首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
OBJECTIVE: To determine effects of dexamethasone on glucose dynamics and insulin sensitivity in healthy horses. ANIMALS: 6 adult Standardbreds. PROCEDURES: In a balanced crossover study, horses received dexamethasone (0.08 mg/ kg, IV, q 48 h) or an equivalent volume of saline (0.9% NaCl) solution (control treatment) during a 21-day period. Horses underwent a 3-hour frequently sampled IV glucose tolerance test (FSIGT) 2 days after treatment. Minimal model analysis of glucose and insulin data from FSIGTs were used to estimate insulin sensitivity (Si), glucose effectiveness (Sg), acute insulin response to glucose (AIRg), and disposition index. Proxies for Si (reciprocal of the inverse square of basal insulin concentration [RISQI]) and beta-cell responsiveness (modified insulin-to-glucose ratio [MIRG]) were calculated from basal plasma glucose and serum insulin concentrations. RESULTS: Mean serum insulin concentration was significantly higher in dexamethasone-treated horses than control horses on days 7, 14, and 21. Similarly, mean plasma glucose concentration was higher in dexamethasone-treated horses on days 7, 14, and 21; this value differed significantly on day 14 but not on days 7 or 21. Minimal model analysis of FSIGT data revealed a significant decrease in Si and a significant increase in AIRg after dexamethasone treatment, with no change in Sg or disposition index. Mean RISQI was significantly lower, whereas MIRG was higher, in dexamethasone-treated horses than control horses on days 7, 14, and 21. CONCLUSIONS AND CLINICAL RELEVANCE: The study revealed marked insulin resistance in healthy horses after 21 days of dexamethasone administration. Because insulin resistance has been associated with a predisposition to laminitis, a glucocorticoid-induced decrease in insulin sensitivity may increase risk for development of laminitis in some horses and ponies.  相似文献   

2.
Reasons for performing study: The use of plasma fructosamine concentration ([fructosamine]) as a marker of abnormal glucose homeostasis in laminitic horses has not been investigated. Hypothesis: Plasma fructosamine concentration may be higher amongst laminitic horses than normal horses; this might relate to underlying insulin resistance. Objectives: 1) To compare [fructosamine] between laminitic and normal horses. 2) To investigate associations between [fructosamine] at presentation in laminitic horses with a) single sample markers of insulin resistance and b) outcome. Methods: Plasma fructosamine concentration, fasting serum insulin concentration (insulin) and fasting plasma glucose concentration (glucose) were measured in 30 horses that presented with laminitis. Clinical details and follow‐up data were recorded. Plasma fructosamine concentration was also measured in 19 nonlaminitic control horses. Results: Laminitic horses had significantly higher mean [fructosamine] than normal horses (P<0.001). Thirteen of 30 laminitic horses had fasting hyperinsulinaemia, 2/30 had fasting hyperglycaemia. Statistically significant univariable correlations were identified between [fructosamine] and [glucose], [insulin] and the proxies RISQI and MIRG. Trends for association between [fructosamine] and negative outcome did not reach statistical significance. Conclusions and potential relevance: Increased mean [fructosamine] in laminitic horses may represent abnormal glycaemic control and [fructosamine] may become a clinically useful marker.  相似文献   

