首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
设计了植物叶面积精确测量系统,首先设置参照图像,采集带有参照图像的叶片图像,然后统计像素点数,最后进行比例尺换算测定叶面积。通过预处理、校正图像,提高测量精确度,克服了传统测量系统步骤繁琐和设备复杂的缺点,能够快速、无损地测量植物叶片面积。为验证系统精确度,采集45张叶片分别与打孔法、称质量法测定叶面积比较。结果表明,在保证精度的同时能够实现快速、无损的测量叶片面积,并通过碎片验证法验证本系统精度在98%以上。  相似文献   

2.
一种基于图像特征值算法的叶面积测定方法   总被引:1,自引:0,他引:1  
提出一种基于图像特征值算法的叶面积测定简化方法。应用扫描图像RGB三原色灰度值分离理论,根据植物叶片扫描图像像素点的分布特征,选用蓝色灰度值作为特征值,以扫描图像灰度中间值127作为叶面积图像与背景图像灰度值的判读指标,通过叶片像素点的分布比例计算叶片面积。将已知面积的矩形绿纸片分别随机裁剪成多个碎片,用本文方法测定碎片面积,并分别计算每个叶片的碎片面积之和进行系统精度验证,测定结果与标准面积的相对误差小于0.5%。采集60个水稻叶片分别采用本文方法和复印称重法测定叶片面积,对本文方法进行进一步验证,相关性分析结果表明,二者相关系数r=0.997 1,达极显著水平。本文方法具有较高测定精度,满足叶面积测定要求。  相似文献   

3.
提供了采用数字图像处理方法快速计算植物虫损叶片面积的方法,对叶片图像进行图像采集、预处理以及几何校正,提取叶片轮廓并填充后,去除叶柄求得虫损叶片面积及虫损率。此方法简单易行,适合多种形状叶片,同时适用于非虫损叶片面积的测量。  相似文献   

4.
基于光场相机的大豆冠层叶面积无损测量方法研究   总被引:1,自引:0,他引:1  
大豆上、中、下冠层叶面积分布是大豆植株株型状况评价、产量预测的重要依据,而传统上、中、下冠层叶面积测量方法采用大田切片法,该方法过程繁琐,且会对叶片造成伤害。针对这一问题,引入光场相机重聚焦技术分别得到聚焦在上、中、下叶片的重聚焦图像,通过图像处理技术提取聚焦平面的叶片,去掉离焦平面的叶片,分别得到上、中、下层的投影面积。选用开花期103盆宏秋品种大豆植株作为校正集,根据光场相机的标定计算各冠层叶片的校正系数,获得修正后的各冠层叶片投影面积。建立大豆植株各冠层投影面积和真实叶面积的回归模型,并选20盆作为预测集来验证各回归模型。研究发现:上层叶面积模型的决定系数为0.945,预测集的最大误差为4.48%,均方根误差为4.376;中层叶面积模型的决定系数为0.796,预测集的最大误差为13.62%,均方根误差为7.273;下层叶面积模型的决定系数为0.914,预测集的最大误差为8.63%,均方根误差为1.529。上层和下层叶面积测量模型相关性高,由于上层叶片的遮挡,中层叶面积模型相关性略低。  相似文献   

5.
一种新的基于图像处理的作物叶面积测量方法   总被引:4,自引:0,他引:4  
以数字图像处理技术为基础,提出一种简化、高精度的作物叶面积测量方案,对从扫描仪获得的含有参照边框和叶片影像的图像进行分析处理,不仅简化了业务流程,还大大提高了测量的精度,应用于作物叶面积的测量计算,获得十分满意的结果。  相似文献   

6.
针对在应用数码相机采集大田作物叶片图像时出现的植物叶片图像倾斜和几何失真等问题,提出了基于双线性映射的植物叶片校正算法.测量有效性不受叶片大小、形状差异和叶片图像中叶片周边白色背景的影响.实验验证该方法校正叶片图像,精度可达99%以上,是进一步提取植物叶面特征的基础.  相似文献   

7.
水稻叶片几何参数图像视觉测量方法研究   总被引:2,自引:0,他引:2  
提出了一种基于图像视觉原理的水稻叶片几何形态参数测量计算方法,通过图像分割处理,统计参考物与目标叶片面积的像素数,计算叶片面积;通过求取参考物和目标叶片的最小外接矩形方法,计算叶片的长度和宽度值;利用基于4个方向模板运算的距离变换算法对茎叶夹角图像进行骨架信息提取,利用Hough变换对提取的骨架信息进行直线检测,并进行茎叶夹角计算。结果表明,该方法能够精确、快捷地对水稻叶片几何形态参数进行测量计算,与手工测量比较,叶片面积计算误差小于5%,长宽误差小于0.67%,茎叶夹角误差小于2%,能满足农学研究的要求。  相似文献   

