首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of molecules with high affinity for central and peripheral benzodiazepine receptors was determined in the pod and leaves of Ceratonia siliqua (carob). The amount of the substances able to selectively bind the central benzodiazepine receptor recovered from carob pods and leaves was respectively 12.17 and 18.7 ng diazepam equivalent/g. The amount of compounds active on peripheral benzodiazepine receptor in both pods and leaves was higher in comparison with the central one, being 49.83 and 40.00 PK 11195 equivalent/g, respectively. In particular the compounds acting on peripheral benzodiazepine receptors were found to be extremely concentrated in the young leaves (2572.57 ng PK 11195 equivalent/g). The presence of substances with central benzodiazepine activity in carob extracts seems of great importance in view of the possibility to use carob extract as potential natural products with anxiolytic-sedative effects. Moreover, the prevalence in leaves of substances acting on peripheral benzodiazepine receptor suggests the possible utilisation of leave extracts as chemopreventive agents.  相似文献   

2.
Methanolic extracts (25 microug/ml) of species belonging to the genera of Combretum, Terminalia and Pteleopsis, collected during a field expedition in Tanzania in 1999, were screened for their antiproliferative and cytotoxic effects against three human cancer cell lines (HeLa, cervical carcinoma; T 24, bladder carcinoma; and MCF 7, breast carcinoma). A leaf extract of Combretum fragrans and a fruit extract of C. zeyheri gave the strongest antiproliferative and cytotoxic effects of all the twenty-four extracts screened in this investigation. In contrast to the highly powerful leaf extract of C. fragrans, the root extract of this species gave no cytotoxic effects against the investigated cancer cell lines at a concentration of 25 microg/ml. The other investigated species of Combretum and Terminalia differed greatly in their cytotoxic potential. Root extracts of Terminalia sambesiaca and T. sericea gave the strongest cytotoxic effects of the five species of Terminalia used in this study. Eight of the twenty-four investigated plant extracts showed pronounced cytotoxic effects (<30% proliferation compared to the control) against the T 24 bladder cancer cells, seven against the HeLa cells and four against the MCF 7 cells.  相似文献   

3.
The ethanol extracts obtained from both leaf and seed in the Thorn apple (Datura stramonium L.) (Solanaceae) were investigated for acaricidal, repellent and oviposition deterrent properties against adult two-spotted spider mites (Tetranychus urticae Koch) (Acari: Tetranychidae) under laboratory conditions. Leaf and seed extracts, which were applied in 167,250 and 145,750 mg/l concentrations, respectively (using a Petri leaf disc-spray tower method), caused 98 and 25% mortality among spider mite adults after 48 h. The simple logistic regression analysis showed that the independent variable, an increase in the dose of leaf extract was associated with a significant increase in the death rate of T. urticae females, but an increase in the dosage of seed extracts did not have a significant effect. Using probit analysis and estimating the parameters with a confidence limit of 95%, we determined the LC50 values of leaf extract to be 70,593 mg/l. According to Pearson’s χ2 test, mites showed the strongest run off to bean leaf surfaces sprayed with both leaf and seed extracts (in sub-lethal doses: <7,500 mg/l and <25,000 mg/l, respectively) and moved towards surfaces that had not been sprayed with extracts. Furthermore, repeated measures ANOVA indicated a significant difference between the number of eggs laid on unsprayed bean leaves compared to bean leaves that were sprayed with leaf and seed extracts at sub-lethal doses, 2,500 and 25,000 mg/l concentrations, respectively. These results suggest that D. stramonium extracts could be used to manage the two-spotted spider mite.  相似文献   

4.
Anti-uveal melanoma activity-guided fractionation of the MeOH extract of Acacia nilotica pods resulted in the isolation of the new compound gallocatechin 5-O-gallate (5) in addition to methyl gallate (1), gallic acid (2), catechin (3), catechin 5-O-gallate (4), 1-O-galloyl-β-D-glucose (6), 1,6-di-O-galloyl-β-D-glucose (7) and digallic acid (8). The structures of the isolated compounds were elucidated on the basis of HRESIMS, NMR spectroscopy and CD data. In addition to uveal melanoma, the antiproliferative activities of the isolated compounds and the related compound epigallocatechin 3-O-gallate (EGCG) were evaluated against cutaneous melanoma, ovarian cancer, glioblastoma and normal retinal pigmented cells.  相似文献   