3.
Reasons for performing study: Insulin resistance may be a risk factor for pasture‐associated laminitis. Diagnosis of insulin resistance could help identify individuals at increased risk of laminitis. Objective: To calculate proxy measurements of insulin sensitivity (reciprocal of the square root of insulin: RISQI and quantitative insulin sensitivity check index: QUICKI) and insulin secretory response (modified insulin‐to‐glucose ratio: MIRG) based on basal glucose and insulin concentrations in normal (NP) and previously laminitic (PLP) ponies. Methods: Proxies were calculated in 7 NP and 5 PLP from 20 separate measurements of insulin and glucose taken in spring, summer and winter when ponies were adapted to eating either pasture or hay. Proxies were RISQI: Insulin‐0.5, QUICKI: 1/(log[fasting Insulin]+ log[fasting Glucose]) and MIRG: (800?0.3×[Insulin‐50]2)/[Glucose‐30]. A modified insulin‐to‐glucose ratio for ponies (MIGRP) was investigated using: (3000?0.012 ×[Insulin‐500]2)/[Glucose‐30]. Statistical analysis used linear mixed models. Results: Diet did not significantly affect measurements, so values were pooled for further analysis. RISQI (mean ± s.d.) was lower in PLP (0.26 ± 0.15 [mu/l]‐0.5) than NP (0.29 ± 0.12 [mu/l]‐0.5; P = 0.05). QUICKI was lower in PLP (0.31 ± 0.05) than NP (0.33 ± 0.04; P = 0.047). There was no difference in MIRG between NP and PLP. MIGRP (median [interquartile range]) was greater in PLP (4.0 [7.9][muins]2/10·l·mggluc) than NP (2.6 [3.2][muins]2/10·l·mggluc; P = 0.022). In spring, NP had higher RISQI and QUICKI and lower MIGRP than PLP (P<0.001). In PLP, RISQI and QUICKI were higher in summer than spring (P<0.02) and MIGRP was lower in summer than other seasons (P<0.01). In NP, RISQI, QUICKI and MIGRP were each different between seasons (P<0.017). MIRG did not vary with season. Conclusions: RISQI, QUICKI and MIGRP, but not MIRG, differentiated between NP and PLP. None of the proxies accurately identified individual PLP. Seasonal changes in insulin sensitivity and insulin secretory response were apparent. Potential relevance: Current proxy measurements cannot determine an individual's laminitis susceptibility. MIGRP may be useful in hyperinsulinaemic animals.  相似文献   

4.
Equine pituitary pars intermedia dysfunction (PPID) is known to alter glucose/insulin metabolism. This study evaluated changes in parameters relating to glucose/insulin metabolism and determined whether there is a difference between pergolide-treated and untreated animals. We hypothesized that glucose/insulin dynamics in PPID horses receiving pergolide would be different than those in untreated horses. A total of 38 horses with diagnoses of PPID were included in the study (average age: 24 years). A total of 25 horses were untreated; 13 horses were treated with pergolide (>3 months). Parameters relating to glucose/insulin metabolism were determined in all horses, as follows: adrenocorticotropin-releasing hormone (ACTH), insulin, fructosamine, triglyceride, glucose, modified insulin-to-glucose ratio (MIRG), and reciprocal of the square root of insulin (RISQI). A combined glucose-insulin test (CGIT) was performed in 23 horses as not all owners agreed to the testing. Treated animals showed a tendency to have lower ACTH, but results were not significant. All animals had fructosamine levels exceeding reference values (mean value 314 ± 32 μmol/L; reference range: <280 μmol/L). There were no statistically significant differences between insulin, glucose, ACTH, triglycerides concentrations, RISQI/MIRG calculations, and CGIT results of pergolide-treated PPID and those of untreated horses. Five horses (13.2%) had combined hyperglycemia/hyperinsulinemia, whereas 7 horses (18.4%) displayed hyperglycemia, and 3 horses (7.9%) showed hyperinsulinemia alone. Forty percent of the horses with altered glucose/insulin metabolism were treated with pergolide. Based on RISQI and MIRG calculations, 19 animals displayed changes in glucose/insulin metabolism. Fourteen of twenty-three horses (61%) showed signs of insulin resistance in CGIT results. In conclusion, PPID horses frequently show alterations in glucose/insulin metabolism, but no significant differences were found between treated and untreated animals. Changes in insulin/glucose dynamics may not be a useful indicator of response to pergolide treatment.  相似文献   

5.
OBJECTIVE: To evaluate genetic and metabolic predispositions and nutritional risk factors for development of pasture-associated laminitis in ponies. DESIGN: Observational cohort study. ANIMALS: 160 ponies. PROCEDURES: A previous diagnosis of laminitis was used to differentiate 54 ponies (PL group) from 106 nonlaminitic ponies (NL group). Pedigree analysis was used to determine a mode of inheritance for ponies with a previous diagnosis of laminitis. In early March, ponies were weighed and scored for body condition and basal venous blood samples were obtained. Plasma was analyzed for glucose, insulin, triglycerides, nonesterified fatty acids, and cortisol concentrations. Basal proxies for insulin sensitivity (reciprocal of the square root of insulin [RISQI]) and insulin secretory response (modified insulin-to-glucose ratio [MIRG]) were calculated. Observations were repeated in May, when some ponies had signs of clinical laminitis. RESULTS: A previous diagnosis of laminitis was consistent with the expected inheritance of a dominant major gene or genes with reduced penetrance. A prelaminitic metabolic profile was defined on the basis of body condition, plasma triglyceride concentration, RISQI, and MIRG. Meeting > or = 3 of these criteria differentiated PL- from NL-group ponies with a total predictive power of 78%. Determination of prelaminitic metabolic syndrome in March predicted 11 of 13 cases of clinical laminitis observed in May when pasture starch concentration was high. CONCLUSIONS AND CLINICAL RELEVANCE: Prelaminitic metabolic syndrome in apparently healthy ponies is comparable to metabolic syndromes in humans and is the first such set of risk factors to be supported by data in equids. Prelaminitic metabolic syndrome identifies ponies requiring special management, such as avoiding high starch intake that exacerbates insulin resistance.  相似文献   

