首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption-desorption equilibrium of atrazine (2-chloro, 4-ethylamino, 6-isopropyl amino-1, 3, 5 triazine) was studied by the batch equilibration method at 27 ± 1 °C on four soils of Hyderabad. Adsorption isotherms conformed to the Freundlich equation (A = KC1/n ). K increased in the same order as the organic C content of the soils. Desorption studies were conducted by repeated replacement of 5 mL of the supernatant equilibrium solutions after adsorption, with 0.01 M CaCl2. Desorption isotherms showed considerable hysteresis which was more prominent when the desorption was carried out with higher adsorbed concentration of atrazine. Desorption from the lowest level of adsorbed atrazine (3 to 5 μg g?1 soil) was close to the adsorption isotherm. The cumulative desorption after four desorption steps covering five days was significantly different at the 1% level, for different initial adsorbed concentrations of atrazine. Desorption was significantly higher at the lowest adsorbed level of atrazine. The soils differed significantly at 6% level for desorption and the amount desorbed decreased in the inverse order of organic C. Desorption isotherms also conformed to Freundlich equation but K andn values were both higher than that for adsorption and increased with increase in initially adsorbed concentration of atrazine. Desorption thus confirmed the irreversible nature of the adsorption of atrazine on these soils. The quantitative factors and reasons for desorption are discussed.  相似文献   

2.
除草剂咪草烟在土壤上吸附-脱附过程及作用机理   总被引:2,自引:0,他引:2  
本文研究了咪唑啉酮类除草剂咪草烟在不同土壤固-液相间的分配及与土壤组分作用的定量相关性。结论指出:咪草烟在土壤固-液相的分配主要受土壤粘粒,有机质及土壤pH的影响。它们在土壤上的吸附-脱除均可用Freundlich方程描述;通过运用红外及X-衍射技术,从分子水平研究了咪草烟与蒙脱石的作用机理,发现咪草烟与蒙脱的作用不仅发生在表面,而且咪草烟还能进入蒙脱石内层与其层间阳离子形成配合物。  相似文献   

3.
This study was undertaken to investigate the long-term influence of lime application and tillage systems (no-till, ridge-till and chisel plow) on soil microbial biomass C (Cmic) and N (Nmic) and the activities of glycosidases (- and -glucosidases, - and -galactosidases and -glucosaminidase) at their optimal pH values in soils at four agroecosystem sites [Southeast Research Center (SERC), Southwest Research Center (SWRC), Northwest Research Center (NWRC), and Northeast Research Center (NERC)] in Iowa, USA. Results showed that, in general, the Cmic and Nmic values were significantly (P <0.001) and positively correlated with soil pH. Each lime application and tillage system significantly (P <0.001) affected activities of the glycosidases. With the exception of -glucosidase activity, there was no lime×tillage interaction effect. Simple correlation coefficients between the enzyme activities and soil pH values ranged from 0.51 (P <0.05) for the activity of -glucosidase at the NWRC site (surface of the no-till) to 0.98 (P <0.001) at the SWRC site. To assess the sensitivity of the enzymes to changes in soil pH, the linear regression lines were expressed in activity/pH values. In general, their order of sensitivity to changes in soil pH was consistent across the study sites as follow: -glucosidase>-glucosaminidase>-galactosidase>-galactosidase>-glucosidase. Lime application did not significantly affect the specific activities (g p -nitrophenol released kg–1 soil organic C h–1) of the enzymes. Among the glycosidases studied, -glucosidase and -glucosaminidase were the most sensitive to soil management practices. Therefore, the activities of these enzymes may provide reliable long-term monitoring tools as early indicators of changes in soil properties induced by liming and tillage systems.  相似文献   

4.

Purpose

Adsorption and desorption are important processes that influence the transport, transformation, and bioavailability of atrazine in soils. Equilibrium batch experiments were carried out to investigate the adsorption–desorption characteristics of atrazine. The objectives of this study were to (1) determine and quantify the main soil parameters governing atrazine adsorption and desorption phenomena; (2) find the correlativity between the identified soil parameters; and (3) investigate the universal desorption hysteresis traits.

Materials and methods

Fifteen soils with contrasting physico-chemical characteristics were collected from 11 provinces in eastern China. The equilibrium time was 24 h both for adsorption and desorption experiments. Atrazine was detected by Waters 2695/UV HPLC.