5.
Acne vulgaris is the most common skin disease in the world, and the number of antibiotics resistant to acne-inducing bacterial strains has been increasing in the past years. Natural substances from plants are promising candidates to treat this disease. The methanol and 50 % (v/v) ethanol extracts of 29 plant species traditionally used in Sudan for treatment of a variety of diseases were tested in vitro for their potential anti-acne activity. The activities of these extracts were determined using an antibacterial assay against Propionibacterium acnes, a lipase inhibitory assay, and l,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity assay. The results showed that methanol and 50 % ethanol extracts of Terminalia laxiflora Engl & Diels wood exhibited good antibacterial activity (minimum inhibitory concentration 0.13 mg/ml). The 50 % ethanol extracts of Abrus precatorius L. seed, T. laxiflora Engl & Diels and methanol extract of Acacia nilotica (L.) pods showed lipase inhibitory activity more than 70 % at 500 μg/ml. The methanol extracts of A. nilotica (L.) pods showed the best DPPH radical scavenging activity (IC50 1.32 μg/ml). Total phenolic, flavonoid and total tannin contents of selected plant extracts shown anti-acne activities were investigated. Almost all selected extracts contained phenolic compound. The highest level of flavonoids (38.87 μg/mg) was detected in T. brownii bark, whereas the highest amount of tannin was detected in A. nilotica (L.) bark (88.01 %).  相似文献   

6.
Dryobalanops aromatica Gaertn. f. is a major tropical canopy species in lowland tropical rain forests in Peninsular Malaysia. Diurnal changes in net photosynthetic rate (A) and stomatal conductance to water vapor (g(s)) were measured in fully expanded young and old leaves in the uppermost canopy (35 m above ground). Maximum A was 12 and 10 micro mol m(-2) s(-1) in young and old leaves, respectively; however, because of large variation in A among leaves, mean maximum A in young and old leaves was only 6.6 and 5.5 micro mol m(-2) s(-1), respectively. Both g(s) and A declined in young leaves when T(leaf) exceeded 34 degrees C and leaf-to-air vapor pressure deficit (DeltaW) exceeded 0.025, whereas in old leaves, g(s) and A did not start to decline until T(leaf) and DeltaW exceeded 36 degrees C and 0.035, respectively. Under saturating light conditions, A was linearly related to g(s). The coefficient of variation (CV) for the difference between the CO(2) concentrations of ambient air and the leaf intercellular air space (C(a) - C(i)) was smaller than the CV for A or g(s), suggesting that maximum g(s) was mainly controlled by mesophyll assimilation (A/C(i)). Minimum C(i)/C(a) ratios were relatively high (0.72-0.73), indicating a small drought-induced stomatal limitation to A and non-conservative water use in the uppermost canopy leaves.  相似文献   

7.
以野生型杂种胡颓子(WT)和突变型金边杂种胡颓子(MT)的3年生扦插苗为供试材料,研究突变型金边杂种胡颓子叶绿素含量与光合特性等生理指标,分析叶色变化的原因。结果显示:(1)叶绿素总含量:杂种胡颓子(WT1.530mg/g)>金边杂种胡颓子叶片绿色部位(MT-绿色1.078mg/g)>金边杂种胡颓子叶片黄色部位(MT-黄化0.031mg/g);类胡萝卜素含量:WT(0.505mg/g)>MT-绿色(0.318mg/g)>MT-黄化(0.050mg/g);(2)金边杂种胡颓子叶片绿色部位的Chla/b比值较WT叶片绿色部位,没有显著性的差异,但其叶片黄化部位的Chla/b比值显著低于野生型杂种胡颓子;(3)金边杂种胡颓子较野生型胡颓子光合速率及相关参数都有显著的改变。可见,金边杂种胡颓子的叶色变化是由叶片色素含量变化导致,导致植株的光合参数与叶绿素荧光参数等指标发生改变。  相似文献   

