首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 226 毫秒
1.
蜜蜂DNA提取纯化与RAPD反应体系的建立   总被引:5,自引:9,他引:5  
以意大利蜜蜂为材料,研究了蜜蜂DNA的提取以及对RAPD分析的影响因素,包括模板浓度、Mg^2 、dNTP和引物,建立了适于蜜蜂RAPD分析的PCR反应体系,即20μL反应体系中,包括10mmol/L Tris—HCl(pH8.3)、50mmol/L KCl、20~60ng DNA、3.0mol/L MgCl2、0.2mmol/L dNTP、0.5μmol/L随机引物和1.5unit Taq聚合酶。扩增程序为:94℃预变性5min,94℃变性1min,36℃退火1min,72℃延伸2min,40个循环:最后在72℃延伸10min.  相似文献   

2.
荸荠基因组DNA的提取及RAPD反应体系的建立   总被引:4,自引:1,他引:3  
以荸荠叶状茎为试验材料,采用改良的SDS法提取其基因组DNA,并对其RAPD反应体系进行优化,建立了荸荠的RAPD—PCR优化反应体系和程序。结果表明,提取的基因组DNA纯度和完整性较好,OD260/OD280值在1.8~2.0之间,DNA无降解现象,完全可以满足RAPD—PCR扩增要求。建立了荸荠RAPD反应体系:总体积为25μl,各有关成分的最佳浓度分别为25mmol/L Mg^2+,1.0UTaqDNA聚合酶,0.2mmol/L dNTPs,1μmol/μl引物,1.5ng/μl DNA模板。PCR反应程序为:94%预变性3min;94℃变性1min,37℃退火30s,72℃延伸60s,40个循环;最后72%延伸10min。  相似文献   

3.
北五味子RAPD-PCR反应条件优化   总被引:2,自引:1,他引:1  
以采自吉林省汪清地区野生北五味子叶片为材料,提取其基因组DNA,并以此为模板进行北五味子RAPD—PCR反应条件的优化.结果表明,PCR反应混合液为:25μLPCR反应体系中加入20ng模板DNA,200μmol/LdNTPs,0.3μmol/L引物,2.0mmol/LMg^2+,1UTaqDNA聚合酶,2.5μL 10×Buffer;PCR反应程序为:94℃预变性5min后,在94℃变性1rain,40℃退火1min,72℃延伸2min,共40个循环后,在72℃下最后延伸5min时,在不同引物中均扩增出清晰而稳定的DNA电泳谱带.  相似文献   

4.
人参基因组DNA的提取及RAPD—PCR反应条件的优化   总被引:1,自引:1,他引:0  
探讨了人参基因组DNA提取方法及RAPD—PCR反应条件的优化.结果表明,用改良的CTAB方法提取的DNA均达到了RAPD—PCR分析的要求;优化的RAPD—PCR反应条件为:在25μLRAPD—PCR反应体系中,模板DNA20ng,dNTP200μmol/L,MgCl2 1.5mmol/L,10×Buffer2.5μL,引物浓度0.4pmol/L,TaqDNA聚合酶1.0U,其余以ddH20定容至25μL.PCR反应程序为:94℃预变性5min;94℃45S,40℃退火1min,72℃1min,共40个循环;最后在72℃延伸5min.  相似文献   

5.
分别以菠菜雌、雄成株的幼嫩叶片为材料,以改良的2×CTAB法提取基因组DNA,建立与菠菜性别分化相关的RAPD分子标记体系,就其PCR扩增条件与因素进行筛选与优化。即在25μl PCR反应体系中含:模板DNA200ng、引物0.32μmol/L、Mg^2+ 2.1 mmol/L、dNTP0.2mmol/L、Taq DNA聚合酶1.5U。PCR扩增程序为:94℃预变性5min;94℃变性30s,36℃复性45S,72℃延伸90s,40个循环;最后72℃延伸7min。  相似文献   

