首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The fragmented island realm of Oceania includes a relatively small proportion of the world’s tropical forests, but those forests support unusual richness of narrowly endemic species. In common with tropical forests across most of the world, tropical forests in Oceania are declining due to factors associated with increasing human population size, economic drivers and more intensive exploitation. In parts of Oceania, forests are being cleared at unsustainable rates, and replaced with far simpler ecosystems of timber or food crops. To a small degree, the present-day biodiversity of tropical forests in some parts of Oceania may be predisposed to such disturbance, given a history of natural disturbance (particularly through cyclones), and of smaller-scale slash-and-burn agriculture or landscape-scale burning. But, in most places, the current intensity, scale and/or rate of modification far surpass their precedents, and biodiversity is consequently diminishing. Tropical forests in Australia may be an exception to this trend, with now reasonably effective protection. However, more so than for tropical forests in most other continents, the major biodiversity conservation challenges for tropical forests in Oceania are extrinsic. Introduced plants, animals and diseases have collapsed ecological communities through much of Oceania, homogenising the biota from a series of highly distinctive and localised species assemblages to a more impoverished set of ubiquitous disturbance-tolerant exotic species. In many islands, this simplification has occurred regardless of the extent of native forest remaining, such that retention and reservation of primary forest is an insufficient conservation action. The fate of biodiversity in Oceania is also likely to be much affected by climate change, an unbalanced consequence given the region’s relatively small contribution to greenhouse gas emissions. Future hope for biodiversity conservation in tropical forests of Oceania lies in the renewed application of some traditional management constraints, the appropriate delivery of international support (such as may be available through carbon markets), improved quarantine processes, and through some protection naturally offered by the remote scattering of the islands that comprise Oceania.  相似文献   

2.
Human-modified tropical landscapes under semi-natural or agro-ecosystems often harbor biodiversity of significant conservation value. In the Western Ghats of India, these ecosystems also provide connectivity between protected areas and other remnant forests. We investigated the conservation value of these landscapes and agro-ecosystems using results from 35 studies covering 14 taxonomic groups. Large, conspicuous taxonomic groups and tree-covered land-use types have received much focus in this area of research in the Western Ghats. We computed a response ratio defined as the log ratio of species richness in human land use to species richness in forest control site from 17 studies. In a meta-analysis, we investigated variation of this ratio across studies with respect to three variables: taxonomic group, the land-use type sampled and the extent of forest cover within the study landscape. Higher forest cover within the landscape emerged as a major positive influence on biodiversity in human-modified landscapes for vertebrates and vegetation while no patterns emerged for invertebrates. Our results suggest that loss of remnant forest patches from these landscapes is likely to reduce biodiversity within agro-ecosystems and exacerbate overall biodiversity loss across the Western Ghats. Conservation of these remnant forest patches through protection and restoration of habitat and connectivity to larger forest patches needs to be prioritized. In the densely populated Western Ghats, this can only be achieved by building partnerships with local land owners and stakeholders through innovative land-use policy and incentive schemes for conservation.  相似文献   

3.
Logging and intense shifting cultivation have caused major degradation of tropical forests and loss of biodiversity. Understanding the direct and indirect effects of those land uses on plant biodiversity is essential to the restoration of tropical forests. We compared the species diversity, community composition and basal area of all stems ?1 cm dbh among 18 1-ha tropical lowland and montane rain forest plots with a well-recorded long-term history of shifting cultivation and logging on Hainan Island, south China. We also explored the relative importance of disturbance and environmental factors in determining forest recovery. We found that the species density and diversity in old growth forests were higher than in shifting cultivation fallows (55 years old) but lower than in logged forests (35–40 years since logging). The species composition of shifting cultivation fallows was distinct from other forest types but logged forests were similar to old growth forests, especially in lowland forests. Disturbance intensity was the most frequently important factor in determining species composition, species density, diversity, and basal area accumulation. Soil nutrient availability explained some of the variation in species composition and diversity. Stem density was related to multiple factors including disturbance history, soil nutrients, and distance to old-growth forest. In general, we found that disturbance intensity was a better predictor of forest structure and diversity than edaphic environmental variables, highlighting the importance of human impacts in shaping tropical forest successional pathways.  相似文献   