8.
Ishida A  Toma T  M 《Tree physiology》1999,19(7):467-473
Diurnal changes in gas exchange and chlorophyll fluorescence were measured in the top canopy leaves of the tropical rainforest tree species, Macaranga conifera (Zoll.) Muell. Arg. during a drought year. Maximum values of net photosynthetic rate (P(n), 10 &mgr;mol m(-2) s(-1)) and stomatal conductance (g(s), 0.2 mol m(-2) s(-1)) were found in east-facing leaves in early morning. After 1000 h, both P(n) and g(s) decreased. Minimum daytime values of P(n), g(s), and photosystem II (PSII) quantum yield (DeltaF/F(m)') were found in horizontally fixed leaves. At a given electron transport rate through PSII (ETR), P(n) was higher in early morning than at midday, suggesting a high rate of photorespiration at midday. We tested the hypothesis that the effect of low leaf temperature (T(leaf)) on P(n) is significant in the early morning, whereas the effect of low g(s) on P(n) predominates at midday. In the early morning, when T(leaf) was increased from 32 to 38 degrees C by artificial heating, P(n) at a given ETR decreased 29%, suggesting that the low T(leaf) was associated with a high P(n). When T(leaf) at midday was decreased from 37 to 32 degrees C by artificial cooling, P(n) increased 22%, but P(n) at a given ETR was higher in early morning than at midday, even at the same low T(leaf) (32 degrees C). This suggests that the rate of photorespiration was higher at midday than in early morning because low g(s) at midday caused a reduction in leaf intercellular CO(2) concentration. We conclude that low P(n) at midday was the result of both a reduction in the photochemical process and an increase in stomatal limitation.  相似文献   

9.
We tested whether growth and maintenance costs of plant organs vary with environmental stress. Quercus ilex L. seedlings from acorns collected from natural populations in the northern Iberian Peninsula and in a lower elevation and putatively less stressful habitat in the southern Iberian Peninsula were grown in pots under the same conditions. Growth and maintenance respiration were measured by CO(2) exchange. Young leaves from 5-month-old seedlings of both populations had similar mean specific leaf areas, nitrogen and carbon concentrations and specific growth rates, and almost identical growth costs (1.26 g glucose g(-1)). Leaf maintenance cost was higher in northern than in the southern population (27.3 versus 22.4 mg glucose g(-1) day(-1), P < 0.01). In both populations, leaf maintenance cost decreased by 90% as leaves aged, but even in mature leaves, the maintenance cost was higher in the northern population than in the southern population (3.38 versus 2.53 mg glucose g(-1) day(-1), P < 0.01). The growth costs of fine roots < 1 mm in diameter were similar in the two populations (1.20 g glucose g(-1)), whereas fine root maintenance cost was higher in the northern population than in the southern population (9.86 versus 7.45 mg glucose g(-1) day(-1); P < 0.05). The results suggest that the cost of organ maintenance is related to the severity of environmental stress in the native habitat. Because the observed differences in both leaves and roots were constitutive, the two populations may be considered ecotypes.  相似文献   

10.
Seasonal variations in leaf nitrogen, phosphorus and potassium concentrations were studied in a mature carob (Ceratonia siliqua L. cv "Mulata") orchard subjected to a 4-year irrigation and fertilization experiment. Three irrigation regimes (0, 50 and 100%), based on the evaporation values obtained from a class A pan, were tested in combination with two nitrogen (N) supply regimes in which 21 kg ha(-1) year(-1) (low-N) and 63 kg ha(-1) year(-1) (high-N) were supplied as ammonium nitrate. Leaf nitrogen concentration increased throughout the experiment, independently of treatments. There were no significant differences in leaf N concentration between trees in the high-N and low-N treatments. Irrigation regimes had no effect on leaf mineral concentration but influenced the amount of leaves shed and slightly modified the pattern of leaf shedding that occurred during the summer drought period. Nutritional balances between N and P and N and K were both closely and significantly correlated. Potassium was translocated from leaves to fruits during spring, independently of treatments. Severe water stress periods occurring during spring or autumn induced shedding of leaves leading to nutrient mobilization. Nutrient retranslocation during these drought periods may represent an adaptive mechanism. Nitrogen retranslocation was higher for trees in the high-N treatments than for trees in the low-N treatments, whereas phosphorus retranslocation was independent of the irrigation and fertilization treatments.  相似文献   