6.
In the horse, resting insulin concentration (INS), the glucose-to-insulin ratio (G:I), and the reciprocal of the square root of insulin (RISQI = 1/√INS) are commonly used to estimate insulin sensitivity, whereas the modified insulin-to-glucose ratio (MIRG = [800 – 0.30 × (INS -50)2]/(GLU – 30) is used to estimate pancreatic beta-cell responsiveness. Because no estimates of their within-horse variability and repeatability have been reported, the objective of this study was to evaluate the within-horse variation of these estimates. Resting blood samples were obtained from six healthy equids (three geldings, two mares; mean ± SD body weight, 525.0 ± 43.36 kg; mean age, 9.8 ± 8.2 years; and one pony gelding: 293 kg; 12 years) on three consecutive days in week 1 and again in week 2. Samples were collected at 12:00 noon, approximately 6 hours postprandially. Serum insulin and plasma glucose (GLU) concentrations were analyzed and used to calculate G:I, RISQI, and MIRG, as well as the insulin to glucose ratio (I:G). The coefficient of variation was used to determine within-horse variation, and repeatability was determined using the repeatability coefficient (RC; measurements from a single horse should differ less than the RC for 95% of the pairs). The mean coefficients of variation (CVs) for resting GLU, INS, G:I, I:G, MIRG, and RISQI were 5.5%, 33.7%, 36.0%, 31.6%, 22.3%, and 18.6%, respectively. All variables had values that differed more than the RC in at least one horse. These data suggest that care should be taken when interpreting insulin sensitivity estimates from a single blood sample.  相似文献   

7.
Insulin resistance has been suggested to increase the risk of certain diseases, including osteochondrosis and laminitis. Our objective was to evaluate the effect of adaptation to high-glycemic meals on glucose-insulin regulation in healthy Thoroughbred weanlings. Twelve Thoroughbred foals were raised on pasture and supplemented twice daily with a feed high in either sugar and starch (SS; 49% nonstructural carbohydrates, 21% NDF, 3% crude fat on a DM basis) or fat and fiber (FF; 12% nonstructural carbohydrates, 44% NDF, 10% crude fat on a DM basis). As weanlings (age 199 +/- 5 d; BW 274 +/- 5 kg) the subjects underwent a modified frequently sampled i.v. glucose tolerance test. A series of 39 blood samples was collected from -60 to 360 min, with a glucose bolus of 300 mg/kg BW injected at 0 min and an insulin bolus of 1.5 mIU/kg BW at 20 min. All samples were analyzed for glucose and insulin, and basal samples also were analyzed for plasma cortisol, triglyceride, and IGF-I. The minimal model of glucose and insulin dynamics was used to determine insulin sensitivity (SI), glucose effectiveness, acute insulin response to glucose (AIRg), and disposition index (DI). Insulin sensitivity was 37% less (P = 0.007) in weanlings fed SS than in those fed FF; however, DI did not differ (P = 0.65) between diets because AIRg tended to be negatively correlated with SI (r = -0.55; P = 0.067). This finding indicates that the SI decrease was compensated by AIRg in the weanlings adapted to SS. This compensation was further demonstrated by greater insulin concentrations in SS-adapted weanlings compared with FF-adapted weanlings at 11 of 36 sample points (P < 0.055) and greater (P = 0.040) total area under the insulin curve in SS than in FF weanlings. Plasma cortisol and triglycerides did not differ between dietary groups, but IGF-I was greater (P = 0.001) in SS weanlings. Despite appearing healthy, horses adapted to high-glycemic feeds may exhibit changes in altered insulin sensitivity and compensation that increase the risk of diseases involving insulin resistance. These changes seem to be partially amenable to dietary management.  相似文献   