4.
Tropical tree community shifts: Implications for wildlife conservation   总被引:1,自引:0,他引:1  
In tropical forest systems tree community change after initial succession (approximately 50-100 years) is very difficult to detect because of the very slow pace of transformation. Since the mid 1980s, there has been an accumulation of evidence that many forests traditionally considered old growth or mature forests have been disturbed. Using 18 years of data on forest change in Kibale National Park, Uganda, we tested the following hypotheses. Species that frequently recruit only into areas of large-scale disturbance (e.g., conversion to agriculture) (1) have a more strongly negative annualized rate of population change (i.e., recruitment is less than mortality) than trees recruiting into the understory or canopy treefall gaps and (2) these species are declining in their average cumulative diameter at breast height (DBH). Both hypotheses were verified. We then examined relationships between forest change and diets of the five diurnal primates in Kibale. The emergent patterns suggest that forest change will lead to declines in some species, particularly the black-and-white colobus (Colobus guereza). We concluded that what was considered mature forest in Kibale has actually been disturbed in the recent past, and we discuss how potential sources of disturbance (dry-periods, elephant population fluctuations, and human disturbance) may affect both forest change and animal populations. We assess how such information might be useful in forest management.  相似文献   

5.
Understanding how biodiversity is partitioned among alternative land-uses is an important first step for developing effective conservation plans in multiple-use landscapes. Here, we analysed nestedness patterns of species composition for nine different taxonomic groups [dung beetles, fruit-feeding butterflies, orchid bees, scavenger flies, leaf-litter amphibians, lizards, bats, birds and woody plants (trees and lianas)] in a multiple-use forestry landscape in the Brazilian Amazon containing primary, secondary and Eucalyptus plantation forests. A formal nestedness analysis was performed to investigate whether species-poor land-uses were comprised of a subset of species from more diverse forests, and the extent to which this pattern varied among taxa. At the landscape-scale the species-by-sites matrices were significantly nested for all nine taxonomic groups when both sites and species were sorted to maximally pack the species/occurrence matrix and, except for orchid bees when sorted by land-use intensity (primary forest to Eucalyptus plantation). Different patterns emerged when we conducted pairwise analyses of nestedness between the three forest types: (a) most of the taxonomic groups were nested in accordance with increased land-use intensity; (b) neither orchid bees nor leaf-litter amphibians from secondary forest made up a significant nested subset of primary forest species, although species found in Eucalyptus plantation sites were nested within secondary forest communities; and (c) lizards from Eucalyptus plantations were not a nested subset of either primary or secondary forest. Our findings emphasize the complex nature of patterns of species occupancy in tropical multiple-use forestry landscapes, and illustrate that there may be no easy solutions to questions regarding the conservation value of secondary and exotic plantation forests.  相似文献   

6.
It has been suggested that an increase in the area of low-intensity land-use on arable land (e.g. set-aside fields and short-rotation coppice), and high or increased farmland habitat heterogeneity, may halt or reverse the observed population decline of farmland birds. We tested these hypotheses by undertaking farmland bird censuses during two contrasting periods of agricultural policies and land-use (i.e. 1994 and 2004) in a farmland region covering a gradient of forest- to farmland-dominated landscapes in Sweden. Local species richness (i.e. at 3 hectare sites) declined significantly between 1994 and 2004. Local species richness was positively related to habitat heterogeneity in both years of study whereas temporal change in species richness was not. Local change in species richness was positively associated with a change in the proportion of non-rotational set aside and short-rotation coppice (i.e. low-intensity land-use forms), but also to changes in the amount of spring-sown crops. However, the effect of low-intensity land-use was significantly dependent on the amount of forest in the surrounding landscape. An increase in low-intensity land-use was linked to an increase (or less marked decrease) in species richness at sites located in open farmland surroundings but to a decrease in richness at sites located in forest surroundings. This interaction between amount of forest and low-intensity land-use could be interpreted as a “rare habitat effect”, where an increase in a farmland habitat only positively affects biodiversity when it was originally uncommon (i.e. open farmland areas). Our results suggest that conservation measures of farmland biodiversity have to be put in a landscape context.  相似文献   