11.
Cuttings of balsam spire hybrid poplar (Populus trichocarpa var. Hastata Henry x Populus balsamifera var. Michauxii (Dode) Farwell) were grown in sand culture and irrigated every 2 (W) or 10 (w) days with a solution containing either 3.0 (N) or 0.5 (n) mol nitrogen m(-3) for 90 days. Trees in the WN (control) and wn treatments had stable leaf nitrogen concentrations averaging 19.4 and 8.4 mg g(-1), respectively, over the course of the experiment. Trees in the Wn and wN treatments had a similar leaf nitrogen concentration, which increased from 12.0 to 15.8 mg g(-1) during the experiment. By the final harvest, mean stomatal conductances of trees in the wN and wn treatments were less than those of trees in the Wn and WN treatments (1.8 versus 4.6 mm s(-1)). Compared to the WN treatment, biomass at the final harvest was reduced by 61, 72 and 75% in the Wn, wN and wn treatments, respectively. At the final harvest, WN trees had a mean total leaf area of 4750 +/- 380 cm(2) tree(-1) and carried 164 +/- 8 leaves tree(-1) with a specific leaf area of 181 +/- 16 cm(2) g(-1), whereas Wn trees had a smaller mean total leaf area (1310 +/- 30 cm(2) tree(-1)), because of the production of fewer leaves (41 +/- 6) with a smaller specific leaf area (154 +/- 2 cm(2) g(-1)). A greater proportion of biomass was allocated to roots in Wn trees than in WN trees, but component nitrogen concentrations adjusted such that there was no Wn treatment effect on nitrogen allocation. Compared with WN trees, rates of photosynthesis and respiration per unit weight of tissue of Wn trees decreased by 28 and 31%, respectively, but the rate of photosynthesis per unit leaf nitrogen remained unaltered. The wN and Wn trees had similar leaf nitrogen concentrations; however, compared with the Wn treatment, the wN treatment decreased mean total leaf area (750 +/- 50 cm(2) tree(-1)), number of leaves per tree (29 +/- 2) and specific leaf area (140 +/- 6 cm(2) g(-1)), but increased the allocation of biomass and nitrogen to roots. Net photosynthetic rate per unit leaf nitrogen was 45% lower in the wN treatment than in the other treatments. Rates of net photosynthesis and respiration per unit weight of tissue were 48 and 33% less, respectively, in wN trees than in Wn trees.  相似文献   

12.
研究了杜仲叶提取物(EULE)对人结直肠癌细胞HCT116体外增殖和凋亡的影响以及其抗血管生成的活性。采用噻唑蓝(MTT)比色法测定了EULE及阳性对照药顺铂对HCT116和人脐静脉内皮细胞(HUVEC)体外增殖的影响;用流式细胞仪测定了EULE对HCT116细胞凋亡的影响。结果表明:EULE对HCT116细胞增殖具有一定的抑制作用,并表现出较好的量效关系,但抑制率稍低于顺铂;EULE对HCT116细胞的凋亡率的影响不显著;EULE对HUVEC细胞增殖的作用具有浓度依赖性,表现为低浓度促进增殖,高浓度抑制增殖。当EULE质量浓度分别为100、200、400和800 mg/L时,对HCT116细胞的抑制率分别为6.50%、10.52%、16.99%和56.49%,对HCT116细胞的凋亡率分别为0.00%、5.90%、7.00%和4.50%。EULE 800 mg/L时对HUVEC细胞的抑制率为41.59%,说明杜仲叶提取物只有达到一定浓度才具有抗新生血管生成的活性。  相似文献   

13.
Elstar apple trees (Malus domestica Borkh.) on M.9 rootstock received either 5 or 35 g N tree(-1) year(-1) during the first two growing seasons after planting, applied as Ca(NO(3))(2) on a daily basis for nine weeks through a drip irrigation system. During the third growing season (1994), all trees were treated with 20 g N tree(-1) year(-1) as (15)NH(4) (15)NO(3) with applications starting on April 22 and continuing for 10 weeks. Soil solution nitrate-N and ammonium-N were monitored weekly with suction lysimeters located 30 cm beneath the drip emitters. Spur and shoot leaves were sampled intensively from full bloom to the end of rapid shoot growth. During the period of nitrogen application, soil solution nitrate-N and ammonium-N were relatively constant, at about 24 and 1.0 mg l(-1) respectively. Growth of the spur leaves was completed by one week after full bloom (May 12), whereas biomass of the shoot leaves increased until mid-June. Nitrogen for growth of the spur leaves was supplied mainly from remobilization, which was dependent on previous N supply. Accumulation of fertilizer N in spur leaves was independent of previous N treatments and continued until the end of the monitoring period (June 24), but contributed only 13% to total spur leaf N. Nitrogen for shoot leaf growth was independent of previous N treatments and was initially supplied primarily by remobilization, but by the end of extension growth, fertilizer N contributed 48% to total shoot leaf N. Linear increases in leaf N uptake throughout the period of rapid shoot growth and the large contribution of fertilizer N to total shoot leaf N were attributed to the constant supply of N available in the root zone through daily N fertilization.  相似文献   