6.
以假臭草叶片为材料,对影响其随机扩增多态DNA(RAPD)反应的各因素进行优化.建立了假臭草RAPD的优化反应体系和程序,即在10μL反应体系中,5ng(/10μL)模板DNA,1.0μmol/L随机引物F15,150μmol/LdNTPs,2.0mmol/LMg^2+,1.0UTaqDNA聚合酶;扩增程序为95℃预变性4min,95℃变性40S,36℃退火40S,72℃延伸1min,10个循环,后94℃变性30s,35℃退火30s,72℃延伸1min,35个循环,72℃延伸5min,4℃保温。  相似文献   

7.
长白山杜鹃花基因组DNA提取及RAPD体系的建立   总被引:1,自引:0,他引:1  
采用改良的CTAB法提取杜鹃花的基因组DNA,所得的DNA纯度高、质量好,可用于RAPD分析.筛选出的杜鹃花RAPD反应的最佳体系为25μL反应体系中包括模板DNA20~200ng.引物10pmol,dNTPs100μmol·L-1,TaqDNA聚合酶0.5U,Mg2 2.5 mmol·L-1,10xbuffer缓冲液2.5 mmol·-1,其余部分用无茵超纯水补充.PCR扩增程序为94℃预变性5 min;94℃变性1 min,37℃退火1min,72℃延伸2min,40次循环;72℃最终延伸7min.应用优化后的反应体系PCR扩增获得的RAPD指纹图谱带型清晰,重复性好,为长白山杜鹃花品种鉴定、分类的研究提供了一定基础.  相似文献   

8.
为确保樱花RAPD扩增结果的稳定性和重复性,对Mg2 、dNTP、引物、模板DNA浓度、Taq酶用量、退火温度,以及PCR循环次数等影响樱花RAPD结果的重要因素进行了初步探索。试验表明,樱花RAPD扩增最适反应体系为20μl反应液中:1×PCR buffer,2.5 mmol/L MgCl2,0.15 mmol/L dNTP,1 UTaq酶,0.2μmol/L 10bp随机引物,20~30 ng模板DNA。最佳扩增程序为:94℃预变性4 min,94℃变性30 s,38℃退火30 s,72℃延伸2 min,循环40次,最后72℃延伸10 min,12℃保存。  相似文献   

9.
玉米大斑病菌RAPD分析最佳反应体系的建立   总被引:4,自引:0,他引:4  
通过对玉米大斑病菌RAPD反应程序中的一些重要参数进行摸索和优化试验,建立了一套适合玉米大斑病菌的扩增反应体系及反应程序:25μL体系中,加入Taq DNA聚合酶2 0 U、25 mmol L的MgCl2 2 0 mmol L、dNTP 200μmol L、随机引物30 ng、10×PCR buffer 1μL、DNA模板30 ng、用重蒸水补足25μL。反应程序为:94℃预变性3 min;94℃变性1 min, 37℃退火1 min,72℃延伸2 min,40循环; 72℃延伸6 min。  相似文献   

10.
大字杜鹃RAPD反应体系的优化   总被引:3,自引:2,他引:1  
以大字杜鹃为材料,以改进的CTAB法提取大字杜鹃叶片总DNA,分别就模板DNA浓度,引物浓度,DNTP浓度,TaqDNA聚合酶量及镁离子浓度对大字杜鹃RAPD反应结果的影响进行研究.通过对各因子的组合比较,建立了大字杜鹃RAPD反应的优化体系,即总反应体积为25pL,其中包括10×Taq酶配套缓冲液2.5pL,模板DNA浓度50mg/L,引物浓度0.5μmol/L,dNTP浓度0.15mmol/L,TaqDNA聚合酶1U,Mg^2+浓度2.0mmol/L,其余用重蒸馏水补足.扩增程序为94℃预变性5min,94℃变性1min,38℃退火40S,72℃延伸2min,共41个循环,72℃延伸7min.  相似文献   