Results and discussion

Adsorption isotherms of atrazine could be well described by the Freundlich equation (r?≥?0.994, p?<?0.01). The total organic carbon (TOC) was the first independent variable that described 53.0 % of the total variability of K f, followed by the pH (9.9 %), and the clay (4.0 %) and silt (1.2 %) contents, separately; while the primary soil properties that affect desorption parameters included the TOC, pH, free Fe2O3 (Fed) and the sand content, with the biggest contribution achieved by the TOC (ranged from 48.5–78.1 %). The results showed that when the content ratio of clay to TOC (RCO) was less than 40, the atrazine adsorption was largely influenced by the organic matrix, while when the RCO was greater than 40, they were vital affected by the clay content.

Conclusions

Adsorption–desorption isotherms of atrazine in soils were nonlinear. The content of TOC, clay, and iron oxides, as well as the pH value were the key soil parameters affecting the adsorption–desorption of atrazine in soil, among which the RCO especially exhibited relevance. Additionally, the desorption hysteresis existed for atrazine retention in all 15 tested soils, and the hysteretic effect enhanced with the increasing time for desorption. This would be ascribed to the heterogeneity physical–chemical properties of these soils.  相似文献   

5.
乙草胺和异丙甲草胺在土壤中吸附的研究   总被引:29,自引:1,他引:28  
王琪全  刘维屏 《土壤学报》2000,37(1):95-101
本文研究比较了乙草胺和异丙甲草胺在6种土壤中的吸附,采用Freundlich方程对其吸附等温线进行描述,对Freundlich方程吸附常数Kat和Γ/n的乘积与土壤理化性质的相关性进行了分析,并探讨乙草胺和异丙甲草胺在腐殖酸上的吸附机理。结果表明,乙草胺和异丙甲草胺在土壤中吸附主要受土壤有机质支配,有机质含含量越高越有利于这两种除草剂在土壤上的吸附。异丙甲草胺在土壤中的吸附明显弱于乙草胺。氢键是乙  相似文献   

6.
7.
Atrazine and metolachlor are extensively used pesticides in agricultural activities in northwest Ohio. Adsorption coefficients are often used to model pesticide fate and transport. Many physical-chemical parameters, such as organic matter, clay content, pH, and ionic strength, affect pesticide adsorption. Adsorption kinetics and adsorption isotherms were studied by batch experiment. Effects of humic acid, solution pH, and ionic strength on atrazine and metolachlor adsorption were also approached. After 24 h, both atrazine and metolachlor reached adsorption equilibrium in three local soils. Adsorption isotherms were described by Freundlich equations. The Freundlich coefficient (Kf) ranged from 0.14 to 4.47 (L kg–1) for atrazine, and 0.04 to 5.30 (L kg–1) for metolachlor. Adsorption capacity decreased in the order Sloan loam > Del Rey loam > Ottokee fine sand. Koc values varied considerably for both pesticides: metolachlor > in Sloan loam, atrazine metolachlor in Del Rey loam, and atrazine > metolachlor in Ottokee fine sand. In addition to organic matter content, clay played a key role in adsorption in the Del Rey loam and Ottokee fine sand. Higher adsorption was observed at pH 5 for both pesticides. As pH decreased to 3 and increased to 11, adsorption decreased. Adsorption increased as ionic strength increased.  相似文献   

8.
Adsorption and desorption of triasulfuron by soil   总被引:10,自引:0,他引:10  
The adsorption and desorption of the herbicide triasulfuron [2-(2-chloroethoxy)-N-[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide] by three soils, soil organic matter (H(+) and Ca(2+)-saturated), and an amorphous iron oxide were studied. Adsorption isotherms conformed to the Freundlich equation. It was found that pH is the main factor influencing the adsorption in all of the systems. Indeed, the adsorption on soils was negatively correlated with pH. The highest level of adsorption was measured on soils with low pH and high organic carbon content. Moreover, it was found that humic acid is more effective in the adsorption compared with calcium humate (the pH values of the suspensions being 3.5 and 6, respectively). Experiments on amorphous iron oxide confirmed the pH dependence. Desorption was hysteretic on soils having high organic carbon content.  相似文献   