14.
Gbolade AA  Adeyemi AA 《Fitoterapia》2008,79(3):223-225
Aqueous extracts of the leaf, stem bark and root bark from Canna bidentata, Spondias mombin and Commiphora africana were examined for anthelmintic activity against earthworm. All the extracts demonstrated a concentration-dependent activity at tested concentrations of 10-80 mg/ml. Higher activities were observed at the higher concentrations, 40-80 mg/ml for all the plant extracts. C. bidentata with a paralysis time of 3-5 min and death time of 5-18 min at these concentrations for the stem bark, and S. mombin which exhibited comparatively higher efficacy (34-44 min paralysis time and 105 min death time for the leaf) at lower concentrations of 10-20 mg/ml were adjudged the outstanding anthelmintics of plant origin accordingly.  相似文献   

15.
The aqueous extracts of Datura fastuosa leaves and seeds were evaluated for the analgesic effect on acetic acid-induced writhing and hot plate reaction in mice. According to the results, D. fastuosa leaves and seeds extracts at oral doses of 400 and 800 mg/kg are effective as analgesic. The analgesic activity of leaf extract is reduced by naloxone but not that of seed extract.  相似文献   

16.
Many woody species can be propagated from leafy cuttings. However, following rooting, cuttings of Corylus maxima Mill. cv. Purpurea do not always survive the transition from a highly supportive rooting environment (e.g., fog) to a more natural environment where evaporative demand is higher. We found that it is not the supply of water to leaves, but stomatal dysfunction that leads to severe water deficits in the rooted cuttings. Two hours after well-rooted cuttings were transferred from the rooting environment, we were able to relate visible signs of leaf water deficit to high stomatal conductance (g(s)) and low relative water content (R). Small expanding leaves (L3) had unusually high g(s) and lower R than fully expanded leaves (L1). Although high cuticular conductances (g(c)) were occasionally observed in L3, SEM confirmed that increased total leaf conductance (g) was mainly a result of abnormally wide stomatal opening. We measured changes in the ability of stomata to control water loss during rooting by determining stomatal responsiveness to leaf water deficit in detached L1 and L3 harvested from cuttings during the first 75 days after severance from stock plants. Reduced stomatal responsiveness was observed within 7 days of severance, prior to adventitious root formation, and was more pronounced in L3 than in L1. A period of acclimatization after rooting (no leaf wetting, but a vapor pressure deficit of 0.20 kPa) reduced g(s) by 50% in L3 but not in L1, and partially restored stomatal responsiveness in L1 but not in L3. After rooting, the original leaves on the cutting retained substantial capacity for photosynthesis (e.g., in L1, 8 micromol m(-2) s(-1) at a photosynthetic photon flux density of 400 micromol m(-2) s(-1)). The implications of the results for post-rooting acclimatization procedures are discussed.  相似文献   

17.
Transgenic lines were achieved by transforming the E. coli 1-phosphate mannitol dehydrogenase gene (mtl-D) into the Populus tomentosa Carr. genome. An Agrobacterium tumefaciens strain (AGL1), constructed by cloning mtl-D into the disarmed plasmid pBin438, was used to infect leaves of the clone YW2. The infected leaf discs were cultured on a medium containing 30 mg·L-1 kanamycin and 500 mg·L-1 cefotaxime. Transgenic plantlets regenerated from the infected leaves, rooted on the medium containing 30 mg·L-1 kanamycin. PCR and a Southern blotting test verified that the exogenous mtl-D gene had integrated into the transformation plants of the P. tomentosa genome. The mannitol content in control plant was 69μg·g-1 FW, and the mannitol contents of the transgenic lines T1 to T5 ranged between 103.7 and 289.5μg·g-1 FW. Of the shoots of the control plants 20% survived; on the medium containing 0.6% NaCl, 60% and 70% of two transgenic shoots survived on a medium containing 0.8% NaCl.  相似文献   

