首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Harvester ants (Messor spp.) function as an essential link between aboveground resources and below-ground biota such as the microbial community. We examined changes in soil microbial biomass and functional diversity resulting from harvester ant (Messor spp.) activity in the Negev Desert, Israel. Abiotic and biotic soil parameters were recorded during two seasons—wet and dry—also representing food availability periods for the ants (low and high seed availability, respectively). Soil samples were collected monthly from the 0- to 10- and 10- to 20-cm soil layers: (1) near the nest entrance, (2) under chaff piles, and (3) at a 2-m radius from the nest entrance (control). Harvester ant activity increased the percentage of organic matter, total soluble nitrogen, and microbial activity in nest-modified soils in comparison to the control soils. Higher CO2 evolution was recorded in the low-seed season in ant nest soils than in the control soils. During the high-seed season, higher carbon dioxide evolution was recorded only at the nest entrance locations. There were no differences in microbial biomass between the low- and high-seed seasons, but highest microbial biomass was found under chaff in low-seed season and in nest soils in high-seed season. Microbial functional diversity was higher in nest-modified soils than in the control soils. This study suggests that the effect of harvester ant nests on soil fertility is due to increased microbial biomass and microbial activity in ant nest-modified soils.  相似文献   

2.
This study was designed to test the hypothesis that desert ant species that build nests that remain viable at a particular point in space for more than a decade produce soil conditions that enhance microbial biomass and functional diversity. We studied the effects of a seed-harvester ant, Pogonomyrmex rugosus, and two generalist ant species, Aphaenogaster cockerelli and Myrmecocystus depilis, on soil microbial communities. Microbial biomass was higher in P. rugosus-modified soils than in reference soils when soil water content was higher than 3%. Microbial biomass was either higher in reference soils or exhibited no difference in reference soils and nest-modified soils of A. cockerelli and M. depilis. There were differences in microbial functional diversity and microbial community level physiological profiles (MicroResp method) between ant-nest-modified and reference soils of the three ant species on some sampling dates. Temporal patterns of soil microbial communities associated with the ant species resulted from differences in soil moisture, density, and species composition of the annual plant communities associated with the ant nests and in reference areas. Differences in annual plant communities associated with ant nests and surrounding areas resulted in different chemical inputs into the soil organic-matter pools. This study shows that generalizations about the effects of long-lived ant nests on soil biota in arid regions must consider feeding behaviors of the ant species and temporal patterns of rainfall.  相似文献   

3.
In arid areas of North America, nests of the seed-harvesting ant Pogonomyrmex rugosus tend to be elevated in mineral nitrogen and other soil nutrients relative to other microhabitats. We investigated the roles of decomposition, N mineralization, and plant nutrient uptake in maintaining high standing stocks of nutrients in P. rugosus ant nests. Decomposition rates of standard cellulose substrates placed on the surface of ant nests and other desert microhabitats suggest that conditions found in ant nests and bare areas are conducive to higher rates of decomposition than conditions under shrubs. In laboratory incubations of moist soil, net N mineralization rates were significantly higher in soil from ant nests than from bare areas and under two of three plant species. Net N mineralization rates measured in situ were much lower than those measured in laboratory incubations, but ant nest soil still exhibited higher rates at one of two sites. Litter collected from ant mounds, composed chiefly of seed chaff, was similar in N content to litter collected from underneath the dominant plant species, but had a significantly higher mean δ15N. Using this distinctive isotope signature as a tracer, we found no evidence that large perennial shrubs tap ant nests as a source of N. An invasive, annual grass species was significantly enriched in 15N, had higher leaf %N, and produced more seeds when growing on the mound than when growing several meters away; however P. rugosus nest surfaces are typically free of such annuals. We conclude that both high rates of nutrient cycling relative to other Mojave Desert microhabitats and low N utilization by the surrounding vegetation contribute to high standing stocks of mineral N in P. rugosus nests.  相似文献   

