首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
探讨了缺铁胁迫与外源VC对小白菜生理和品质的影响。结果表明:缺铁较大幅度地降低了叶绿素含量及NR、POD活性,导致蛋白质、糖及VC的含量减少,而硝酸盐的积累量显著增加,使蔬菜的营养及卫生品质下降;外源VC能在一定程度上减轻缺铁胁迫对蔬菜的一系列不良影响。  相似文献   

2.
外源抗坏血酸对臭氧胁迫下水稻光合及生长参数的影响   总被引:2,自引:0,他引:2  
为研究臭氧浓度变化对水稻生长的影响及外源抗坏血酸的防护作用,在田间原位条件下,利用开顶式气室(OTCs)研究了外源抗坏血酸对O3胁迫下水稻光合及生长参数的影响.结果表明:在O3胁迫下,叶片的光合色素含量、气体交换参数、净同化率、相对生长速率及粒/叶面积(cm2)均显著下降;喷施外源抗坏血酸后,叶绿素a含量、叶绿素a/叶绿素b以及水稻叶片的光合速率、蒸腾速率显著升高,而叶绿素b含量和气孔导度变化不显著;外源抗坏血酸对O3胁迫下水稻的净同化率、相对生长速率及粒/叶面积(cm2)影响比较显著,特别是粒/叶面积(cm2)的提高有利于水稻源、库协调发展,为提高水稻产量和改进品质奠定了物质基础.  相似文献   

3.
不同梨砧木对缺铁胁迫的生理响应差异研究   总被引:1,自引:0,他引:1  
【目的】 旨在通过探究缺铁胁迫下不同梨砧木幼苗体内铁分配规律及有机酸种类和含量的差异,为培育铁高效利用梨砧木提供理论依据。 【方法】 以三种不同梨砧木,杜梨Ⅰ (湖北杜梨HB-Pyrus betulaefolia)、杜梨Ⅱ (郑州杜梨ZZ-Pyrus betulaefolia) 、山梨 (黑龙江山梨HS-Pyrus ussuriensis) 幼苗为试材,进行水培试验。以Hogland营养液为基础,在其他养分含量不变的情况下,设两个Fe水平1和40 μmol/L,分别代表缺铁胁迫和正常供铁。在砧木幼苗培养21天后,测定了幼苗活性铁和全铁元素含量、根系构型及各部位不同种类有机酸的含量。 【结果】 缺铁胁迫下,杜梨Ⅰ茎叶中活性铁/全铁比例是杜梨Ⅱ的2.80倍和2.94倍, 是山梨的3.29倍和2.05倍,其叶中的活性铁和全铁积累量分别达到15.71 mg/plant和78.82 mg/plant。缺铁胁迫下,杜梨Ⅱ和山梨的倒一叶叶绿素含量下降幅度显著高于杜梨Ⅰ。三种梨砧木幼苗体内柠檬酸含量最高,其次是苹果酸,这两种酸占有机酸总量的74.8%以上。与正常供铁相比,缺铁胁迫下山梨根和叶中苹果酸含量提高了4.70和1.69倍,分别达到0.96 mg/g和4.80 mg/g,显著高于杜梨Ⅰ和杜梨Ⅱ,而杜梨根和叶中的柠檬酸含量较高,尤其是杜梨Ⅰ品种,达到4.02 mg/g和11.98 mg/g。 【结论】 三种梨砧木对铁的吸收和运输存在较大差异。杜梨Ⅰ根系吸收能力较强,根和叶中活性铁含量及积累量均较高,因而耐缺铁。缺铁胁迫下,两种杜梨根系中主要合成柠檬酸而山梨主要合成苹果酸,可能是山梨对缺铁敏感的机制之一。   相似文献   

4.
缺铁胁迫柑橘砧木幼苗的光合特性和叶绿体超微结构   总被引:1,自引:0,他引:1  
【目的】通过研究枳壳与枳橙砧木在缺铁和正常铁浓度处理下的反应,重点揭示两种柑橘砧木光合特性、叶绿体超微结构等对铁敏感性的差异。【方法】以柑橘的枳壳砧木和枳橙砧木实生苗为试验材料,设置缺铁 (–Fe,0 μmol/L) 和正常铁 (+Fe,37.3 μmol/L) 2个处理进行营养液培养,测定了缺铁胁迫对两种砧木苗期铁元素含量与积累量、光合色素含量、叶片糖含量的影响,并进行了叶绿体超微结构的电镜扫描。【结果】缺铁胁迫显著降低了两种砧木铁元素含量与积累量、叶片光合色素含量,且枳橙砧木光合色素含量下降幅度较大。与对照相比,缺铁后枳壳砧木叶片的糖类物质含量降低,且达到显著差异水平;而枳橙砧木叶片可溶性糖、蔗糖含量显著升高,淀粉和果糖含量显著下降。另外,缺铁胁迫条件下,两种柑橘砧木片层结构模糊,嗜饿体数目增加。并且,缺铁后枳壳砧木叶绿体长度、厚度比对照分别降低了22.1%、26.4%,枳橙砧木则分别下降了55.1%、40.4%。【结论】缺铁胁迫下,枳橙砧木幼苗的铁元素含量和积累量、叶片光合色素含量、叶绿体超微结构等均比枳壳砧木受到较大影响,表明枳橙砧木比枳壳砧木对铁营养缺乏更加敏感。  相似文献   