18.
Methanol extracts of Azadirachta indica leaves at concentration from 0.1 to 40 microg/ml showed in vitro an stimulatory activity in stem cell reproduction. These results suggest that the effect of methanol leaf extracts on stem cell reproduction could be of benefit to improve health.  相似文献   

19.
Jonsson TH 《Tree physiology》2006,26(7):905-914
At coastal sites, trees are exposed to marine aerosols that may cause foliar necrosis and shoot dieback, which can result in deformed crowns and contorted stems. A six-year study of leaf primordia in terminal buds of black cottonwood trees (Populus trichocarpa Torr. & Gray) on Heimaey Island off the south coast of Iceland was undertaken to elucidate the physiological events associated with salt-deposition-related bud failure. Leaf and bud lengths, dry mass, water content and chloride concentrations were monitored and related to four phenological stages: (1) bud set; (2) dormancy induction; (3) dormancy release; and (4) bud break. The trees set buds in July and shed their leaves by late September. Leaf primordia generally stopped growing by September 10 +/- 22 days and attained midwinter water content in late September. Leaf growth commenced in the terminal buds by March 2 +/- 16 days, but mean dates of bud swelling and bud break were April 29 +/- 19 and May 10 +/- 12 days. In summer and until November, chloride concentrations in leaf primordia were low, but increasing. Chloride concentrations remained stable from December to February, even though the dormant trees were exposed to large amounts of marine aerosols. In February and March, three events occurred more or less simultaneously: (1) leaf extension growth commenced; (2) chloride concentration surged in the leaf primordia; and (3) the leaf primordia began to hydrate. Following dormancy release, growth and hydration of leaf primordia were negatively related to chloride concentration in the leaf primordia, with inhibition of leaf growth, tissue hydration and chloride acquisition occurring at a chloride concentration threshold estimated at 7.3 mg Cl- g(-1) tissue water. Necrosis of leaf primordia was observed above 14 mg Cl- g(-1) tissue water. Growth and hydration of leaves at bud break in mid-May was explained by a three-parameter logistic model of chloride concentration in leaf primordia at the end of March. By mid-May, 90% of all buds remained non-necrotic, but only 56% the terminal buds had broken. Salt alone explained the observed growth suppression of leaf primordia in the buds and the resultant failure of terminal buds to break by mid-May.  相似文献   

20.
Changes in gas exchange with leaf age and fruit growth were determined in lychee trees (Litchi chinensis Sonn.) growing in subtropical Queensland (27 degrees S). Leaves expanded in a sigmoid pattern over 50 days during spring, with net CO2 assimilation (A) increasing from -4.1 +/- 0.9 to 8.3 +/- 0.5 micromol m-2 s-1 as the leaves changed from soft and red, to soft and light green, to hard and dark green. Over the same period, dark respiration (Rd) decreased from 5.0 +/- 0.8 to 2.0 +/- 0.1 micromol CO2 m-2 s-1. Net CO2 assimilation was above zero about 30 days after leaf emergence or when the leaves were half fully expanded. Chlorophyll concentrations increased from 0.7 +/- 0.2 mg g-1 in young red leaves to 10.3 +/- 0.7 mg g-1 in dark green leaves, along with stomatal conductance (gs, from 0.16 +/- 0.09 to 0.47 +/- 0.17 mol H2O m-2 s-1). Fruit growth was sigmoidal, with maximum values of fresh mass (29 g), dry mass (6 g) and fruit surface area (39 cm2) occurring 97 to 115 days after fruit set. Fruit CO2 exchange in the light (Rl) and dark (Rd) decreased from fruit set to fruit maturity, whether expressed on a surface area (10 to 3 micromol CO2 m-2 s-1 and 20 to 3 micromol CO2 m-2 s-1, respectively) or on a dry mass basis (24 to 2 nmol CO2 g-1 s-1 and 33 to 2 nmol CO2 g-1 s-1, respectively). Photosynthesis never exceeded respiration, however, the difference between Rl and Rd was greatest in young green fruit (4 to 8 micromol CO2 m-2 s-1). About 90% of the carbon required for fruit growth was accounted for in the dry matter of the fruit, with the remainder required for respiration. Fruit photosynthesis contributed about 3% of the total carbon requirement of the fruit over the season. Fruit growth was mainly dependent on CO2 assimilation in recently expanded dark green leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号