8.
随着信息技术的发展,不规则图形面积的计算方法愈加成熟。分别利用像素法和方格法,同时对20个黄瓜品系的叶面积进行了测量;并以方格法的测量结果为对照,对像素法的测量结果进行了精度分析。结果表明:像素法对黄瓜叶片面积测定结果的变异系数为0.05%~0.10%、均值为0.07%,方格法测量结果的变异系数(0.51%~1.11%)和均值(0.82%),像素法测定结果更加稳定。且与数码相机拍摄取样法相比,像素法具有成像稳定、无缩放无变形不受到拍摄角度、对焦情况限制的优点,还可以在活体上直接测量,大大减轻田间工作量。像素法是1种广适性、精度高的叶面积测量方法,具有广阔的应用前景。  相似文献   

9.
提高植物叶片面积测量精度的方法   总被引:7,自引:1,他引:7  
介绍了用CCD(Charge Coupled Device) 提高植物叶片面积测量精度的方法,分析了采用不同的图像获取设备时影响测量精度的各种因素。讨论了使用数码相机时消除线性几何畸变影响的方法,使利用数码相机实现非破坏性测量真正走向了实用化。  相似文献   

10.
大豆病斑智能识别无损预处理及其特征提取方法的研究   总被引:1,自引:0,他引:1  
以大豆病叶为例,针对在采集叶片图像过程中出现的几何失真问题,提出了基于投影模型的植物叶片校正算法,测量准确性只与校正方法有关,不受其他背景因素影响。在精确校正的基础上,又实现了叶片病斑区域的特征提取与计算,实验结果表明,该方法校正精度达99%,病斑区域提取精度达100%,为进一步的病害诊断奠定了先期基础。  相似文献   

11.
基于数字图像视觉分析的叶面积活体测定系统研究   总被引:3,自引:0,他引:3  
通过计算数字图像中每个像素点代表的真实面积和叶片图像所占的像素数量,可以计算出图像中叶片的面积.基于此原理,该文提供了利用数码相机快速获得植物叶片图像并准确测定叶面积的方法.该方法适用于对多种植物的平面状叶面积进行活体测量,同时能够对异性叶片离体测量,尤其适合大量叶面积的测量工作,且具有速度快、数据准确、精度高的特点.  相似文献   

12.
针对使用智能手机野外测量叶面积时很难保证主光轴与叶平面垂直导致测量精度下降的问题,采用针孔相机模型和数字图像处理技术相结合的方法,对叶片平面和手机平面存在夹角时的叶面积测量建立误差校正模型并进行研究。1)以10片不同大小的椭圆形模拟叶片对开发的android App进行仿真测试,结果显示,叶面积测量值与理论值之间的决策系数高于97%,并且随着叶片与手机平面夹角的增大而减小,校正后的相对误差为-6%~8%,未校正的高达41.4%。2)以向日葵、番茄、辣椒和茄子等植物叶片对误差校正公式进行验证,结果显示,当夹角15°,拍照高度为30~65cm时,叶面积测量的相对误差为-6%~6%,未校正的为-27.5%~25%。  相似文献   

13.
为确定长宽法测定地黄叶面积所需的校正系数,以怀丰和北京3号2个地黄品种为试验材料,测量叶片的长度、宽度,以叶面积仪所测叶面积为准计算校正系数,并进行了相关性分析和检验。结果表明,怀丰和北京3号2个地黄品种叶面积校正系数差异较大,且<100、100~<150、150~200、>200 cm2 4个不同大小叶面积的校正系数也差异明显,测定得到的怀丰的校正系数为0.690,北京3号的校正系数为0.752,经验证,2个地黄品种各自的校正系数均满足长宽法测定叶面积的需求。长宽法测地黄叶面积,既不损伤植株,又具有简便易测、可靠性强、准确性高的优点。  相似文献   

14.
植物多叶片图像目标识别和叶面积测量方法   总被引:9,自引:0,他引:9       下载免费PDF全文
分析了图像处理方法测量叶面积中采用CCD照相机和扫描仪2种采集设备各自的优、缺点.针对目前各种叶面积测量方法均为逐片测量的局限性,以MATLAB数学分析软件为平台开发了对多叶片扫描图像中各叶片进行目标识别和面积计算的算法.试验结果表明,该算法在叶片间不重叠的条件下识别准确率达到100%,测量得到的叶面积与采用称重法得到的叶面积间的相对误差为2.43%,决定系数(R2)为0.999 6.试验证明,该算法可以实现对多叶片扫描图像中各叶片的准确识别和叶面积测量.  相似文献   

15.
CAD图形处理技术在植物叶面积测量中的应用   总被引:28,自引:0,他引:28  
采用数码像机在田间获取植物叶片加参照直尺的数字图像,然后利用AutoCAD 2000的area命令,可以快速测量所定义区域的面积和周长。同时将该方法与目前生产上常用的CID仪器法、交叉网格法、复印称重法进行比较分析。结果表明:CAD图形处理方法和上述传统的叶面积测定方法的测定结果呈极显著的线性相关关系,适用于叶面积的测量工作,该方法的最大优点就是可以在不摘除植物叶片的前提下,快速、准确的进行叶面积测量工作。为植物叶面积测量提供了新的思路。  相似文献   