9.
This study investigated the effect of different farming practices over long time periods on the sorption‐desorption behavior of Cu, Cd, and Zn in soils. Various amendments in a long‐term field experiment over 44 y altered the chemical and physical properties of the soil. Adsorption isotherms obtained from batch sorption experiments with Cu, Cd, and Zn were well described by Freundlich equations for adsorption and desorption. The data showed that Cu was adsorbed in high amounts, followed by Zn and Cd. In most treatments, Cd ions were more weakly sorbed than Cu or Zn. Generally, adsorption coefficients KF increased among the investigated farming practices in the following order: sewage sludge ≤ fallow < inorganic fertilizer without N ≈ green manure < peat < Ca(NO3)2 < animal manure ≤ grassland/extensive pasture. The impact of different soil management on the sorption properties of agricultural soils for trace metals was quantified. Results demonstrated that the soil pH was the main factor controlling the behavior of heavy metals in soil altered through management. Furthermore, the constants KF and n of isotherms obtained from the experiments significantly correlated with the amount of solid and water‐soluble organic carbon (WSOC) in the soils. Higher soil pH and higher contents of soil organic carbon led to higher adsorption. Carboxyl and carbonyl groups as well as WSOC significantly influenced the sorption behavior of heavy metals in soils with similar mineral soil constituents.  相似文献   

10.
Laboratory and greenhouse experiments were conducted to determine the influence of soil properties on adsorption and desorption of boron (B) as well as to estimate the degree of reversibility of adsorption reactions. The utility of Freundlich and Langmuir equations for characterizing the plant availability of applied B in soils was established using soybean [Glycine max (L.) Merr.] as a test crop. The adsorption-desorption study revealed that Fe2O3 and clay were primarily responsible for retaining added B in all the 25 different soils under investigation. Organic carbon, pH and cation exchange capacity (CEC) positively influenced the adsorption of B while free Fe2O3, organic carbon and clay retarded release of B from these soils. The degree of irreversibility (hysteresis) of B adsorption/desorption increased with increase in organic carbon and CEC of these soils. Freundlich isotherm proved more effective in describing B adsorption in soils as compared to Langmuir equation. The split Langmuir isotherm demonstrated that any of the adsorption maxima, calculated from lower, upper or entire isotherm, could be of practical use. Contrary, bonding energy coefficient, calculated either at lower or higher equilibrium concentration failed to show any practical benefit. Regression models as a function of B application rate and adsorption equation parameters to predict B uptake from applied B, demonstrated the utility of Langmuir and Freundlich equation parameters.  相似文献   

11.
Abstract

The adsorption of selenium (Se) in the selenate form and its desorption by phosphate in four soils with different physiochemical properties were studied in the laboratory. To determine adsorption isotherms for selenate 25 mL of solutions containing 1 to 100 ppm of Se were added to 2.5 g of soil. Desorption isotherms were determined by resuspending the samples in phosphate solution. The selenate sorption process was adequately described by the Freundlich equation. In pine forest and woodland soils, characterized by the highest organic matter content and cation exchange capacity (CEC) values, the isotherms were classified as L type, since the amount of Se sorbed appeared to move towards saturation. The organic matter content played the most important part in the adsorption of Se, while pH appeared to have a small effect on the ability of the soil to adsorb Se. The high CaCO3 content of the pine forest soil may have contributed in increasing the Se adsorption notwithstanding the high pH value. The cultivated and arable soils showed a reduced sorption capacity. The sorption could be described by an S type curve. At low concentrations of Se the affinity of the solid phase was less than that of the liquid phase. By increasing the concentration of Se in solution, the affinity of the solid phase increased and the sorption was favored. Selenate desorption by water was negligible, whereas the amount of Se desorbed by phosphate varied among the different soils. The desorption experiments indicated that a significant portion of the sorbed Se was irreversibly retained. This suggests the existence of linkages which allow the release of Se in the soil solution only after physico‐chemical variation such as exchange with phosphate ions.  相似文献   

