首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Apple chlorotic leaf spot virus (ACLSV) isolates from sand pear (Pyrus pyrifolia) were characterized by analyzing the sequences of their coat protein (CP) genes and serological reactivity of recombinant coat proteins (rCPs). The sequences of CP genes from 22 sand pear isolates showed a high divergence, with 87.3–100% identities at the nucleotide (nt) level and 92.7–100% identities at the amino acid (aa) level. Phylogenetic analysis on the aa sequence of CP showed that the analyzed ACLSV isolates fell into different clusters and all isolates from sand pear were grouped into a large cluster (I) which was then divided into two sub-clusters (A and B). Sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE), western blot and enzyme-linked immunosorbent assay (ELISA) analyses demonstrated that rCPs of eight ACLSV isolates (PP13, PP15-2, PP24, PP43, PE, PP54, PP56 and ACLSV-C) from two sub-clusters had different mobility rates and serological reactivity. The rCPs of five isolates grouped into the sub-cluster A showed stronger reactivity with antibodies against rCPs of a sand pear isolate ACLSV-BD and virions of a Japanese apple isolate P-205 than that with the antibody against a Chinese apple isolate ACLSV-C. Three isolates grouped into the sub-cluster B showed stronger reactivity with the antibody against ACLSV-C. The antigenic determinants of CPs from these eight isolates and isolates ACLSV-BD and P-205 were predicted. These results contribute to a further understanding of molecular diversity of the virus and its implication in serological detection.  相似文献   

2.
3.
Apple mosaic virus (ApMV, genus Ilarvirus) was detected in pears, a previously non-reported virus host. No symptoms were visible on the hosts leaves. Seventeen out of 22 randomly selected pear trees in Italy (Lombardy) and in three regions in the Czech Republic were ApMV-infected. All nine newly sequenced ApMV isolates from pears had a 15-nucleotide insertion in the capsid protein gene in identical position of that of apple isolates compared with isolates from hop and prunes. The insertion is the most prominent (but not essential) modification of the capsid protein gene, which results in a phylogenetic separation of ApMV isolates into three clusters. Sequence analysis data of an additional 15 isolates revealed a sequence correlation with kernelled fruit trees (apple and pear).  相似文献   

4.
Natural occurrence of mosaic disease was observed on basil (Ocimum sanctum L.) in Aligarh, U. P., India, during 2008. The disease could be transmitted by sap inoculations from naturally infected O. sanctum to O. sanctum and some test plant species. Cucumber mosaic virus (CMV) was detected by RT-PCR using coat protein gene specific primers of CMV (Acc. AM180922 & AM180923), which resulted in the expected size ~650 bp amplicon in infected samples. The amplicon was cloned, sequenced and data were deposited in GenBank Acc. EU600216. The sequence data analysis revealed 97–99% identities at both nucleotide and amino acid levels with the CMV strains of subgroup II reported worldwide. Based on the high sequence identities and close phylogenetic relationships with CMV subgroup II strains, the virus under study has been identified as a new isolate of CMV subgroup II and designated as CMV-Basil.  相似文献   

5.
The nucleotide sequence of the 3′-terminal part of the RNA1 genome segment of the M12 isolate of comovirus Turnip ringspot virus (TuRSV) was established. This isolate originated in 1989 in Moscow (Russia) from Chinese cabbage with Radish mosaic virus-like symptoms. Comparison of the M12 RNA polymerase amino acid sequence with that of Radish mosaic virus (RaMV) revealed significant differences; these proteins are of different length and are only about 75% identical. On the other hand, the amino acid sequence of the M12 RNA polymerase was more than 94% identical with that of TuRSV recently described in Toledo (USA). We conclude that TuRSV occurs in Europe as well as in America and probably represents a new species of the genus Comovirus.  相似文献   