4.
Harvester ants are important disturbance agents across western North America, but the effects of ant disturbances on soils may vary considerably with topography and land use. We examined how soil properties and arbuscular mycorrhizal (AM) fungi in harvester ant nests varied across spatial scales according to topography, grazing regime and region. Soils from undisturbed areas were compared with nest disturbances created by two species of harvester ants, Pogonomyrmex occidentalis on shortgrass steppe in Colorado and P. rugosus on Chihuahuan desert grassland in New Mexico, in 1996 and 1997. Nests of both ant species were enriched with NO3--N, total P and roots colonized by AM fungi. Soil moisture was higher in P. rugosus' nests and lower in P. occidentalis' nests compared to surrounding areas. Soil pH was consistently lower in ant nests. Broad-scale factors such as grazing, topography and site affected most soil properties in and away from ant nests. Site exerted a strong influence on soil organic matter, pH and moisture. Within sites, topography had a significant affect on pH. Mycorrhizal colonization was influenced by site and topography in 1996 only, a substantially wetter year at both sites. Lastly, nutrient levels were largely determined by the fine-scale effects of ant disturbances. Principal components analysis revealed that, after removing site-level effects, harvester ants have similar functional roles in creating soil heterogeneity in these two different semiarid ecosystems.  相似文献   

5.
Lasius flavus is a dominant mound-building ant species of temperate grasslands that significantly modifies soil parameters. These modifications are usually the result of workers’ activities such as food accumulation and nest construction. An alternative hypothesis that could explain changes in soil is colony founding in areas of higher soil fertility.In our study we investigated several soil parameters sampled in 10 ant nests and adjacent (control) plots in mountain grassland in Slovakia. The alternative hypothesis was tested by comparing occupied and abandoned mounds. While we found increased concentrations of available P and K in the nests, concentrations of total C, total N, Ca2+ and Mg2+ were lower there. We propose that differences found between the soil of nests and control plots are entirely a product of ant activity during mound occupancy and not due to initial soil differences during nest establishment. This was confirmed by the comparison of occupied and abandoned nests in which the soil fertility of abandoned nests was similar to conditions in the surrounding soil.Along with the modification of soil chemistry, we recorded changes in soil physical properties and the vertical distribution of nutrients. Ant nests were characterized by the dominance of 0.02–0.1 mm particles and lower bulk density. In the same habitat, nutrient concentrations did not change along the vertical gradient in contrast to control plots where soil nutrients decreased and bulk density increased with depth. Root biomass followed the vertical pattern observed with nutrients: in control plots, most roots were concentrated in the uppermost layer (0–3 cm), whereas they were evenly distributed along the vertical gradient in the nests. We also found that rhizome internodes of Agrostis capillaris were thinner and longer in plants from the mounds. Changes in soil physical properties, vertical distribution of nutrients and root biomass in the nests are most probably a consequence of mounding and soil mixing (bioturbation), which has been less reported on in ant-soil studies.  相似文献   

6.
Ants are important ecosystem engineers and can be abundant in extensively managed grassland ecosystems. Different ant species create nests varying in structure and size, and tend to have a variety of feeding strategies. Differences in food imported to the nest and contrasting nesting behaviour may control soil microbial community structure in nest soil, with cascading effects on nutrient cycling, but this has not been tested in grassland ants. Soil and ants were sampled from nests of three ant species: two formicines; Lasius flavus (aphid farmer/scavenger, mound builder) and Formica lemani (scavenger/hunter, non-mound builder), and a myrmicine; Myrmica sabuleti (hunter/scavenger, non-mound builder), in an extensively grazed temperate grassland and compared to similar soils without ants. Microbial assemblages were determined using molecular approaches (terminal restriction length polymorphism and automated ribosomal intergenic spacer analysis). Both aboveground (vegetation diversity) and belowground (soil physico-chemical properties) components were measured to assess the potential of the different ant species to modify the environment. Stable isotope ratios (δ13C and δ15N) of ant tissues and nest soil organic matter confirmed differences in trophic distances. Significant changes in soil pH, moisture content, total C and total N, and in vegetation composition, demonstrated ant ecosystem engineering effects. In turn, nests of L. flavus, M. sabuleti and F. lemani had different microbial activities and harboured significantly different microbial assemblages (total bacteria, total fungi, ammonia-oxidising bacteria and nitrogen-fixing bacteria), but the diversity was similar. These findings suggest that grassland ants can control microbial assemblages via changes in physical and biological soil characteristics in their nests, and as such, different ant species harbour unique microbial assemblages in nests.  相似文献   