7.
Secondary forests and exotic tree plantations are rapidly expanding across tropical landscapes, yet we currently have a very poor understanding of the value of these human-dominated forest landscapes for biodiversity conservation. Mist netting, point counts and transect walks were used to compare the bird communities of these habitats and neighboring primary forest in north-east Brazilian Amazonia. The extensive spatial scale of plantations and second-growth in our study area enabled us to implement a robust replicated design, with survey plots approximately two to three orders of magnitude larger than most previous studies of land-use change in the tropics, thus minimising the influence of the surrounding landscape. Species richness was highest in primary forest and lowest in Eucalyptus plantations, and community turnover between habitats was very high whether based upon matrices of relative abundance or species presence-absence data, and for both point count and mist net data. Monthly line-transect censuses conducted over an annual cycle showed an increase in the detection of canopy frugivores and seed predators during the peak of flower and fruit availability in primary forest, but failed to suggest that second-growth or Eucalyptus stands provide suitable foraging habitat at any time of the year. The conservation value of both secondary forest and plantations was low compared to conclusions from previous studies. Our results indicate that while large-scale reforestation of degraded land can increase regional levels of diversity, it is unlikely to conserve most primary forest species, such as understorey insectivores and canopy frugivores.  相似文献   

8.
Archeologists, paleoecologists and anthropologists argue that ecologists need to give greater consideration to the pre-historical influence of humans in shaping the current structure and composition of tropical forests. We examine these arguments within the context of Amazonia, and assess the extent to which (i) the concepts of “pristine forests” and “cultural parklands” are mutually exclusive, (ii) the aggregated distribution of some plants necessarily indicates enrichment planting, (iii) pre-Columbian human disturbance has increased forest biodiversity, (iv) pre-Columbian indigenous practices were always sustainable, and (v) if indeed, the ecological impacts of pre-Columbian peoples are relevant for modern biodiversity conservation. Overall, we reject the notion that “the pristine myth has been thoroughly debunked” by archeological evidence, and suggest that the environmental impacts of historical peoples occurred along gradients, with high-impacts in settlements and patches of Amazonian Dark Earth (ADE), lesser impacts where occasional enrichment planting took place in forests surrounding agricultural plots, and a very low influence (in terms of light hunting pressure and other types of resource extraction) across vast areas of Amazonia that may always have been far from permanent settlements and navigable rivers. We suggest that the spatial distribution of pre-Columbian finds is given more attention, and urge caution before case studies are extrapolated to the entire Basin. Above all, we feel that debates over “naturalness” and environmental impacts of pre-Columbian humans are of limited relevance to present and future biodiversity conservation, and can detract from the major challenges facing Amazonia and other tropical forest regions today.  相似文献   

9.
Connell's intermediate disturbance hypothesis predicts that the highest diversity is maintained at intermediate levels of disturbance. We have examined this hypothesis by observing differences in biodiversity of terrestrial isopods along a gradient of disturbance from two undisturbed primary tropical rainforest sites, to a logged site, a mixed native fruit orchard and a commercial oil palm plantation, in Sabah, East Malaysia. We describe a standardised protocol for the rapid assessment of isopod biodiversity on tropical forest floor sites and for measuring environmental variables to which we have related differences in species richness and relative abundance of the isopods. The results do not support Connell's hypothesis because there were no significant differences in diversity, species richness or equitability between disturbed sites and the nearest primary forests. The relative abundance of individual species was highest in the most disturbed environment. We suggest that this may be because particular species are well adapted to exploiting resources under the more ‘r’ selection conditions created by disturbance. Possible reasons for why the observations do not conform with predictions from the intermediate disturbance hypothesis are discussed. We conclude that Huston's dynamic equilibrium model is more appropriate than the intermediate disturbance hypothesis in predicting the effects of disturbance of tropical rainforests on these arthropod macro-decomposers.  相似文献   