8.
Metformin may be an effective therapeutic option for insulin-resistant (I-R) horses/ponies because, in humans, it reportedly enhances insulin sensitivity (SI) of peripheral tissues without stimulating insulin secretion. To determine the effect of metformin on insulin and glucose dynamics in I-R ponies, six ponies were studied in a cross-over design by Minimal Model analysis of a frequently-sampled intravenous glucose tolerance test (FSIGT). Metformin was administered at 15 mg/kg bodyweight (BW), orally, twice-daily, for 21 days to the metformin-treated group. The control group received a placebo. A FSIGT was conducted before and after treatment. The Minimal Model of glucose and insulin dynamics rendered indices describing SI, glucose effectiveness (Sg), acute insulin response to glucose (AIRg) and the disposition index (DI). The body condition score (BCS), BW and cresty neck score (CNS) were also assessed. There was no significant change in SI, Sg, AIRg, DI, BW, BCS or CNS in response to metformin, or over time in the control group. There were no measurable benefits of metformin on SI, consistent with recent work showing that the bioavailability of metformin in horses is poor, and chronic dosing may not achieve therapeutic blood concentrations. Alternatively, metformin may only be effective in obese ponies losing weight or with hyperglycaemia.  相似文献   

9.
OBJECTIVE: To determine the effects of long-term oral administration of levothyroxine sodium (L-T(4)) on glucose dynamics in adult euthyroid horses. ANIMALS: 6 healthy adult mares. PROCEDURES: Horses received L-T(4) (48 mg/d) orally for 48 weeks. Frequently sampled IV glucose tolerance test procedures were performed on 3 occasions (24-hour intervals) before and at 16, 32, and 48 weeks during the treatment period. Data were assessed via minimal model analysis. The repeatability of measurements was evaluated. RESULTS: During treatment, body weight decreased significantly from the pretreatment value; mean +/- SD weight was 49 +/- 14 kg, 43 +/- 7 kg, and 25 +/- 18 kg less than the pretreatment value at weeks 16, 32, and 48, respectively. Compared with pretreatment findings, 1.8-, 2.4-, and 1.9-fold increases in mean insulin sensitivity (SI) were detected at weeks 16, 32, and 48, respectively; SI was negatively correlated with body weight (r = -0.42; P < 0.001). During treatment, glucose effectiveness increased and the acute insulin response to glucose decreased. Overall mean within-horse coefficients of variation were 5% and 29% for plasma glucose and serum insulin concentrations, respectively, and 33%, 26%, and 23% for SI, glucose effectiveness, and the acute insulin response to glucose, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Long-term administration of L-T(4) was associated with weight loss and increased SI in adult euthyroid horses, although other factors may have confounded results. Levothyroxine sodium may be useful for the treatment of obesity and insulin resistance in horses, but further studies are required.  相似文献   

10.
OBJECTIVES: To acquire reference range values indicative of glucose metabolism by use of the hyperglycemic clamp technique in healthy horses and evaluate the usefulness of the euglycemic hyperinsulinemic clamp technique in healthy horses and ponies. ANIMALS: Dutch Warmblood horses and 4 Shetland ponies. PROCEDURE: The hyperglycemic clamp technique was used for quantification of the sensitivity of beta cells to exogenous glucose infusion in horses. The euglycemic hyperinsulinemic clamp technique was used to determine the sensitivity and responsiveness of tissues to exogenous insulin in horses and ponies. RESULTS: During the hyperglycemic clamp technique, the mean amount of glucose metabolized (M) in horses was 0.011 +/- 0.0045 mmol/kg x min(-1) (95% confidence interval [CI], 0.0018 to 0.020 mmol/kg x min(-1); range, 0.000035 to 0.021 mmol/kg x min(-1)) and the mean M value-to-plasma insulin concentration (I) ratio (ie, mmol of glucose/kg x min(-1) per pmol of insulin/L x 100) was 0.017 +/- 0.016 (95% CI, -0.014 to 0.049; range, 0.000025 to 0.055). During the euglycemic hyperinsulinemic clamp technique, the mean M value was 0.014 +/- 0.0055 mmol/kg x min(-1) (95% CI, 0.0026 to 0.025 mmol/kg x min(-1); range, 0.0042 to 0.023 mmol/kg x min(-1)) in horses and 0.0073 +/- 0.0020 mmol/kg x min(-1) (95% CI, 0.0034 to 0.011 mmol/kg x min(-1); range, 0.0049 to 0.011 mmol/kg x min(-1)) in ponies. The M value was significantly lower in ponies than in horses, whereas the M:I ratios were not significantly different between horses and ponies. CONCLUSION AND CLINICAL RELEVANCE: Glucose clamp techniques offer good methods to investigate glucose metabolism in horses and ponies. A higher degree of insulin resistance was found in ponies, compared with Dutch Warmblood horses.  相似文献   

