 ppm. Important among techniques of soil organic C sequestration are adoption of a system-based conservation agriculture, agroforestry, biochar, and integration of crops with trees and livestock. There is growing interest among policymakers and the private sector regarding the importance of soil C sequestration for adaptation and mitigation of climate change, harnessing of numerous co-benefits, and strengthening of ecosystem services.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号