5.
水稻锰毒与铁素营养关系的研究   总被引:1,自引:0,他引:1  
通过水培试验,研究了水稻锰毒与铁素营养关系,并探讨了过量锰对一些生理指标的影响。试验结果表明:地上部是生长介质中过量锰对水稻危害的主要部位;过量的锰增加铁在水稻根系的沉积,减少铁的吸收,改变体内铁的分布,降低铁的活性,诱发水稻缺铁胁迫;过量锰缺铁胁迫的水稻正常代谢受阻,叶片叶绿素、蛋白质含量减少,过氧化氢酶活性降低,而过氧化物酶活性增加  相似文献   

6.
通过田间试验对16个花生品种在石灰性土壤上的耐低铁性进行了评价。不同花生品种耐低铁能力存在显著的基因型差异,这种差异表现在生长过程中叶片活性铁含量、叶绿素含量以及最终的荚果产量上。溶液培养试验结果表明,根系Fe3+还原力提高是抗缺铁花生品种适应缺铁胁迫的主要机制,抗缺铁品种铁还原力高峰出现期早于铁敏感品种,且峰值远高于铁敏感品种。同时缺铁胁迫下介质pH值、新叶过氧化氢酶活性也存在显著的基因型差异。  相似文献   

7.
SA对高温胁迫下葡萄幼苗AsA-GSH循环的影响   总被引:2,自引:0,他引:2  
本试验以二年生克瑞森无核葡萄为材料,探讨了外源SA对高温胁迫下葡萄体内ASA-GSH循环代谢的影响及其在抗高温胁迫中的作用.试验结果表明,与对照相比,外源SA可以促进高温胁迫下葡萄叶片内ASA和GSH含量的积累量,降低GSSG的含量.长时间(>240min)的高温胁迫下,外源SA可以降低脱氢抗坏血酸(DHA)的含量;能够维持较高的AsA-GSH循环系统中APX、DHAR、MDHAR、GR活性.外源SA促进了高温胁迫下葡萄ASA-GSH循环的快速而有效的运转,降低了高温胁迫对葡萄植株的氧化伤害,从而缓解了高温胁迫对葡萄幼苗的伤害作用.  相似文献   

8.
外源NO对NaCl胁迫下番茄幼苗生长及相关物质含量的影响   总被引:2,自引:0,他引:2  
在100 mmol/LNaCI胁迫下,研究了外源NO供体硝普钠(SNP)处理对番茄幼苗离子、多胺和ABA含量的影响.结果表明,外源NO显著提高了盐胁迫下番茄幼苗生长、植株体内K 含量、K /Na 值,显著降低了Na 含量;外源NO使精胺(Spin)、亚精胺(Spd)、多胺(Pas)含量、(Spd Spm)/Put(腐胺)值和ABA含量在整个胁迫过程中均明显增加,Put在整个胁迫过程中增加但不显著,Put/Pas值在胁迫4~8 d之间显著下降,O~4 d之间无明显变化.以上结果表明,外源NO处理可提高番茄幼苗对盐胁迫逆境的适应能力,降低盐胁迫对番茄幼苗生长和正常生理活动的抑制作用,从而提高植物的耐盐性.  相似文献   