7.
Ants are widely found in Mediterranean soils, where they increase water infiltration rates by forming soil macropores during nest construction. While higher water infiltration usually results in lower soil erosion rates, new soil brought to the surface by ant activity could increase sediments available for erosion. This could be especially important in intensively-managed citrus orchards, where surface mineral soil is exposed due to the lack of vegetation cover as a consequence of herbicide treatments. In the summer of 2009 rainfall simulations of low frequency–high intensity rainstorms were conducted in an orange orchard in eastern Spain on plots that contained ant nests and adjacent paired-plots without ant nests. Since soil erosion is a scale-dependent process, we used three plot sizes (0.25 m2, 1 m2, and 12 m2) to determine the effect of ant burrowing and nesting on soil and water losses. Ant nests decreased water losses from 22.5% at 0.25 m2 to 10.6% at 12 m2, but soil erosion rates were nearly double in areas with ant activity (0.56 to 0.59 Mg ha− 1 h− 1), as compared to soil with no ants (0.31 to 0.36 Mg ha− 1 h− 1). Our results indicate that the presence of ants can increase soil erosion when rainfall intensity is greater than the infiltration capacity of the ant macropores.  相似文献   

8.
Nests of the harvester ant Pogonomyrmex barbatus typically contain higher concentrations of organic matter, nitrogen and phosphorus than surrounding soils. The difference between nest soils and surrounding soils is due, at least in part, to ant foraging behavior. Ants retrieve seeds from the environment and concentrate seed nutrients in the vicinity of the nest. But elevated nutrient concentrations in nests may also reflect initial conditions, if nest-founding queens are more likely to choose or survive in soils with high organic matter and nutrient content. By measuring the soil nutrient content and surface area of P. barbatus nests ranging from 1 to 20 years of age over two sampling periods, we (a) investigated the relationship between nest soil characteristics and colony age, and (b) tested the hypothesis that nest soils differ from background soils when nests are established. Nest surface area increased with colony age until age 5-10 years and leveled off thereafter. Relative to surrounding soils, concentrations of total nitrogen and orthophosphate increased, and pH decreased, with increasing colony age. The difference between nest soils and surrounding soils in total nitrogen, nitrate, and ammonium concentrations also increased over a 9-month interval between sampling bouts. Extrapolations from regressions of soil chemical variables against colony age provided no evidence that nest founding and early colony survival is more likely to occur in high-nutrient soils.  相似文献   

9.
A study was carried out during 2001 on mine tailings in NW Bohemia aimed at describing the spatial patterns of nests distribution and epigeic activity of ants in relation to the vegetation mosaic. Lasius niger was the most abundant species of ant and its nest mounds were significantly more numerous in patches with sparse vegetation than inside dense Calamagrostis epigejos vegetation; this was particularly true for small and medium-sized nests. Small and medium nests also occurred more frequently near the edges of a given patch than in the center. Large and medium nests were randomly distributed in the area, whereas small nests had an aggregated distribution. Pitfall trapping reveal significantly higher activity of L. niger workers in tall and dense vegetation stands in comparison with low and sparse vegetation. This pattern was particularly pronounced during the peak of foraging activity in summer and was not so significant in spring or autumn. We expect that ant preferentially forage in shaded habitats during the summer months when bare soil may be too hot. The results indicated that nesting and foraging may differ in their microclimatic requirements and the formation of vegetation mosaics may be important to changes in the ant population during succession.  相似文献   

10.
To understand how shrub cover affects the spatiotemporal patterns of the soil seed bank and to assess the role of vegetation in the restoration of desertified land in a semi‐arid region of China, we investigated the species composition and seed density of the soil seed bank under and outside the canopies over two seasons for an age sequence of Caragana microphylla shrubs in the Horqin Sandy Land region, Inner Mongolia. The results showed that a total of 24 plant species seeds were present in the soil seed bank, of which 20 were annuals or biennials. The seed densities in the soil seed bank were in the range of 830 – 13882·5 seeds m−2 at 10 cm depth. Species richness in the soil seed bank did not increase as the shrubs aged, whereas the seed densities increased significantly. Five annual species: Setaria viridis, Eragrostis pilosa, Chenopodium acuminatum, Chenopodium glaucum and Corispermum acuminatum, contributed above 90 per cent of the seeds to the soil seed bank. On the basis of seed characteristics and seed reduction amount during the growing season, we concluded that it represents a mixture of persistent and transient seeds in different proportions. More seeds accumulated under the canopies than outside the mature shrub cover, but no significant difference was found the younger cover. These results suggest that shrub size and age had an important role in augmenting seed abundance of the soil seed bank but not the species richness. We confirmed the important effects of shrub cover on seed accumulation and vegetation recovery, especially the value of more mature age vegetation for countering land degradation. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
ABSTRACT