11.
OBJECTIVE: To evaluate the effects of endotoxin administered IV on glucose and insulin dynamics in horses. ANIMALS: 16 healthy adult mares. PROCEDURES: Each week of a 2-week randomized crossover study, each horse received an IV injection (duration, 30 minutes) of Escherichia coli O55:B5 lipopolysaccharide (LPS) in 60 mL of sterile saline (0.9% NaCl) solution (20 ng/kg) or sterile saline solution alone (control treatment). Frequently sampled IV glucose tolerance test procedures were performed at 24 hours before (baseline) and 24 and 48 hours after injection; glucose and insulin dynamics were assessed via minimal model analysis. RESULTS: 13 of 16 horses had a clinical response to LPS, which was characterized by mild colic and leukopenia. Before treatment, mean +/- SD insulin sensitivity was 2.9 +/- 1.9 x 10(4) L x min(1) x mU(1); this significantly decreased to 0.9 +/- 0.9 x 10(4) L x min(1) x mU(1) 24 hours after treatment (69% reduction) and was 1.5 +/- 0.9 x 10(4) L x min(1) x mU(1) 48 hours after treatment. At baseline, mean +/- SD acute insulin response to glucose was 520 +/- 196 mU x min x L(1); this significantly increased to 938 +/- 620 mU x min x L(1) (80% increase) and 755 +/- 400 mU x min x L(1) (45% increase) at 24 and 48 hours after LPS treatment, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: Compared with baseline values, insulin sensitivity was decreased for 24 hours after IV injection of LPS, and affected horses had a compensatory pancreatic response. These disturbances in glucose and insulin dynamics may contribute to development of laminitis in horses.  相似文献   

12.
OBJECTIVE: To investigate glucose tolerance and insulin sensitivity in llama crias. ANIMALS: 7 llamas (age range, 14 to 30 days). PROCEDURE: On each of 2 sequential days, crias were administered glucose (0.5 g/kg) via rapid i.v. injection. On 1 day (randomly determined for each cria), regular insulin (0.2 U/kg) or 0.9% NaCl solution (0.002 mL/kg) was administered i.v. 15 minutes after glucose administration. Blood samples were collected before (baseline) and at 5, 15, 30, 45, 60, 90, 120, 180, and 240 minutes after glucose administration for determination of plasma glucose and insulin concentrations; fractional turnover rates and plasma half-life of glucose were calculated. The data were compared over time and between days (ie, between glucose treatments with and without insulin administration). RESULTS: A peak plasma glucose concentration of 342 +/- 47 mg/dL was detected at 5 minutes after glucose administration and llamas cleared glucose from plasma within 60 minutes; at 15 minutes, plasma insulin concentration attained a peak value of 33 +/- 13 microU/mL (ie, triple the baseline value). During the 15- to 45-minute interval, fractional turnover rate of glucose was 1.10 +/- 0.24%/min and plasma half-life was 65.7 +/- 13.4 minutes. Insulin significantly increased glucose turnover and resulted in hypoglycemia within 75 minutes of administration. CONCLUSIONS AND CLINICAL RELEVANCE: Healthy immature llamas have glucose tolerance and insulin sensitivity superior to that of adults. However, whether sick crias retain the pancreatic sufficiency and tissue responsiveness that are likely responsible for the rapid glucose clearance in healthy individuals is not known.  相似文献   