11.
人参黑斑病菌RAPD反应体系的优化   总被引:1,自引:0,他引:1  
采用改良的CTAB法提取人参黑斑病菌的基因组DNA,建立人参黑斑病菌RAPD反应的体系.最佳体系容积为25μL,其中包括10×Taq配套缓冲液2.5μL,模板DNA 20 ng/μL,引物15 pmol/L,dNTP 150μmol/L,Taq DNA聚合酶1 U,Mg2+1.5 mmol/L,其余部分用DW补充.PCR扩增程序为:94℃预变性5 min,94℃变性1 min,40℃退火1 min,72℃延伸2 min,40次循环,72℃延伸7 min.  相似文献   

12.
文冠果DNA提取及RAPD反应体系的优化   总被引:1,自引:0,他引:1  
以山西省20个县的文冠果为材料,采用改良的CTAB法提取文冠果基因组DNA,并对文冠果RAPD分析的最佳反应体系进行优化。结果表明,文冠果RAPD分析的最适反应体系为:PCR扩增的总体积为20μL,包括30ng的模板DNA,10×PCR buffer 2μL,2.0mmol.L-1 Mg2+,0.1mmol.L-1dNTP,Taq酶1U,不足的体积用超纯水补足。扩增程序为:94℃预变性120s,94℃变性30s,36.9℃退火45s,72℃延伸90s,45个循环后在72℃延伸300s,结束后在4℃条件下保存。在此最佳反应条件下,RAPD分析具有良好的稳定性和可重复性。  相似文献   

13.
椰子基因组DNA的提取及RAPD反应体系的优化   总被引:1,自引:0,他引:1  
以椰子叶片为实验材料,探索了椰子基因组DNA的提取方法,并对影响RAPD反应的各因素进行了优化,建立了椰子的优化反应体系和程序。试验最终建立的椰子RAPD反应总体积为20μL,各有关成分的最佳浓度分别为Mg2+2.5 mmol/L,Taq DNA0.75 U,dNTP 0.2 mmol/L,Primer 1μmol/μL,模板DNA2.5 ng/μL。PCR循环程序为:94℃预变性1.5min;94℃变性20 s,36℃退火20 s,72℃延伸45 s,35个循环;最后72℃延伸3 min。  相似文献   

14.
李黛  曾燕玲  代鸣 《湖北农业科学》2012,51(19):4393-4395
以贵州林下野生淡黄花百合(Lilium sulphureum Baker)幼嫩叶片为材料,采用改良的CTAB法提取百合基因组DNA,得到了较高质量的DNA.并对影响随机扩增多态DNA性(RAPD)反应的主要因素进行了优化,建立并优化了野生淡黄花百合的RAPD反应体系及程序.优化的20μL反应体系中包含20 ng模板DNA,2.0 mmol/L Mg2+、0.25 mmol/L dNTPs、1.0 U Taq DNA聚合酶、10×Buffer 2μL、0.4 μmol/L随机引物、ddH2O补足至20μL.优化的RAPD扩增程序为94℃3 min;94℃50 s,37℃40 s,72℃80 s,40个循环;72 ℃ 10 min,4℃保存.该反应体系具有较好的稳定性及可重复性,适合贵州野生淡黄花百合遗传多样性研究.  相似文献   

15.
木豆随机扩增多态性DNA的反应体系研究   总被引:1,自引:0,他引:1  
[目的]分析影响木豆RAPD-PCR反应中的主要因素,优化反应条件。[方法]以木豆品种ICPL87091为试材,以木豆基因组DNA为模板,通过对PCR反应体系中各种参数的优化设置,分析比较各种因素对RAPD扩增结果的影响,建立适宜的反应体系。[结果]试验得到了较为理想的适宜木豆的反应体系。优化的木豆RAPD反应条件为:模板DNA浓度30 ng,随机引物1.6μmol/L,dNTPs(dATP,dCTP,dGTP,dTTP)各0.2 mmol/L,Mg2+浓度2.0 mmol/L,Taq酶1.0 U,反应体积为25μl。循环体系为:先94℃1 min,35℃2 min,72℃2 min,5个循环;然后94℃30 s,37℃1 min,72℃1 min,35个循环;最后72℃延伸10 min。[结论]利用这一反应体系可有效地进行木豆随机扩增多态性DNA分析,极大地提高了实验结果的可重复性。  相似文献   