12.
Organotin compounds (OTC) are deposited from the atmosphere into terrestrial ecosystems and can accumulate in soils. We studied the adsorption and desorption of methyltin and butyltin compounds in organic and mineral soils in batch experiments. The adsorption and desorption isotherms for all species and soils were linear over the concentration range of 10–100 ng Sn ml?1. The strength of OTC adsorption correlated well with the carbon content and cation exchange capacity of the soil and was in the order mono‐ > di‐ > tri‐substituted OTCs and butyltin > methyltin compounds. The OTC adsorption coefficients were much larger in organic soils (Kd > 104) than in mineral soils. The adsorption and desorption showed a pronounced hysteresis. Trimethyltin adsorption was partly reversible in all soils (desorption 2–12% of the adsorbed amounts). Dimethyltin, tributyltin and dibutyltin exhibited reversible adsorption only in mineral soils (desorption 4–33% of the adsorbed amounts). Mono‐substituted OTCs adsorbed almost irreversibly in all soils (desorption < 1% of adsorbed amounts). Trimethyltin was more mobile and more bioavailable in soils than other OTCs. It might therefore be leached from soils and accumulate in aquatic ecosystems. The other OTCs are scarcely mobile and are strongly retained in soils.  相似文献   

13.
Relationships between the adsorption of p-chloroaniline and the original adsorbate concentration were investigated for five soils ranging in organic matter content from 1.7 to 8.1 per cent and in clay content from 0.5 to 21 per cent. Adsorption data were analyzed applying the linear form of the Freundlich equation. To evaluate the general relationship between adsorption of p-chloroaniline by soils and the solution concentration (C0), values of partition coefficient (Kp), reflecting the magnitude of distribution of chemical at equilibrium between soil colloids and solution were calculated. The experiments showed that the regression parameters were significantly correlated with the soil organic matter content. A comparison of the experimental results obtained with other soils and the calculated values gave satisfactory agreement.  相似文献   

14.
Methiopyrsulfuron is a new low-rate sulfonylurea herbicide for weed control in wheat; however, there is a lack of published information on its behavior in soils. In this study, methiopyrsulfuron adsorption and desorption were measured in seven soils sampled from Heilongjiang, Shandong, Jiangxi, Sichuan, Anhui, and Chongqing provinces of China using a batch equilibrium method. The Freundlich equation was used to described its adsorption and desorption. Adsorption isotherms were nonlinear with the values of Kf-ads, the Freundlich empirical constant indicative of the adsorption capacity, ranging from 0.75 to 2.46, suggesting that little of this herbicide was adsorbed by any of the seven soils. Soil pH and organic matter content (OM) were the main factors influencing adsorption; adsorption was negatively correlated with pH and positively correlated with OM. Methiopyrsulfuron desorption was hysteretic on the soils with high OM content and low pH.  相似文献   

15.
Fomesafen, 5-[2-chloro-4-(trifluoromethyl)phenoxy]-N-(methylsulfonyl)-2-nitrobenzamide, is used widely for weed control in soybeans since its introduction to China. Little information is available on its adsorption, desorption and movement in Chinese soils. The adsorption, desorption and mobility of fomesafen in six Chinese soils was studied. Adsorption isotherms agreed with the Freundlich equation very well. The results of regressionanalysis indicated that soil pH was more important than organic matter for fomesafen adsorption. Fomesafen was more readily desorbed from soils with 0.01 M CaSO4 solution. Soil TLC and column leaching studies showed that fomesafen and its metabolites was less mobile in Chinese soils. About 89.82% of applied fomesafen and its metabolites still remained in upper 5 cm layer 60 days after treatment under field conditions.  相似文献   

16.
Desorption experiments were conducted on 21 soils at 3 atrazine concentrations. The Freundlich isotherm was used to estimate atrazine desorption. For the relationship between Freundlich isotherm coefficients, log K F and 1 / n, 1 / n was also represented by a linear regression of log K F as in the case of atrazine adsorption. All the linear regression lines of desorption exhibited larger slopes and intercepts than those of adsorption. When the atrazine concentration was high, the slope and intercept values were smaller than those for the desorption regression lines. The results showed that the larger the capacity of a soil to adsorb atrazine, the lesser the amount of atrazine desorbed. For the cultivated soils except for Andisols, the percentages of atrazine taken from solutions using the sequential exchange method after the first adsorption experiments, were the same as those desorbed from soils in relation to the initial amount adsorbed. Thus, reversible adsorption occurred in the soils due to weak physical adsorption.  相似文献   