13.
Background: Insulin resistance has been associated with risk of laminitis in horses. Genes coding for proinflammatory cytokines and chemokines are expressed more in visceral adipose tissue than in subcutaneous adipose tissue of insulin‐resistant (IR) humans and rodents. Hypothesis/Objectives: To investigate adipose depot‐specific cytokine and chemokine gene expression in horses and its relationship to insulin sensitivity (SI). Animals: Eleven light breed mares. Methods: Animals were classified as IR (SI = 0.58 ± 0.31 × 10?4 L/min/mU; n = 5) or insulin sensitive (IS; SI = 2.59 ± 1.21 × 10?4 L/min/mU; n = 6) based on results of a frequently sampled intravenous glucose tolerance test. Omental, retroperitoneal, and mesocolonic fat was collected by ventral midline celiotomy; incisional nuchal ligament and tail head adipose tissue biopsy specimens were collected concurrently. The expression of tumor necrosis factor‐α (TNF‐α), interleukin (IL)‐1β, IL‐6, plasminogen activator inhibitor‐1 (PAI‐1), and monocyte chemoattractant protein‐1 (MCP‐1) in each depot was measured by real‐time quantitative polymerase chain reaction. Data were analyzed by 2‐way analysis of variance for repeated measures (P < .05). Results: No differences in TNF‐α, IL‐1β, IL‐6, PAI‐1, or MCP‐1 mRNA concentrations were noted between IR and IS groups for each depot. Concentrations of mRNA coding for IL‐1β (P= .0005) and IL‐6 (P= .004) were significantly higher in nuchal ligament adipose tissue than in other depots. Conclusions and Clinical Importance: These data suggest that the nuchal ligament depot has unique biological behavior in the horse and is more likely to adopt an inflammatory phenotype than other depots examined. Visceral fat may not contribute to the pathogenesis of obesity‐related disorders in the horse as in other species.  相似文献   

14.
The objective of this study was to examine the effects of dietary ω-3 fatty acid supplementation on insulin sensitivity (SI) in horses. Twenty-one mares were blocked by age, body weight (BW), and body condition score (BCS) and randomly assigned to one of three dietary treatments. Treatments consisted of (1) 38 g of n-3 fatty acids via fish and algae supplement and diet (MARINE), (2) 38 g of n-3 fatty acids via a flaxseed meal from the supplement and diet (FLAX), and (3) control (CON) no supplemental fatty acid. Treatments were supplemented for 90 days. Frequent sampling intravenous glucose tolerance tests were performed on days 0, 30, 60, and 90. Blood samples were analyzed for glucose and insulin. The minimal model was applied for the glucose and insulin curves using MinMod Millennium. SI increased 39% (P < .007) across all treatment groups. Acute insulin response to glucose decreased 22% (P < .006) between days 30 and 60 and increased (P = .040) again at day 90. Disposition index (combined SI and β pancreatic response) increased (P = .03) by 53% in the MARINE- and 48% in the FLAX-supplemented horses and did not change with time in the CON group. In insulin-resistant mares, MARINE- and FLAX-treated horses had an increase in SI (P = .09). It would be interesting to test this supplement in a larger group of insulin-resistant horses. If proven effective, supplementation with ω-3 fatty acids would help to reduce problems associated with insulin resistance in horses.  相似文献   

15.
OBJECTIVE: To determine reference values and test variability for glucose tolerance tests (GTT), insulin tolerance tests (ITT), and insulin sensitivity tests (IST) in cats. ANIMALS: 32 clinically normal cats. PROCEDURE: GTT, ITT, and IST were performed on consecutive days. Tolerance intervals (ie, reference values) were calculated as means +/- 2.397 SD for plasma glucose and insulin concentrations, half-life of glucose (T1/2 glucose), rate constants for glucose disappearance (Kglucose and Kitt), and insulin sensitivity index (Si). Tests were repeated after 6 weeks in 8 cats to determine test variability. RESULTS: Reference values for T1/2glucose, Kglucose, and fasting plasma glucose and insulin concentrations during GTT were 45 to 74 minutes, 0.93 to 1.54 %/min, 37 to 104 mg/dl, and 2.8 to 20.6 microU/ml, respectively. Mean values did not differ between the 2 tests. Coefficients of variation for T1/2glucose, Kglucose, and fasting plasma glucose and insulin concentrations were 20, 20, 11, and 23%, respectively. Reference values for Kitt were 1.14 to 7.3%/min, and for SI were 0.57 to 10.99 x 10(4) min/microU/ml. Mean values did not differ between the 2 tests performed 6 weeks apart. Coefficients of variation for Kitt and SI were 60 and 47%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE: GTT, ITT, and IST can be performed in cats, using standard protocols. Knowledge of reference values and test variability will enable researchers to better interpret test results for assessment of glucose tolerance, pancreatic beta-cell function, and insulin sensitivity in cats.  相似文献   