6.
Chilli veinal mottle virus (ChiVMV), is a Potyvirus that causes severe yield losses in capsicum worldwide including Pakistan. In the current study, genetic diversity and molecular evolution of ChiVMV were explored based on the CP gene sequences. In multiple sequence alignments of the CP gene of 29 ChiVMV isolates, Pakistani isolates shared 82–92% and 78–96% nucleotide and amino acid identities, respectively with other ChiVMV isolates. In nucleotide and amino acid based phylogenetic analysis of the CP gene, the Pakistani isolates clustered with Indian (JN692501 and JN624776) and Chinese (KC711055, KC711055, JX088636 and HQ218936) isolates in a separate clade. In all Pakistani isolates, conserved motifs (DAG, WCIEN, QMKAAL, and AFDF) were located at 6–8, 141–145, 222–225, and 242-248th amino acid positions, respectively. Eleven recombination events were detected in the isolates investigated. One Pakistani isolate KX236451 was suggested to be a recombinant between the Pakistani isolate (KT876050) and the Indian isolate (JN692501). Most of the codons were found under negative selection except for codons at 28, 34, and 38th positions that were found under positive selection by REL method. An infrequent gene flow was observed between the ChiVMV isolates from Pakistan and other countries of the world. To our knowledge, this is the first report on genetic diversity of Pakistani isolates of ChiVMV based on recombination and phylogenetic analysis. Findings of this study may be helpful in developing sustainable management strategies against ChiVMV not only in Pakistan but also in other countries, ultimately resulting in enhanced and good quality production of chilli crop.  相似文献   

7.
A putative virus-induced disease showing chlorotic spots on leaves of Phalaenopsis orchids was observed in central Taiwan. A virus culture, phalaenopsis isolate 7-2, was isolated from a diseased Phalaenopsis orchid and established in Chenopodium quinoa and Nicotiana benthamiana. The virus reacted with the monoclonal antibody (POTY) against the potyvirus group. Potyvirus-like long flexuous filament particles around 12–15 × 750–800 nm were observed in the crude sap and purified virus preparations, and pinwheel inclusion bodies were observed in the infected cells. The conserved region of the viral RNA was amplified using the degenerate primers for the potyviruses and sequence analysis of the virus isolate 7-2 showed 56.6–63.1% nucleotide and 44.8–65.1% amino acid identities with those of Bean yellow mosaic virus (BYMV), Beet mosaic virus (BtMV), Turnip mosaic virus (TuMV) and Bean common mosaic virus (BCMV). The coat protein (CP) gene of isolate 7-2 was amplified, sequenced and found to have 280 amino acids. A homology search in GenBank indicated that the virus is a potyvirus but no highly homologous sequence was found. The virus was designated as Phalaenopsis chlorotic spot virus (PhCSV) in early 2006. Subsequently, a potyvirus, named Basella rugose mosaic virus isolated from malabar spinach was reported in December 2006. It was found to share 96.8% amino acid identity with the CP of PhCSV. Back-inoculation with the isolated virus was conducted to confirm that PhCSV is the causal agent of chlorotic spot disease of Phalaenopsis orchids in Taiwan. This is the first report of a potyvirus causing a disease on Phalaenopsis orchids.  相似文献   

8.
The causative virus (isolate No. 4) of gentian (Gentiana spp.) mosaic, which had been identified previously as Clover yellow vein virus (C1YVV) on the basis of host range and serological reactions, was re-identified as Bean yellow mosaic virus (BYMV) on the basis of the nucleotide sequences of the gene for the coat protein (CP) and the 3′-noncoding region, as well as the predicted amino acid sequence of CP. Received 16 April 2002/ Accepted in revised form 19 June 2002  相似文献   