17.
Dissolved organic matter enhances the sorption of atrazine by soil   总被引:6,自引:0,他引:6  
The influence of dissolved organic matter (DOM) on the sorption of atrazine (2-chloro-4-ethylamino-6-isopylamino-1,3,5-triazine) by ten soils was investigated. Batch sorption isotherm techniques were used to evaluate the important physiochemical properties of soil determining the sorption of atrazine in the presence of DOM. The sorption of atrazine as a representative of nonionic organic contaminants (NOCs) by soil with and without DOM could be well described by the Linear and Freundlich models. The n values of the Freundlich model were generally near to 1, indicating that linear partitioning was the major mechanism of atrazine sorption by soil samples. The apparent distribution coefficient, value, for atrazine sorption in the presence of DOM initially increased and decreased thereafter as the DOM concentration increased in the equilibrium solution. DOM at relatively lower concentrations significantly enhanced the sorption of atrazine by soil, while it inhibited the atrazine sorption at higher concentrations. For all the soil samples, the maximum of was 1.1~3.1 times higher than its corresponding K d value for the control (without DOM). The maximum enhancement of the distribution coefficient () in the presence of DOM was negatively correlated with the content of soil organic carbon (SOC) and positively correlated with the clay content. The critical concentration of DOM, below which DOM would enhance atrazine sorption, was negatively correlated with SOC. The influence of DOM on atrazine sorption could be approximately considered as the net effect of the cumulative sorption and association of atrazine with DOM in solution. Results of this study provide an insight into the retention and mobility of a NOC in the soil environment.  相似文献   

18.
土壤和氧化铁对氟化物的吸附和解吸   总被引:5,自引:0,他引:5  
邵宗臣  陈家坊 《土壤学报》1986,23(3):236-242
本文研究了两种土壤(砖红壤和黄棕壤)和两种合成氧化铁(无定形氧化铁和针铁矿)对氟化钠溶液的吸附和解吸现象,讨论了氟离子吸附的吸附等温线特征.根据实验资料和吸附等温线的拟合情况,我们认为,砖红壤和无定形氧化铁用Langmuir公式来描述,黄棕壤和针铁矿用Freundlich公式来描述更为适宜.氟离子的解吸量均低于吸附量.研究结果表明,由于水洗和醇洗,一部分以静电引力所吸附的氟离子被洗去,造成氟离子解吸量偏低.  相似文献   

19.
A pot experiment was conducted in a greenhouse to establish the threshold level of Cd in a light soil planted with cereals. During three consecutive years barley, wheat, rye, and corn were grown in the soil treated with 2.5; 5; 25 g g–1 of Cd applied in sulphate form. The Cd concentration of 5 g g–1 (plus native Cd content of the soil) was considered as the maximum permissible Cd level in a soil for the soil-plant systems studied. Besides the estimation of total Cd concentrations, several forms of Cd in soils (exchangeable, carbonate, Fe-Mn oxides, organic, and residual) were determined by mean of sequential extraction to define the phytoavailable form of Cd in the soil. The Cd concentration in studied plants increased with the doses of this metal in soil but to different extents for various plant species and various plant parts. The highest Cd enrichment ratios (ER) were found for wheat and corn leaves (2 to 3), whereas, the lowest ERs were detected for corn and rye grains (0.05 to 0.2) grown at the treated soils. All samples of the control plants had ER below 1. A close relationship was found between Cd content of plants and the exchangeable form of Cd in soil, which indicates that this form of the element is readily available for plants. The proposed maximum permissible level of Cd (5 g g–1 of added metal plus native Cd content of soils) in light soils proved to be too high for cereal plants. The threshold concentration for light soil should not exceed 3 g g–1.  相似文献   

20.
Abstract

Zinc adsorption by 10 (pH 4.0–6.5) cultivated mineral soils from Finland was studied in batch experiments. Additions of Zn ranged up to 600 mg kg?1 of soil and the corresponding equilibrium concentrations were 0.1–13 mg 1?1. In each soil, Zn adsorption conformed to the Freundlich isotherm. Despite a relatively low initial Zn adsorption by the acidic soils, each of the soils proved to have a high potential to adsorb Zn, but the capacity was highly pH dependent. In addition to the conventional Freundlich adsorption isotherms, calculated separately for each soil, extended Freundlich-type isotherms that also incorporate soil pH and other soil characteristics were used to describe Zn adsorption of several soils simultaneously in one equation. The pH-dependent Freundlich adsorption isotherm proved to serve as a practical tool to assess Zn adsorption by soils varying in pH and other characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号