9.
【目的】为了探讨在缺铁条件下外源施加硼对植株表型以及体内铁含量的影响,揭示拟南芥在缺铁状态下体内铁的再分配机理,为缓解植株缺铁症状提供一个新的策略。【方法】以模式作物拟南芥(野生型)为供试材料进行了水培试验。供试营养液以正常铁浓度为加铁(+Fe)处理,不含铁营养液为缺铁(-Fe)处理,在两种铁营养液中分别加入H_3BO_3 100、1000μmol/L,共形成6个处理。拟南芥幼苗在全营养液中培养3周后,在处理溶液中培养7 d,收集根系和地上部,分别测定植株全铁、有效铁以及细胞壁吸附的铁含量;剪下根尖部位检测内源NO含量,提取根系RNA检测铁运输相关基因的表达量。【结果】在缺铁条件下,外源添加硼(1000μmol/L H_3BO_3)后植株根系和地上部有效铁含量分别是不加硼时的1.56倍和2.65倍,拟南芥新叶缺铁黄化的症状受到显著缓解。细胞壁组分含量分析结果表明,与不加硼相比,添加1000μmol/L H_3BO_3后植株根系细胞壁铁含量、半纤维铁含量以及半纤维素含量分别降低了60%、52%和53%,同时与100μmol/L H_3BO_3相比也分别降低了41%、41%和43%,说明随着外源添加硼浓度的增加,细胞壁以及细胞壁铁的解析作用也愈加明显。通过对植株不同部位总铁含量以及铁运输相关基因表达量分析后发现,只有在添加1000μmol/L H_3BO_3时缺铁胁迫下铁运输相关的3个基因才能受到显著诱导,具体表现为:与不加硼相比,1000μmol/L H_3BO_3处理后AtFRD3、AtYSL2和AtNAS1 3个基因的表达量分别上调了1.44、1.15和0.75倍,并且伴随着植株体内总铁含量的升高;而100μmol/L H_3BO_3浓度处理对铁相关基因的表达以及总铁含量的积累影响不大。最后,通过对根系内源NO含量的检测分析显示,硼可以影响内源NO的代谢,且外源施加硼后根系NO含量是不施加硼时的1.5倍,暗示信号分子NO可能参与这一过程。【结论】硼主要是通过改变细胞壁中的半纤维素含量和半纤维素上结合的铁含量来增加拟南芥根系细胞壁铁的释放,进而提高植株体内有效铁的含量,促进植株在缺铁的条件下正常生长。在缺铁的条件下,外源添加硼(1000μmol/L H_3BO_3)可以通过促进拟南芥植株体内铁的再利用机制来缓解植物缺铁症状,而添加100μmol/L H_3BO_3则对植株体内铁的再分配过程影响不大。  相似文献   

10.
植物应答缺铁胁迫的分子生理机制及其调控   总被引:3,自引:0,他引:3  
铁是植物生长发育中所必需的微量营养元素。虽然土壤中铁的丰度很高,但其生物有效性非常低,特别是在碱性石灰性土壤上,高pH和高重碳酸盐含量严重降低了土壤中铁的有效性。因此如何有效地提高植物对铁的利用效率及增强植物对缺铁胁迫的响应已成为目前该领域的研究热点。本文重点阐述了植物两种不同的铁吸收机制,以及对缺铁胁迫的应答反应;对目前所发现的植物中调控缺铁胁迫的相关基因进行了全面的综述,包括新发现的吞噬机理中所涉及的NRAMP基因;同时也介绍了感应铁缺乏的众多相关信号,包括植物激素、气体信号分子及microRNAs等;此外,还提出利用铁吸收相关基因的转导、控制铁吸收相关因子以及各种农艺措施的实施来提高植物铁的生物有效性从而有效缓解缺铁胁迫。最后对未来有关植物吞噬机制、铁缺乏感应信号及改善植物铁营养新途径等研究方向作了初步展望。  相似文献   

11.
缺铁胁迫对草莓幼苗光合特性及细胞器铁含量的影响   总被引:3,自引:0,他引:3  
为了探讨缺铁胁迫对草莓(Fragaria ananassa Duch.)幼苗的光合特性及细胞器铁含量的影响,本研究选取4个草莓品种(红颜、 章姬、 甜查理、 童子一号)幼苗,采用溶液培养方法,设置Fe(Ⅱ)-EDTA浓度为0 mol/L、 110-4 mol/L两组处理,分别于处理后0、 4、 8、 12、 16 d对其叶绿素含量(SPAD)、 光合速率(Pn)、 叶绿体铁含量、 根系线粒体铁含量以及叶片铁含量、 根系铁含量、 生物量进行分析。结果表明,缺铁胁迫显著降低草莓幼苗叶绿素含量、 光合速率、 叶绿体铁含量、 叶片铁含量、 根系铁含量、 生物量,并且不同品种间差异达显著水平(P0.05);缺铁胁迫对根系细胞线粒体铁含量影响较小。草莓的叶绿体铁含量与叶片铁含量、 叶片净光合速率和生物量呈极显著正相关(r=0.93**, r=0.87**, r= 0.72**), 根系线粒体铁含量与叶片铁含量、 叶片净光合速率和生物量呈极显著正相关或显著正相关(r= 0.83**, r= 0.72**, r= 0.52*)。本试验条件下,供试草莓品种红颜受缺铁胁迫的影响大于其他3个品种。  相似文献   