Leguminous crops, particularly winter annuals, have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops. Previous research also highlights the benefits of utilizing summer annual legumes in rotation with non-leguminous crops. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent cotton (Gossypium hirsitum L.) crop in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL during the 2003–2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67, and 101 kg ha? 1) applied in fall and spring. Peanut residue did not influence seed cotton yields, leaf N concentrations, or plant N uptake for either growth stage or year of the experiment. There was a trend for peanut residue to increase whole plant biomass measured at the first square in two of three years. Seed cotton yields and plant parameters measured at the first square and mid-bloom responded favorably to spring N applications, but the recommended 101 kg N ha? 1 did not maximize yields. The results from this study indicate that peanut residue does not contribute significant amounts of N to a succeeding cotton crop, however, retaining residue on the soil surface provides other benefits to soils in the southeastern U.S.  相似文献   

12.
Annual (Pisum sativum L. and Vicia sativa L.) and perennial (Trifolium repens L. and Lotus corniculatus L.) leguminous species were grown in pots containing samples from the ash layers of two Cambisols under Pinus sylvestris L., which has been affected by high-intensity wildfires 3 and 15 days before the sampling. The gramineous Lolium perenne L. was cultivated as a second plant after Trifolium and Lotus harvesting. Three treatments were compared: soils without fertilization and soils fertilized with two doses of poultry manure (1 and 2 g total N kg-1 dry soil). The aim of the work was to study the capacity of the ash layer to sustain vegetation and the influence of plants and organic manure on the recovery of vegetation cover, ash layer fixation and soil structure formation to avoid erosion. The ash samples were able to sustain vegetation without fertilization. The organic manure increased the yields of all the plants tested, the lower dose being the optimal for the first crop whereas the higher dose was beneficial for the second crop. The annual legumes grew very quickly. The mixture of Trifolium and Lotus seemed very suitable for reclamation of soil degraded by wildfires because Trifolium produced more phytomass than Lotus in the first growing stages whereas the development of Lotus was higher in the later growing stages. Ash layer conditions did not inhibit nodulation, which was, however, stimulated by the organic manure, particularly in the case of Lotus. Lolium after perennial legumes was the best plant combination because it produced the highest phytomass, particularly root phytomass, and thus improved vegetation cover and ash layer fixation. All the plants tested improved the formation of soil aggregates, particularly the combination of perennial legumes and Lolium. However, wet aggregate stability was higher when plants were grown on soils fertilized with poultry manure than when plants were cropped on unmanured soils, which points to the favourable influence of the organic manure on soil aggregation.  相似文献   

13.
龙会英  张德  金杰 《土壤》2017,49(5):1049-1052
采用大田试验的方法,在云南省元谋县小雷宰流域内壤土、砂壤土和重壤土3种质地土壤上,以热研5号柱花草为材料,研究土壤质地对柱花草生长发育、生物量及土壤有机质、有机碳、全氮和全磷的影响。试验结果表明:3种土壤质地上种植柱花草,柱花草地上部和地下部生长量和生物量表现幼苗期增加缓慢,而分枝期后增加快的趋势。壤土耕性好,兼有砂土和重壤土的优点,有利柱花草地上部分的生长发育,柱花草地上部生长量、生物量及改善土壤肥力方面显著高于重壤土。砂壤土有利于柱花草根系向深层土壤生长,柱花草地下部生长量、生物量及根瘤显著高于种植在重壤土。在3种土壤质地种植柱花草后,土壤有机质、有机碳、全氮和全磷均有上升趋势。综合而言,通气性和保肥保水能力居中的壤土更适合柱花草的生长发育及干物质的积累。  相似文献   