16.
林区GPS控制网的建立及应用   总被引:2,自引:2,他引:2  
该文通过试验探讨了林区GPS控制网布设的方法和一般原则,研究了基于该网的GPS单点定位、小班边界空间定位和SPOT5、QuickBird等高空间分辨率遥感图像几何精校正地面控制点采集等GPS在林业中应用的主要问题.结果表明,通过以林区GPS控制网差分基准站作为控制点求解高精度的坐标转换参数,手持式GPS单机定位最大综合误差为3.86 m;小班边界平均位移和中心位置绝对位移分别为3.23、3.72 m,小班面积测量精度达到98%以上;所采集的地面控制点综合误差小于0.5 m,完全满足SPOT5、IKONOS及QuickBird等高空间分辨率卫星图像几何精校正的要求,对SPOT5和QuickBird图像进行多项式变换几何精校正,综合误差均小于1个像元.建立林区GPS控制网后,GPS在林区应用的精度和效率大大提高.  相似文献   

17.
【目的】传统考种方法测量精度和效率难以满足现代水稻育种研究的需求,设计一种水稻谷粒图像与质量信息同步采集装置,实现水稻谷粒考种参数的自动提取。【方法】采用掩膜法自动提取稻谷区域图像,根据稻谷投影面积、数量规律获取稻谷总粒数;根据空粒、实粒颖壳轮廓差异识别空粒;基于角点间距均值标定法,结合轮廓最小外接矩形法获取粒长、粒宽,结合链码法获取粒周长;采用正方形面积均值标定法结合像素累加法获取粒面积。分析摄像头高度、谷粒数量、谷粒种类、规则图形类型对谷粒性状参数提取精度的影响。【结果】摄像头高度对稻谷总数、空粒数、长、宽测量精度有明显影响,稻谷种类对宽度测量精度有明显影响,规则图形类型对周长和面积测量精度有明显影响。采用本文提出方法测量总粒数、空粒数、粒长、粒宽、粒周长、粒面积的决定系数(R2)分别为0.998 30、0.987 80、0.996 10、0.782 90、0.995 10和0.999 98,测量的平均精度分别为99.47%、87.17%、96.55%、96.36%、98.00%和95.86%,测量效率为16.52粒/s。【结论】本文所采用的稻谷谷粒考种参数自...  相似文献   

18.
基于AutoCAD软件确定澳洲坚果叶面积的简易方法   总被引:3,自引:0,他引:3  
建立了一种简单、准确、快捷测量澳洲坚果叶片面积的新方法。其原理是利用数码相机获取带有刻度尺的澳洲坚果叶片图像,利用AutoCAD软件处理图像获得与叶片面积相同的封闭曲线,测得的封闭曲线面积即为叶片的实际面积。对同一叶片采用方格法和AutoCAD软件测量所得的数据进行t检验,结果证明两种方法的测定结果差异不显著,AutoCAD软件可以准确地测量澳洲坚果叶面积。  相似文献   

19.
为作物叶面积的无损测量提供理论依据,以开花期103盆大豆品种宏秋的植株作为校正集,通过图像处理建立大豆植株顶视投影面积(TA)、侧视投影面积(SA)和真实叶面积(y)的回归模型,并在大豆开花期选20盆作为预测集验证回归模型,为消除叶片倾角对测量结果的影响,将顶视和侧视投影面积作为预测模型自变量优化模型。结果表明:顶视投影面积和真实叶面积的回归模型中,幂函数模型y=2.04×10~(-4)×TA~(1.049)为最优模型,决定系数(R~2)=0.949,最大误差为8.71%,均方根误差为12.56;优化的多元幂函数模型为y=2.37×10~(-4)×TA~(0.908)×SA~(0.144),R~2=0.960,最大相对误差的绝对值为4.29%,均方根误差为8.77。计算机视觉系统无损测量单株大豆开花期叶片面积可行,且测量精度高,适用于不同地区和不同品种大豆的叶面积测量。  相似文献   

20.
《农技服务》2017,(2):28-29
利用图像处理与分析技术实现茶树叶片面积测量,对茶树生长建模及害虫为害严重度分级标准的制定具有重要意义。通过扫描仪获取茶树的叶片图像,利用图像分析软件BugShape v1.0提取叶片特征参数并进行了分析。结果表明,利用该技术可得到茶树叶片的形态参数,各参数在不同叶位间差异极显著。在一年生5片叶的茶树枝条上,第4叶位的叶面积最大。叶位与叶面积呈极显著的正相关性,叶片各特征参数间正相关性极显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号