9.
We determined the complete nucleotide sequence of RNA-1 and the 5-terminal region of RNA-2 from Broad bean wilt virus 1 (BBWV-1) isolate PV132. This report is the first analysis of the genome organization of BBWV-1. We also determined the complete nucleotide sequence of RNA-1 from Broad bean wilt virus 2 (BBWV-2) isolate IP and analyzed the genetic relations between BBWV-1 and BBWV-2. Similar to the BBWV-2 isolates, both RNAs of PV132 encoded a single large polyprotein, which was predicted to contain some functional proteins in a manner similar to those of comovirus. With respect to the deduced amino acid sequences of the mature proteins, PV132 and IP had only 20%–40% homology to comovirus. On the other hand, IP was 73%–98% homologous to BBWV-2 isolates, but PV132 was 39%–67% homologous to the isolates. Although the extent of the homologies differed, the homologies were limited between BBWV-1 and BBWV-2 not only for the coat protein but also for the other proteins. These results clearly support the placement of BBWV-1 and BBWV-2 in the genus Fabavirus as distinct species, proposed on the basis of double immunodiffusion tests.The nucleotide sequence data reported are available in the DDBJ/EMBL/GenBank databases under the accession numbers AB084450 (RNA-1 of isolate PV132), AB084451 (RNA-2 of isolate PV132), and AB023484 (RNA-1 of isolate IP)  相似文献   

10.
Barley yellow dwarf disease is one of the most important problems confronting cereal production in Iran. Barley yellow dwarf virus-PAV (BYDV-PAV) and Cereal yellow dwarf virus-RPV (CYDV-RPV) are the predominant viruses associated with the disease. One isolate of BYDV-PAV from wheat (PAV-IR) and one isolate of CYDV-RPV from barley (RPV-IR) were selected for molecular characterisations. A genome segment of each isolate was amplified by PCR. The PAV-IR fragment (1264 nt) covered a region containing partial genes for coat protein (CP), read through protein (RTP) and movement protein (MP). PAV-IR showed a high sequence identity to PAV isolates from USA, France and Japan (96–97%). In a phylogenetic analysis it was placed into PAV group I together with PAV isolates from barley and oats. The fragment of RPV-IR (719 nt) contained partial genes for CP, RTP and MP. The sequence information confirmed its identity as CYDV. However, RPV-IR showed 90–91% identity with both RPV and Cereal yellow dwarf virus-RPS (CYDV-RPS). Phylogenetic analyses suggested that it was more closely related to RPS. These data comprise the first attempt to characterise BYD-causing viruses in Iran and southwest Asia. The nucleotide sequence data reported appear in the EMBL, GenBank and DDBJ Nucleotide Sequence Databases under the accession numbers AY450425 and AY450454  相似文献   

11.
Complete coat protein (CP) gene sequences of 66 Potato virus X (PVX) isolates were sequenced and compared with other PVX isolates. The CP gene of these isolates shared 93.9–100.0 % and 97.0–100.0 % identities among them at nucleotide and amino acid sequence level, respectively. Phylogenetic analysis with isolates of known PVX strain groups showed that all 66 isolates were found in clade I (strain groups 1, 3 and 4) and none of them in Clade II (strain groups 2 and 4). The Indian isolates had the 714 bp coat protein gene and were closer to clade I isolates with 92.9–99.5 % identities and distantly related to Clade II isolates (74.2 to 80.0 % identities). Hence, these isolates may belong to either of the strain groups 1, 3 and 4. A threonine residue at position 122 and glutamine residue at position 78 were found conserved in all the Indian isolates suggesting that these isolates cannot overcome Rx1gene and Nx gene mediated resistance, characteristic of group 1 and 3. However, unique amino acid substitutions were observed in Indian isolates and further studies are required to ascertain their role in symptom expression, virulence and host range. In addition, whole genome sequences of two isolates one each from Jalandhar (Punjab) and Kufri (Himachal Pradesh) were also determined. They were 6435 nts long with five ORFs and shared 81.4–97.2 % identities to clade I isolates from USA, Russia, India, Iran, China, Japan, Taiwan and 77.0 to 77.5 % identities with clade II isolates from Peru.  相似文献   