16.
Both the euglycemic-hyperinsulinemic clamp (EHC) and minimal model analysis of the frequently sampled intravenous glucose tolerance test (FSIGT) have been applied for measurement of insulin sensitivity in horses. However, no published data are available on the reproducibility of these methods. Therefore, the objective of this study was to evaluate the variation and repeatability of measures of glucose dynamics and insulin sensitivity in horses derived from minimal model analysis of the FSIGT and from the EHC method. Six healthy horses underwent both the FSIGT and EHC on 2 occasions over a 4-week period, with a minimum of 5 days between tests. Coefficient of variation (CV) and intraclass correlation coefficient (ICC) were calculated for measures of glucose metabolism and insulin sensitivity derived from each test. In the EHC, insulin sensitivity, expressed as the amount of metabolized glucose (M) per unit of serum insulin (I) (M/I ratio), averaged 0.19 +/- 0.06 x 10(-4) mmol/kg/min x (pmol/L)(-1) with an average interday CV of 14.1 +/- 5.7% (range, 7-20%) and ICC of 0.74. Minimal model analysis of the FSIGT demonstrated mean insulin sensitivity (Si) of 0.49 +/- 0.17 x 10(-4)/min x (pmol/L)(-1) with an average interday CV of 23.7 +/- 11.2% (range, 9-35%) and ICC of 0.33. Mean CV and ICC for minimal model glucose effectiveness (Sg) and acute insulin response (AIRg) were, respectively, 26.4 +/- 11.2% (range 13-40%) and 0.10 and 11.7 +/- 6.5% (range 7-21%) and 0.98. Insulin sensitivity measured by the EHC has lower interday variation when compared with the minimal model estimate derived from the FSIGT.  相似文献   

17.
Glucose tolerance and insulin response in normal-weight and obese cats   总被引:2,自引:0,他引:2  
Glucose tolerance and insulin response were evaluated in 9 normal-weight and 6 obese cats after IV administration of 0.5 g of glucose/kg of body weight. Blood samples for glucose and insulin determinations were collected immediately prior to and 2.5, 5, 7.5, 10, 15, 30, 45, 60, 90, and 120 minutes after glucose infusion. Baseline glucose concentrations were not significantly different between normal-weight and obese cats; however, mean +/- SEM glucose tolerance was significantly impaired in obese vs normal-weight cats after glucose infusion (half time for glucose disappearance in serum--77 +/- 7 vs 51 +/- 4 minutes, P less than 0.01; glucose disappearance coefficient--0.95 +/- 0.10 vs 1.44 +/- 0.10%/min, P less than 0.01; insulinogenic index--0.20 +/- 0.02 vs 0.12 +/- 0.01, P less than 0.005, respectively). Baseline serum insulin concentrations were not significantly different between obese and normal-weight cats. Insulin peak response after glucose infusion was significantly (P less than 0.005) greater in obese than in normal-weight cats. Insulin secretion during the first 60 minutes (P less than 0.02), second 60 minutes (P less than 0.001), and total 120 minutes (P less than 0.0003) after glucose infusion was also significantly greater in obese than in normal-weight cats. Most insulin was secreted during the first hour after glucose infusion in normal-weight cats and during the second hour in obese cats. The impaired glucose tolerance and altered insulin response to glucose infusion in the obese cats was believed to be attributable to deleterious effects of obesity on insulin action and beta-cell responsiveness to stimuli (ie, glucose).  相似文献   

18.
OBJECTIVE: To determine whether pasture, and specifically the addition of fructan carbohydrate to the diet, induces exaggerated changes in serum insulin concentration in laminitispredisposed (LP) ponies, compared with ponies with no history of the condition, and also to determine insulin responses to the dexamethasone suppression test. DESIGN: Prospective study. ANIMALS: 10 LP and 11 control adult nonobese mixed-breed ponies. PROCEDURES: Insulin-modified IV glucose tolerance tests were performed (5 ponies/group). In diet studies, ponies were kept on pasture and then changed to a hay diet (10 ponies/group). Second, ponies were maintained on a basal hay diet (4 weeks) before being fed a hay diet supplemented with inulin (3 g/kg/d [1.4 g/lb/d]). Serum insulin and plasma glucose concentrations were analyzed before and after dietary changes. Serum cortisol and insulin concentrations were also measured in a standard dexamethasone suppression test. RESULTS: The LP ponies were insulin resistant (median insulin sensitivity of 0.27 x 10(4) L min(-1) mU(-1) in LP ponies, compared with 0.64 x 10(4) L min(-1) mU(-1) in control ponies). Median insulin concentration in LP ponies was significantly greater than that in control ponies at pasture, decreased in response to feeding hay, and was markedly increased (5.5-fold) following the feeding of inulin with hay. The LP ponies had a greater increase in serum insulin concentration at 19 hours after dexamethasone administration (median, 222.9 mU/L), compared with control ponies (45.6 mU/L). CONCLUSIONS AND CLINICAL RELEVANCE: Nonobese ponies predisposed to develop laminitis had compensated insulin resistance, and this phenotype was revealed by feeding plant fructan carbohydrate or by dexamethasone administration.  相似文献   