10.
The combined effects of rapid habitat loss, fragmentation and disturbance on tropical forest avifaunas have not been examined to date. The southern Amazonian ‘arc of deforestation’ marks the boundary of the most aggressive agricultural frontier in tropical forests worldwide. We sampled 21 disturbed and undisturbed primary forest patches, ranging in size from 1.2 to 14,476 ha, to elucidate the synergistic effects of both forest disturbance and fragmentation on bird community structure, and pinpoint which species were the “winners” and “losers” from this process. A number of forest patch metrics, derived from an independent remote sensing approach, explained much of the resulting presence/absence matrix. The bird community exhibited a highly nested structure, with small patches being most dissimilar from one another. Bird species differed in their response to both forest patch size and forest canopy perforation according to their dependence on closed-canopy primary forest. Forest patch geometry, which clearly modulated the shape of species-area relationships accounted for 83-96% of the variation in species richness, but forest habitat quality resulting from logging and surface-fire disturbance was also a significant predictor of species richness for the most forest-dependent taxa.  相似文献   

11.
The land competition between tropical bioenergy plantations and payments for forest carbon conservation (e.g., through an international scheme for Reduced emissions from deforestation and forest degradation, REDD+) is modeled using spatially explicit data on biofuel feedstock (oil palm and sugar cane) suitability and forest biomass carbon stocks. The results show that a price on the (avoided) carbon emissions from deforestation at the same level as those from fossil fuel use makes clearing for high yielding bioenergy crops unprofitable on about 60% of the tropical evergreen forest area. For the remaining 40% deforestation remains the most profitable option. Continued profitability of forest clearing is most pronounced for oil palm bioenergy systems in Latin America and Africa, with REDD+ making deforestation for sugar cane plantations unprofitable on 97% of evergreen forest land. Results are shown to be relatively robust to assumptions regarding potential yields and to the addition of a ‘biodiversity premium’ on land use change emissions. While REDD+ may play an important role in stemming biodiversity loss and reducing carbon emissions from tropical deforestation in the near future, in the longer run reliance on a system that values forests solely for their carbon retention capacities poses a serious risk. It is imperative that the institutions and policies currently being established as part of REDD+ readiness activities are resilient to future changes in the incentive structures facing tropical forest countries due to, e.g., climate policy induced demand for biofuels.  相似文献   

12.
Recent global assessments have shown the limited coverage of protected areas across tropical biotas, fuelling a growing interest in the potential conservation services provided by anthropogenic landscapes. Here we examine the geographic distribution of biological diversity in the Atlantic Forest of South America, synthesize the most conspicuous forest biodiversity responses to human disturbances, propose further conservation initiatives for this biota, and offer a range of general insights into the prospects of forest species persistence in human-modified tropical forest landscapes worldwide. At the biome scale, the most extensive pre-Columbian habitats across the Atlantic Forest ranged across elevations below 800 masl, which still concentrate most areas within the major centers of species endemism. Unfortunately, up to 88% of the original forest habitat has been lost, mainly across these low to intermediate elevations, whereas protected areas are clearly skewed towards high elevations above 1200 masl. At the landscape scale, most remaining Atlantic Forest cover is embedded within dynamic agro-mosaics including elements such as small forest fragments, early-to-late secondary forest patches and exotic tree monocultures. In this sort of aging or long-term modified landscapes, habitat fragmentation appears to effectively drive edge-dominated portions of forest fragments towards an early-successional system, greatly limiting the long-term persistence of forest-obligate and forest-dependent species. However, the extent to which forest habitats approach early-successional systems, thereby threatening the bulk of the Atlantic Forest biodiversity, depends on both past and present landscape configuration. Many elements of human-modified landscapes (e.g. patches of early-secondary forests and tree monocultures) may offer excellent conservation opportunities, but they cannot replace the conservation value of protected areas and hitherto unprotected large patches of old-growth forests. Finally, the biodiversity conservation services provided by anthropogenic landscapes across Atlantic Forest and other tropical forest regions can be significantly augmented by coupling biodiversity corridor initiatives with biota-scale attempts to plug existing gaps in the representativeness of protected areas.  相似文献   

13.
We combine mist-net data from 24 disturbance treatments taken from seven studies on the responses of understorey Amazonian birds to selective logging, single and recurrent wildfires, and habitat fragmentation. The different disturbance treatments had distinct effects on avian guild structure, and fire disturbance and the isolation of forest patches resulted in bird communities that were most divergent from those in continuous, undisturbed forest in terms of their species composition. Although low-intensity logging treatments had the least noticeable effects, the composition of understorey birds was still markedly different from the composition in undisturbed forest. This analysis demonstrates the importance of preventing habitat fragmentation and the spread of fires in humid tropical forests, and highlights the need for more research to determine the long-term suitability of large areas of degraded forest for forest birds.  相似文献   