12.
Actinidia chinensis and A. deliciosa plants from China, showing a range of symptoms, including vein clearing, interveinal mottling, mosaics and chlorotic ring spots, were found to contain ~300 nm rod-shaped virus particles. The virus was mechanically transmitted to several herbaceous indicators causing systemic infections in Nicotiana benthamiana, N. clevelandii, and N. occidentalis, and local lesions in Chenopodium quinoa. Systemically- infected leaves reacted with a Tobacco mosaic virus polyclonal antibody in indirect ELISA. PCR using generic and specific Tobamovirus primers produced a 1,526 bp sequence spanning the coat protein (CP), movement protein (MP), and partial RNA replicase genes which showed a maximum nucleotide identity (88%) with Turnip vein clearing virus and Penstemon ringspot virus. However, when the CP sequence alone was considered the highest CP sequence identity (96% nt and 98% aa) was to Ribgrass mosaic virus strain Kons 1105. The morphological, transmission, serological and molecular properties indicate that the virus is a member of subgroup 3 of the genus Tobamovirus.  相似文献   

13.
Apple scar skin viroid (ASSVd) infection is a major limitation to apple fruit quality and causes huge economic losses. In surveys of apple orchards in the northern Indian state of Himachal Pradesh, fruits with dappling symptoms were noticed. ASSVd was detected from these fruits and molecularly characterized. Ten clones from three isolates were sequenced, of which seven were new sequence variants of ASSVd. The clones had significant sequence variability (94–100%) with each other. Variability was more common in the pathogenic domain of the viroid genome. Four of the clones were 330 nucleotides (nt) long, and the other six had an additional nucleotide. Phylogenetic analysis showed close affinity of the present isolates with some Chinese and Korean isolates. The study reports seven new variants of ASSVd and also provides the first molecular evidence of viroid infection (ASSVd) in apple in India.  相似文献   

14.
Transmission of three strains of OMMV by an Olpidium sp. was evaluated and compared. The three strains were 1) an OMMV wild type (WT) recovered from olive trees, 2) an OMMV variant (L11) obtained after 15 serial passages of single local lesions induced in Chenopodium murale plants, and 3) a construct OMMV/OMMVL11 in which the coat protein (CP) gene replaced that of the wild type. A single-sporangial culture derived from Chinese cabbage (Brassica pekinensis) used as a bait plant grown in soil of an olive orchard, was identified as Olpidium brassicae based on the size and sequence of the generated amplicon in PCR specific tests. Each of the three virus strains was soil transmitted to cabbage roots in the absence of the fungus at similar rates of 30 to 40%. Separate plant inoculation by O. brassicae zoospores incubated with each viral strain resulted in enhanced transmission of OMMV, reaching 86% of infection whereas that of the other two strains remained practically unaffected at ca. 34%. Binding assays showed that the amount of virus bound to zoospores, estimated spectrophotometrically, was 7% in the case of OMMV, and practically nil in the case of the other two viral strains. Substitution of the coat protein (CP) gene of OMMV by that of the OMMV L11 strain, drastically reduced viral transmissibility in the presence of zoospores to the level of that observed in their absence. Our data shows that OMMV soil transmission is greatly enhanced by O. brassicae zoospores and that the viral CP plays a significant role in this process, most likely by facilitating virus binding and later entrance into the host plant roots.  相似文献   

15.
A Carica papaya plant with severe yellow leaf mosaic, leaf distortion, and systemic necrosis was found in the municipality of Piracicaba, state of São Paulo, Brazil. Transmission electron microscopy (TEM) analysis revealed the presence of potyvirus-like particles and bacilliform particles similar to those of the Alfamovirus genus. The potyvirus was identified as Papaya ringspot virus-type P (PRSV-P). Biological, serological, and molecular studies confirmed the bacilliform virus as an isolate of Alfalfa mosaic virus (AMV). Partial nucleotide and amino acid sequences of the coat protein gene of this AMV isolate shared 97–98% identity with the AMV isolates in the GenBank database. This report is the first of the natural infection of papaya plants by AMV.  相似文献   