19.
The effects of feed restriction, cold exposure, and the initiation of feeding on blood glucose metabolism, other blood metabolites, hormones, and tissue responsiveness and sensitivity to insulin were measured in sheep. The sheep consumed orchardgrass hay ad libitum (AL) or were restricted to 82% of the ME requirement for maintenance (RE) and were exposed to a thermoneutral (20 degrees C) or a cold environment (2 degrees C). An isotope dilution method and a glucose clamp approach were applied to determine blood glucose metabolism and insulin action, respectively. Plasma NEFA and insulin concentrations were influenced by feed restriction. Concentrations of plasma glucose, NEFA, insulin, and glucagon were influenced by cold exposure. Plasma NEFA concentration for RE decreased after the initiation of feeding and plasma insulin concentration increased transiently for all treatments. [U-13C]Glucose was continuously infused for 8 or 7 h after a priming injection starting 3 h before the initiation of either feeding or insulin infusion, respectively. When responses to feeding were studied, blood glucose turnover rate was less (P < .001) for RE than for AL, and it was greater (P < .001) during cold exposure than in the thermoneutral environment. The rate changed little after the initiation of feeding. For the glucose clamp approach, insulin was infused over four sequential 1-h periods at rates from .64 to 10 mU x kg BW(-1) x min(-1), with concomitant glucose infusion to maintain preinfusion plasma glucose concentrations. The rates of glucose infusion and blood glucose turnover increased (P < .001) dose-dependently with insulin infusion rate. The maximal glucose infusion rate was greater (P < .05) for RE than for AL and was greater (P < .001) during cold exposure than in the thermoneutral environment. The plasma insulin concentration at half-maximal glucose infusion rate was lower (P < .1) during cold exposure. Blood glucose turnover rate tended to be greater (P = .10) for RE than for AL, and it was greater (P < .001) during cold exposure than in the thermoneutral environment. The ratio of endogenous production to utilization of glucose was suppressed by insulin infusion. In sheep fed a roughage diet, blood glucose turnover rate seems to be influenced by both intake level and environmental temperature, but not by the act of feeding. Moreover, the action of insulin on glucose metabolism is enhanced during cold exposure, and the effect of feed restriction is somewhat enhanced.  相似文献   

20.
Effects of oat processing on the glycaemic and insulin responses in horses   总被引:3,自引:0,他引:3  
This study was conducted to evaluate the effects of different oat processing techniques on the plasma glucose and insulin response in horses. In a cross-over design, six horses (ages 4-15 years, mean body weight+/-SD: 450+/-37 kg) were fed in random order: untreated oats, finely ground, steam-flaked and popped oats. The total oat intake varied between 1.05-1.5 kg/day, and the amount of diet was adjusted to a starch content of 630 g starch per day and horse (1.2-1.5 g starch/kg BW/day). During the stabilization period of 10 days, horses additionally received 6 kg grass hay. Following this adaptation period, plasma glucose and insulin responses to the respective dietary treatments were tested. Horses were fed their test diet (exclusively oats), and blood samples were collected at defined times to determine glycaemic and insulin response. Oat feeding resulted in a significant increase in mean plasma glucose and insulin concentration. However, glucose and insulin peaks as well as their respective areas under the curves were not clearly influenced by oat processing. The glycaemic index varied between 94.7+/-11.2% (steam-flaked oats) and 102.6+/-14.5% (finely ground oats, n.s.), the insulin index ranged between 93.8+/-18.9% (popped oats) and 150.0+/-77.6% (finely ground oats, n.s.). The insulin reaction to oat feeding showed a high variability between the horses. The results of this study indicate that the glucose and insulin responses are not clearly altered by the different types of oat processing. However, the glucose and insulin responses tended to be lower in thermally treated oats when compared with untreated or finely ground oats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号