14.
Using a largely temperate forest perspective, this article briefly reviews four often inter-related types of landscape change which can have significant impacts on tropical and temperate forest biodiversity: logging, fire, forest clearing, and plantation expansion. There are many important similarities but also key differences in the kinds of work conducted on these four kinds of landscape change in tropical and temperate forests. For example, direct studies of the effects of forest conversion on biodiversity are relatively rare in both tropical and temperate ecosystems. Temperate forest research differs from tropical research in terms of relative amount of single species work, long-term studies, and research at scales spanning multiple landscapes. There are key areas for cross-fertilization of research in tropical and temperate forest biomes. These include: (1) the ability of species to persist in post-disturbed forest landscapes, including those perturbed by past clearing, logging or wildfire, (2) the impacts of plantation establishment on biodiversity, (3) the effectiveness of altered silvicultural systems on forest structure, vegetation composition, and biota, and (4) inter-relationships between forest logging and fire-proneness. Cross-learning about the impacts of drivers of landscape change between tropical and temperate forests is fundamental for speeding the progress of conservation efforts in both broad kinds of environments. However, some opportunities for cross-learning have not been taken because temperate and tropical forest research has often sometimes been isolated from one another. Some approaches to tackle this problem are briefly outlined.  相似文献   

15.
Human disturbance of tropical rainforests may change pollinator communities indirectly as a result of changes in resource availability. We studied the mechanisms by which human disturbance affects a community of major pollinators, stingless bees, in Sarawak, Malaysia. We surveyed forest structure and flowering activity, and conducted a nest census and a bait-trap survey of stingless bees, both in primary forests and in forests disturbed by logging and shifting cultivation. The densities of late successional trees and large trees (diameter at breast height >50 cm) were higher in the primary forests than in the disturbed forests. The density of flowering trees was lower one year after logging, but recovered in old disturbed forests because of the active flowering of pioneer trees that became established after the disturbance. Stingless bees nest only in large trees, and nest density was positively correlated with the density of large trees. However, we found no relationship between the numbers of foragers and floristic parameters. Some species preferred nesting in dipterocarps, while others preferred dead trees. The results of the bait-trap survey also indicated that some species were abundant in the primary forests, whereas other species were abundant in the disturbed forests. These results suggest that human disturbance alters the species composition of the stingless bee community. Such changes in the bee community may affect the reproductive success of plants, and ultimately forest composition.  相似文献   

16.
Because global timber demands continue to threaten tropical rain forests, identification of sustainable-use forest management protocols that meet human needs while preserving biodiversity is critical. Reduced-impact logging (RIL) protocols are increasingly common in the tropics and may be a viable option for sustainable forest use; however, few studies have documented faunal responses to RIL. Moreover, evaluations of abundance or diversity may not be sufficient for a comprehensive understanding of faunal responses to human activities, especially in the short-term. We assessed the effects of RIL on the temporal activity patterns of abundant bats in lowland Amazonian rain forest. More specifically, we characterized temporal patterns of activity, overlap of temporal activity, and dispersion of activity modes for seven abundant bat species and for four common bat guilds in RIL forest and in undisturbed forest in Tapajós National Forest, Pará, Brazil. Temporal activity of aerial insectivores, nectarivores, and gleaning animalivores did not change in response to RIL. In contrast, three of five species of frugivores and frugivores as a group changed their patterns of temporal activity in response to RIL. RIL had a greater effect on temporal activity of frugivores that foraged in the understorey than on frugivores that foraged in multiple forest strata. Overlap of temporal activity of frugivores was greater than expected by chance in undisturbed forest, but was random in RIL forest. Changes in activity may be a response to a combination of increased predation risk and reduced distances of early evening flights between day roosts and feeding areas in RIL forest compared to undisturbed forest.  相似文献   