16.
苦楝RAPD反应体系的优化   总被引:1,自引:0,他引:1  
以苦楝叶片提取的基因组DNA为材料,通过单因素多水平梯度试验,筛选DNA模板,Mg^2+,Taq DNA聚合酶,dNTPs和随机引物的浓度及用量,建立苦楝RAPD技术分析体系.结果表明:当基因组DNA浓度为60 ng/μL,镁离子浓度为3.0 mmol/L,dNTP浓度为0.25 mmol/L,引物浓度为0.30μmol/L,Taq DNA聚合酶用量为1 U/20μL,反应体系总体积20μL时,出现可辨认的清晰谱带.其扩增程序为:94℃预变性2 m in;然后38个循环(94℃变性30 s,37℃退火1 min,72℃延伸80 s);最后72℃延伸8 min,4℃保存.  相似文献   

17.
茄子RAPD分子标记体系的建立与优化   总被引:1,自引:0,他引:1  
采用改良的CTAB法提取茄子基因组DNA,并通过单因素多水平梯度试验,比较筛选RAPD扩增体系的各影响因素,建立了茄子RAPD-PCR的最佳反应体系:20μL反应体系其中含25 mmol/L MgCl2 2.0μL1、0×PCR Buffer 2.0μL、10mmol/L dNTP 0.5μL5、U/μL Taq E 0.2μL0、.1μmol/L Primer 3μL1、0 ng/L模板DNA 3μL、灭菌双蒸水9.3μL。扩增程序为:94℃预变性5 min;94℃变性1 min,37℃退火1 min7,2℃延伸1.5 min4,5个循环;72℃延伸10 min后4℃保存。  相似文献   

18.
通过正交试验设计对影响苦丁茶冬青RAPD-PCR反应的5种因素4水平进行优化试验,最终确定苦丁茶冬青RAPD—PCR的最佳反应体系为:在25μL反应体系中,DNA模板20ng,Mg2+ 2.5mmol·L-1,引物浓度为0.3μmol·L-1,Taq聚合酶浓度为2.0U,dNTPs浓度为200μmol·L-1。最佳的RAPD-PCR扩增程序为:94℃预变性5min,然后94℃变性30s,36℃退火30s,72℃延伸120s,进行40个循环,最后72℃延伸10min;4℃保存。然后通过RAPD技术筛选了91条随机引物,共计有24条引物能在雌/雄DNA/样品池间显示多态性,其中引物S164和S191分别扩增得到2个雄性特异标记S164—900和S191—800。经多次重复实验,RAPD标记均能在雄性个体中稳定出现,故此标记可应用于苦丁茶冬青性别的早期鉴定。  相似文献   

19.
A single factor design was applied to optimize five factors influencing SRAP system, including Taq DNA polymerase, template DNA concentration, dNTPs, primer and Mg2+, each at four levels. The optimal SRAP-PCR system for Lonicera caerulea L. was 20 ktL SRAP-PCR amplification reaction solution containing 2.0 μL 10×PCR buffer, 1.0 U Taq DNA polymerase, 30 ng template DNA, 0.2 mmol·L-1 dNTPs, 2.0 mmol·L-1 Mg2+ and 0.2μmol·L-1 primer. The suitable amplification procedure consisted of an initial denaturation at 94℃ for 5 min; denaturation at 94℃ for 1 min, annealing at 35℃ for 1 rain, extension at 72℃ for 90 s and in total five cycles; denaturation at 94℃ for 1 min, annealing at 50℃ for 1 min, extension at 72℃ for 90 s and in total 35 cycles; extension at 72℃ for 8 rain; preservation at 4℃. The procedures and systems could meet the demand for SRAP amplification of Lonicera caerulea L. and would play an important role in Lonicera caerulea L. germplasm identification and genetic diversity analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号