12.
采用叶片涂抹的方法研究了铁营养状况与不同外源激素对玉米体内铁分配与再利用的影响。结果表明 ,在缺铁条件下 ,外源乙烯利处理玉米植株初生叶可促进初生叶衰老 ,提高初生叶中铁再利用率 ,改善新叶的铁营养状况 ,增加其中的活性铁与全铁含量 ;外源细胞分裂素处理新叶可促进新叶的生长发育 ,提高新叶中全铁及活性铁含量。  相似文献   

13.
氮肥水平对蔬菜品质的影响   总被引:51,自引:3,他引:51  
以潮土、黄棕壤为供试土壤,选取小白菜、番茄分别为叶菜类、果菜类代表,在土培条件下研究了氮肥水平对蔬菜品质的影响,通过对蔬菜体内维生素C、可溶性糖、氨基酸总量及其组成、果实可滴定酸度、可溶性固形物含量、植株钙镁元素含量等营养品质指标及硝酸盐含量的分析表明,高氮使蔬菜营养品质下降,硝酸盐污染加剧。  相似文献   

14.
外源水杨酸(SA)对高温胁迫下葡萄幼苗耐热性诱导研究   总被引:1,自引:0,他引:1  
为探讨外源水杨酸(SA)对高温胁迫下葡萄幼苗耐热性的影响,以二年生克瑞森无核葡萄扦插苗为试验材料,对清洗干净的葡萄叶片喷施浓度为150μmol/L的水杨酸(SA)溶液,之后置于45℃高温胁迫10,30,60,120,240,480min,以喷施蒸馏水后置于45℃高温胁迫10,30,60,120,240,480min为对照,研究外源水杨酸对可溶性蛋白含量、蛋白激酶活性、游离脯氨酸含量、电解质渗透率、丙二醛含量生理指标的影响。结果表明,高温胁迫下外源水杨酸(SA)增加可溶性蛋白和游离脯氨酸的含量;外源水杨酸诱导葡萄叶片蛋白激酶活性,促进蛋白磷酸化反应。可溶性蛋白含量变化与蛋白激酶活性的变化具有高度的一致性,即胁迫60min时可溶性蛋白含量增加到最大,蛋白激酶活性也同时增高到最大值;随着胁迫时间的延长(60min),外源水杨酸显著降低丙二醛的含量和相对电导率。外源水杨酸随着高温胁迫时间的延长(60min)可以显著增加葡萄幼苗叶片内可溶性蛋白和游离脯氨酸含量,降低丙二醛含量和电解质渗透率,显著降低细胞膜质过氧化伤害;增强蛋白激酶活性,促进蛋白磷酸化的反应,提高葡萄的耐热性。  相似文献   

15.
研究了缺水胁迫和缺铁胁迫对三叶期玉米(Zea mays)的光合作用特性和根生长的影响。玉米叶部的光合作用均受缺水胁迫和缺铁胁迫影响;短时间(≤2 h)缺水胁迫对光合作用造成的不利影响不能被短时间(24 h)的复水完全消除,而较长时间的缺铁胁迫(168 h)对光合作用造成的抑制作用可以被短时间(24 h)的补铁措施消除。短时间缺水(≤2 h)或短时间(≤72 h)缺铁不影响根系生长。较长时间的缺铁(168 h)严重限制根的生长并导致根生长畸形,短时间(24 h)补铁不能消除较长时间的缺铁对根的生长带来的不利影响。  相似文献   

16.
在100.mmol/L.NaCl胁迫下,研究了外源一氧化氮供体硝普钠(SNP)处理对番茄幼苗光合作用和离子含量的影响。结果表明,外源一氧化氮能使在NaCl胁迫下的番茄幼苗叶片叶绿素含量、净光合速率(Pn)、气孔导度(Gs)、叶绿素荧光参数Fv/Fo和Fv/Fm显著提高,胞间CO2浓度(Ci)明显下降;番茄幼苗根系、叶片中K+、Ca2+和Mg2+含量均显著提高,Na+含量明显降低。表明外源一氧化氮可以减轻盐胁迫对番茄幼苗叶片光合功能的不利影响,缓解NaCl胁迫对番茄幼苗的抑制作用。  相似文献   