17.
Changes in Collembola richness and diversity along a land-use intensity gradient were studied in eight European countries (Portugal, Spain, France, Switzerland, Hungary, UK, Ireland and Finland). In each country a set of six 1 km2 land-use units (LUUs) were selected forming a gradient ranging from natural forest to agricultural dominated landscapes, passing through mixed-use ones. In addition to data on Collembola, detailed information regarding landscape diversity and structure was collected for each LUU. A total of 47,774 individuals were identified from 281 species. Collembola reacted not only to changes in the diversity of the landscape, but also to the composition of that diversity and the area occupied by each land-use type at each LUU. Although species richness patterns were not concordant among the different countries, the total number of species per LUU (landscape richness) was generally higher in natural forests and mixed-used landscapes, and lower in agricultural dominated landscapes. Moreover, high richness and diversity of Collembola at each LUU were associated with a diverse landscape structure, both in terms of number of patches and patch richness. Despite this comparable species richness between mixed-use landscapes and those dominated by natural forests, average species richness on forested areas (local richness) decreased along the gradient, showing that forest patches on mixed-use landscapes support a lower richness than in landscapes dominated by forest. This aspect is important when addressing the role of native forests in structuring biodiversity in disturbed and fragmented landscapes. Although a diverse landscape can support a high biodiversity, the results suggest that intensive fragmentation should be avoided with the risk of collapsing local species richness with the consequent result for regional biodiversity.  相似文献   

18.
Assessing the effects of logging on different aspects of biodiversity and general ecosystem properties is of prime importance if the few remaining areas of intact tropical forest are to be efficiently protected. Commonly used measures of biodiversity may only inadequately reflect actual disturbance after logging and studies restricted to only one specific eco-region do not allow for generalizations of results. We hence measured the impact of selective logging on different levels of diversity of two tropical anuran communities in two geographically distinct eco-regions. Species-diversity patterns were incoherent both, within and between studies. In West Africa, species richness did not differ between primary and exploited forest sites, whereas South American anuran communities exhibited higher species richness in primary sites. Yet, in both eco-regions, functional diversity (FD) was higher in primary forest communities. Absolute values of FD were higher in South American anuran communities, despite higher species richness in West African communities. FD was higher in older recovery, as compared to younger recovery states, even though species-diversity did not differ significantly. Three major conclusions can be drawn from our results. 1. Scale matters: it is important to monitor different levels of biodiversity in order to reveal its actual loss after anthropogenic disturbance. 2. Time matters: the disturbance history of a site is important in order to detect patterns that otherwise remain unnoticed. 3. Geographic history matters at the local scale: whereas general patterns at higher diversity levels were identical in both eco-regions, species richness, species diversity and turnover patterns differed.  相似文献   

19.
Logging is one of the most important forms of native-forest exploitation and can have substantial impacts on biodiversity and key ecosystem services. Here we briefly contrast logging operations in temperate and tropical forests and then highlight several challenges for understanding the ecological impacts of logging. We argue that many logging studies are conducted at small spatial scales or over inadequate time periods, and are biased against finding significant negative impacts. This is because of confounding environmental differences between logged and unlogged forests as well as the prolonged nature of forest stand development. Human perceptions of logging also can be biased by the ‘shifting baseline’ phenomenon, and by an incorrect perception that logging operations approximate natural disturbance regimes. We argue that the ecological impacts of logging can be more challenging to detect than is often appreciated, and that forest managers and decision-makers should be cautious when weighing the arguments of pro-logging lobbies.  相似文献   

20.
The expansion of agricultural plantations at the expense of forest drives dramatic losses of biodiversity and carbon. Consumers are now demanding sustainability in tropical agriculture and producers are responding with questionable certification standards. Many certification schemes—including those for oil palm, soy, sugar cane and cacao—rely upon the High Conservation Value (HCV) concept to prevent unacceptable losses of biodiversity to agricultural conversion. This concept protects very rare species or habitats, exceptional concentrations of wildlife, or large landscape-level areas of forest. Yet much biodiversity persists below these thresholds yielding the spectre of unsustainable conversion of forest to certified plantation crops under a green label. To meet more rigorous standards of sustainability, tropical plantations would have to retain large patches of native forests in the matrix. We highlight six critical areas in need of consideration by conservation scientists, practitioners and certification processes. In particular, the application of HCV to sustainable agricultural development at the national-level, the use of Imperata grasslands and abandoned agriculture, the creation of Biobanks, and increased price premiums for certified crops could redound to the long-term protection of tropical biodiversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号