16.
The genomic fragments of two open reading frames (ORFs) 1 and 2 of German and Canadian PAV isolates of Barley yellow dwarf virus (BYDV-PAV) were sequenced. Sequences only slightly differed from previously published sequences of this virus. Two polyclonal antisera against proteins encoded by ORFs 1 and 2 of a German ASL-1 isolate were developed using recombinant antigens expressed in E. coli as a fusion either to His6− or thioredoxin-tags. In Western blot analysis with total protein extracts from BYDV infected plants, antisera efficiently recognized the 99 kDa fusion protein expressed from ORF1 and ORF2 (P1–P2 protein). Later in infection the P1–P2 protein disappeared and two smaller proteins, revealing sizes of 39 and 60 kDa, could be detected.  相似文献   

17.
In 2009, chlorotic mottle and necrosis were observed on chrysanthemums (cv. Jimba) in Aomori Prefecture, Japan. A virus was isolated from the chrysanthemum plants by serial local-lesion transfer. The symptoms exhibited by the test plants, the particle morphology, the features of the protein and the potential for transmission by thrips were similar to those for Impatiens necrotic spot virus (INSV). The partial nucleotide sequences of the nucleocapsid protein gene and the 3′-untranslated sequence of the S RNA shared 99% identity with that of an INSV isolate. This report is the first of INSV infection of chrysanthemums in Japan.  相似文献   

18.
The clustered hrp genes encoding the type III secretion system in the Japanese strains MAFF301237 and MAFF311018 of Xanthomonas oryzae pv. oryzae were sequenced and compared. The strains differ in their pathogenicity, location, and year of isolation. A 30-kbp sequence comprising 29 open reading frames (ORFs) was identical in its structural arrangement in both strains but differed from X. campestris pv. campestris, X. axonopodis pv. citri, and X. axonopodis pv. glycines in certain genes located between the hpaB-hrpF interspace region. The DNA sequence and the putative amino acid sequence in each ORF was also identical in both X. oryzae pv. oryzae strains as were the PIP boxes and the relative sequences. These facts clearly showed that the structure of the hrp gene cluster in X. oryzae pv. oryzae is unique.  相似文献   

19.
A viral disease was found in Nagano Prefecture, Japan, on statice (Limonium sinuatum) with chlorotic leaf spot, necrotic stunt, and dwarfing. Spherical virus particles 30 nm in diameter were isolated from infected plants and statice seedlings and caused identical symptoms 4 weeks after mechanical inoculation. Nucleotide and deduced amino acid sequences of the coat protein showed 98% and 98.7% identities with those of Grapevine Algerian latent virus (GALV) nipplefruit strain. This is the first report in Japan of a viral disease on statice caused by GALV. The nucleotide sequence data reported here are available in the DDBJ/EMBL/GenBank databases under accession AB461854.  相似文献   

20.
A putative virus-induced disease of pear (Pyrus pyrifolia var. Hengshen) showing symptoms of reduced size of foliage and leaf distortion was observed in orchards in central Taiwan in 2004. The sap of symptomatic leaf samples reacted positively to an antiserum against Apple stem grooving virus (ASGV). Two virus cultures, designated as TS1 and TS2, were isolated from symptomatic pears. Flexuous filamentous virions of ∼ 12 × 600 nm were observed in symptomatic pear leaves and purified virus preparations. Results of back inoculation of pear seedlings with TS1 revealed that ASGV was the causal agent of the disease. Sequence analyses of the cloned coat protein (CP) genes of TS1 and TS2 shared 88–92.4% nucleotide and 90.7–97.1% amino acid identities with those of other ASGV isolates available in GenBank. The polyclonal antibody generated against ASGV TS1 has been routinely used for the detection of the ASGV-infection in the imported pear scions for quarantine purpose via enzyme-linked immunosorbent assays (ELISAs). One of 1,199 samples of pear scions imported from Japan during 2005–2007 was identified as ASGV-positive and the virus was designated as AGJP-22. The CP gene amplified from this AGJP-22 shared 97.9–98.3% amino acid identities to those of the domestic isolates and they were closely related phylogenetically. To date, these data present for the first time conclusive evidence revealing that ASGV is indeed the causal agent of the pear disease displaying symptoms of reduced size of foliage and leaf distortion in Taiwan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号