14.
Ants are important soil engineers, affecting the structure and function of ecosystems. To address the impacts of ants (Camponotus herculeanus ) on the properties of an alpine meadow ecosystem of Qinghai–Tibet Plateau, we investigated the effects of ant mounds on plant biomass, soil physicochemical properties, microbial diversity, and functions. We found that the total biomass of plant community was significantly greater in ant mound periphery. Plant species richness in ant mounds was reduced compared with that of control plots without ant mounds. Significant changes in physicochemical properties of soil were also observed. Soil organic matter, total nitrogen, available phosphorous, total potassium, and available potassium increased in ant mound soil due to the excavation activities by ants as well as the accumulation of organic matter and other nutrients during mound construction. For example, roots/soil contents (g/g) and soil moisture in ant mound soils were lower than those in controls. Microbial community composition and microbial biomass were clearly changed in ant mound soils. BIOLOG analysis further indicated that the functional diversity of the microbial community of ant mound soil increased and differed from that of controls. This study indicates that ant‐induced modification of soil properties indirectly influences plant biomass and species composition, and ant mounds have different microbial communities from those of control soil. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Performance of three exotic species of Leucaena (L. diversifolia, L. shannonii and L. leucocephala) and one local selection of L. leucocephala was evaluated on sodic soil sites (pH 8.6–10.5) in order to select promising species for biomass production and reclamation of these soils. There were significant differences among three species with respect to their field survival (47.7–95.5 per cent), growth in terms of stem volume (40.8–118.6 m3 ha−1) and biomass production (24–70 Mg ha−1) after eight years of growth. L. leucocephala was rated as the most promising species irrespective of seed source, followed by L. shannonii. L. diversifolia could not perform well on these hostile soils. A definite improvement in physicochemical properties of soil particularly in surface layers (0–5 cm) was observed after eight years of plantations as compared to the same at uncultivated site. The soil pH and sodium content decreased followed by an increase in organic carbon, nitrogen and phosphorus content. However, efficiency of different species varied greatly to ameliorate these soils depending on quantity and quality of organic matter lying on the floor. L. leucocephala, irrespective of seed origin, showed greater promise for afforestation of sodic soils because of its potential to produce higher biomass per unit area and greater efficiency to ameliorate fertility status of these soils. The study revealed that matching of species to soil conditions is very important for a successful plantation programme and sustainable development of degraded soil sites. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Both disturbance history and previous land use influence present-day vegetation and soils. These influences can have important implications for conservation of plant communities if former disturbance and land use change species abundances, increase colonization of nonnative plant species or if they alter soil characteristics in ways that make them less suitable for species of conservation interest. We compared the plant species composition, the proportion of native and nonnative plant species, and soil biogeochemical characteristics across seven dominant land use and vegetation cover types on the outwash sandplain of Martha’s Vineyard that differed in previous soil tillage, dominant overstory vegetation and history of recent prescribed fire. The outwash sandplain supports many native plant species adapted to dry, low nutrient conditions and maintenance of native species is a management concern. There was broad overlap in the plant species composition among pine (Pinus resinosa, P. strobus) plantations on untilled soils, pine plantations on formerly tilled soils, scrub oak (Quercus ilicifolia) shrublands, tree oak (Q. velutina, Q. alba) woodlands, burned tree oak woodlands, and sandplain grasslands. All of these land cover categories contained few nonnative species. In contrast, agricultural grasslands had high richness and cover of nonnative plants. Soil characteristics were also similar among all of the woodland, shrubland and grassland land cover categories, but soils in agricultural grasslands had higher pH, extractable Ca2+ and Mg2+ in mineral soils and higher rates of net nitrification. The similarity of soils and significant overlap in vegetation across pine plantations, scrub oak shrublands, oak woodlands and sandplain grasslands suggests that the history of land use, current vegetation and soil characteristics do not pose a major barrier to management strategies that would involve conversion among any of these vegetation types. The current presence of high cover of nonnative species and nutrient-enriched soils in agricultural grasslands, however, may pose a barrier to expansion of sandplain grasslands or shrublands on these former agricultural lands if native species are not able to outcompete nonnative species in these anthropogenically-enriched sites.  相似文献   

17.
The effects of a range of fertilizer applications and of repeated low-intensity prescribed fires on microbial biomass C and N, and in situ N mineralization were studied in an acid soil under subalpine Eucalyptus pauciflora forest near Canberra, Australia. Fertilizer treatments (N, P, N+P, line + P, sucrose + P), and P in particular, tended to lower biomass N. The fertilizer effects were greatest in spring and smaller in summer and late actumn. Low-intensity prescribed fire lowered biomass N at a soil depth of 0–5 cm with the effect being greater in the most frequently burnt soils. No interactions between fire treatments, season, and depth were significant. Only the lime + P and N+P treatments significantly affected soil microbial biomass C contents. The N+P treatment increased biomass C only at 0–2.5 cm in depth, but the soil depth of entire 0–10 cm had much higher (>doubled) biomass C values in the line + P treatment. Frequent (two or three times a year) burning reduced microbial boomass C, but the reverse was true in soils under forest burn at intervals of 7 years. Soil N mineralization was increased by the addition of N and P (alone or in combination), line + P, and sucrose + P to the soil. The same was true for the ratio of N mineralization to biomass N. Soil N mineralization was retarded by repeated fire treatments, especially the more frequent fire treatment where rates were only about half those measured in unburnt soils. There was no relationship between microbial biomass N (kg N ha-1) and the field rates of soil N mineralization (kg N ha-1 month-1). The results suggest that although soil microbial biomass N represents a distinct pool of N, it is not a useful measure of N turnover.  相似文献   