17.
为了探索外源油菜素内酯对番茄Cu胁迫的缓解效应及机理,采用营养液水培的方法,以‘改良毛粉802F1’番茄为材料,研究外源2,4-表油菜素内酯(2,4-EBR,简称EBR)对Cu胁迫下番茄生长及矿质元素吸收的影响。结果表明:外源EBR能够缓解Cu胁迫对番茄植株的生长抑制。与Cu胁迫处理相比,喷施EBR的番茄叶绿素含量和生物量分别提高39.6%和20.0%,差异均达显著水平;Cu胁迫条件下,外源EBR显著降低番茄根系对Cu的吸收与转运,提高叶片中因Cu过多而降低的Fe、Zn含量,有效调控Cu、Fe、Zn的化学提取态和亚细胞分布水平,降低Cu在细胞内的生物毒性,使之向着有利于番茄生长的方向发展,从而保证Cu胁迫下植株正常的生理生化代谢。Cu胁迫提高了番茄叶片和根系各种化学形态的Cu含量,而外施EBR降低了番茄叶片中除NaCl提取态Cu以外的其他各种形态Cu含量。Cu胁迫下易移动态Cu在叶片中的比例升高,而根系中却下降;外施EBR后,番茄植株中难移动态和易移动态Cu的所占比例接近CK,说明Cu胁迫下EBR对Cu的番茄体内分配具显著调控作用。  相似文献   

18.
以4℃模拟低温胁迫状况,研究了外源一氧化氮(NO)供体硝普钠(SNP)对低温胁迫下玉米种子萌发、幼苗生长和生理特性的影响。结果表明,低温胁迫下,玉米种子萌发和幼苗生长受到抑制,叶片丙二醛(MDA)含量和相对电导率显著上升,叶片相对含水量、脯氨酸含量和叶绿素含量显著降低。不同浓度的SNP均能显著提高低温胁迫下玉米种子的发芽率、发芽势、发芽指数和活力指数;促进低温胁迫下玉米幼苗的生长;抑制低温胁迫下玉米幼苗叶片MDA含量的上升,降低叶片质膜相对透性,增加相对含水量、脯氨酸含量和叶绿素含量。表明外源NO可缓解低温胁迫对玉米种子萌发及幼苗生长的抑制作用,缓解低温胁迫引起的膜脂过氧化,保护细胞膜免受或减少损伤,提高植物抗低温胁迫的能力。在SNP不同的使用浓度中,以100μmol·L-1SNP对低温胁迫的缓解效果最佳,当SNP浓度过低和过高时均达不到理想的效果。  相似文献   

19.
一氧化氮(NO)作为生物活性分子,广泛参与各种生物、非生物胁迫。采用营养液培养,研究铜胁迫下外源NO对番茄体内植物螯合肽及精氨酸代谢的影响。结果表明,与CK相比,铜胁迫可以显著激活番茄体内γ-ECS、GS活性,根系GSH、PCs含量急剧升高,且随着处理时间的延长,γ-ECS、GS酶活性、GSH、PCs含量呈持续上升趋势;同时促进植物体内精氨酸代谢增加多胺合成。添加外源SNP,进一步提高铜胁迫下番茄根系γ-ECS、GS活性,促进GSH、PCs的合成,促进番茄多胺的合成。铜胁迫下,外源NO可能启动了某些信号机制,并通过激活或增强某些酶促和非酶促系统,降低过多Cu2+的生物毒性和氧化伤害。  相似文献   

20.
铁在矿质土壤中含量丰富,但在中性和碱性土壤中大多以不易被植物吸收利用的氧化物或氢氧化物形式存在;稻田土壤在淹水条件时氧化还原电位较低,大量铁以易被植物吸收利用的亚铁形式存在。土壤中铁的生物有效性过低或过高均会导致植物的生长发育受阻。本研究对缺铁(0 μmol?L-1)、铁充足(40 μmol?L-1)和高铁(350和500 μmol?L-1)条件生长的水稻地上部进行了非标记蛋白质组学分析。结果显示,与铁充足条件相比,缺铁和两种浓度的高铁胁迫水稻中分别有130、157和118个蛋白质的丰度发生显著变化。基因本体富集分析显示,缺铁和高铁胁迫下的差异蛋白在初级代谢过程、有机氮化合物代谢过程、蛋白质代谢过程和细胞成分组织或生物发生等生物学过程均显著富集;差异蛋白还参与核糖体、光合作用和氧化磷酸化等代谢途径。缺铁胁迫显著影响参与苯丙烷类物质和辅助因子生物合成的蛋白质丰度,而高铁胁迫则引起氨基酸生物合成过程的蛋白质丰度发生显著变化。本研究发掘到一系列可用于水稻铁高效育种工作的候选蛋白,还发现了一些功能未知的差异蛋白可作为后续水稻铁胁迫响应的研究目标,同时为理解植物应对铁胁迫的完整响应网络提供了补充信息。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号