18.
Open‐cast mining reclamation strategies are focused on the identification of the environmental factors at different scales that facilitate the vegetation establishment and development. Here, we characterised the environmental factors at macro‐scale and micro‐scale that influenced the herbaceous richness and biomass accumulation patterns trough a 32‐year chronosequence. Herbaceous richness and biomass were influenced at macro‐scale by successional and soil development gradients whereas at micro‐scale by shrub cover and coarseness gradients. Indeed, certain environmental factors at macro‐scale and micro‐scale contributed simultaneously to determine these gradients. Explicitly, the successional gradient was related to carbon and nitrogen ratio, grazing intensity and Shannon diversity. Across this successional gradient, total herb biomass and Fabaceae biomass were reduced as well as main taxonomical groups richness. Soil development gradient was related to total nitrogen, pH and erosion severity. This gradient only influenced species richness and produced a richness reduction when pH and erosion severity increased. At micro‐scale, the shrub cover gradient was related to organic matter thickness, producing a Poaceae biomass and bryophytes cover increase when shrub cover and organic matter increased. The coarseness gradient was related to the cover of rocks and bare soil, producing a reduction of herb biomass and richness when rocks and bare soil increased. These results emphasise the need to incorporate in the management plans the influence of soil development, successional, shrub cover and coarseness gradients over herbaceous richness and biomass to improve mine reclamation strategies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
张宁  廖燕  孙振钧  王冲 《土壤学报》2012,49(2):364-372
采用样方法对华北平原(河北曲周)盐渍化改造区7种土地利用方式下的蚯蚓种群进行详细调查,并通过培养实验研究了蚯蚓种群特征对若干土壤生物学指标的影响。结果表明:(1)在7种土地利用调查样地中共存在蚯蚓有3个科,5个属,5个种,其中赤子爱胜蚓(Eisenia fetida)占调查样地总个体数的60%以上,梯形流蚓(Aporrectodea trapezoides)和赤子爱胜蚓两个种在本地区广泛分布,样点出现频率分别为74%和44%,为该地区的优势种;(2)不同土地利用方式的蚯蚓种群密度及生物量变化趋势是:庭院菜地>直立免耕>清茬免耕>商品菜地>传统玉米地>果园>原貌地。其中庭院菜地蚯蚓种群的平均密度和生物量分别达到272 Ind.m-2和68.04gm-2;(3)蚯蚓种群密度和物种数等种群特征与土壤基础呼吸强度、微生物生物量碳含量成显著正相关(p<0.01),与土壤基础呼吸商成显著负相关(p<0.01);(4)不同土地利用方式下,蚯蚓的种群密度、生物量等种群特征对土壤中微生物群落的影响作用显著。蚯蚓生物量越大、种群越丰富的土壤有机质、氮、磷、钾等有效成分越高,反之则相反。室内培养实验表明,随着蚯蚓个体数量增加土壤原生动物总丰度、微生物生物量碳、氮也存在升高的趋势,与用土壤生物学特性指标及土壤化学特性指标评价的结果基本一致。  相似文献   

20.
通过水库水位涨落室内模拟试验,探究丹江口库区消落带优势物种狗牙根和空心莲2种草本植物对土壤氮磷释放过程影响。结果表明:(1)水淹结束后(32天),空心莲子草土壤TN、TP分别降低11.75%,25.28%,狗牙根分别降低3.62%,25.77%。(2)干湿交替环境主要影响土壤中NH_4~+-N、NO_3~--N和AP的含量的变化,对土壤中的TN、TP含量的影响较小。(3)狗牙根的死亡增加土壤TN、NH_4~+-N、TP量,即不耐淹植被过滤带虽然能净化径流中N、P等污染物,但截留的污染物和植物吸收的养分随着植物体的分解再次进入水体或土壤,无法达到有效防控农业面源污染的目的。该研究为丹江口水库利用植被缓冲带防控水体富营养化提供一定理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号