首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The efficacy of oocyte selection for in vitro embryo production depends on the abundance and diameter of follicles, cumulus layers around the oocytes and subsequent fertilization. Application of `ovum pick-up' technique allows us to utilize partially matured oocytes for embryo production even from juvenile subjects. To compare their developmental competence, oocytes derived from lambs and ewes and cultured in maturation medium for up to 26 h were assessed at 2 h intervals by confocal microscopy after chromatin and microtubulin-specific fluorochrome labelling. Lamb oocytes reached second meiotic metaphase (MII) at lower numbers at 24 h (60.0%) and 26 h (28.6%) whereas 85.7% of adult-derived oocytes attained MII status by 24 h of maturation. Radiolabelling of oocyte proteins revealed higher incorporation of [35S-]-methionine and [35S]-cysteine in adult-derived oocytes compared to lamb oocytes. Although the cleavage rate of lamb oocytes was similar to that of ewe oocytes, the proportion reaching blastocyst stage was significantly lower (p < 0.05) in the lamb-derived oocytes. However, blastocysts from both types of oocytes displayed similar cell lineage allocations to inner cell mass and trophectoderm.  相似文献   

2.
Research related to intermediate filaments in mammalian oocytes remains poorly advanced. We investigated keratin reorganization in oocytes during meiotic maturation using immunofluorescence, and examined effects of inhibitors for cdc2 and mitogen‐activated protein kinase kinase (MAPKK) on keratin assembly. In germinal vesicle (GV) oocytes (n = 26), large and oval‐shaped aggregates of non‐fibrillar keratin were found in the cortical ooplasm (designated as a ‘cortical’ pattern). The delicate network of keratin filaments was concentrated in the GV periphery. The large keratin aggregates began to divide into small fragments at the pro‐MI/MI stage (n = 22, designated as a ‘fragmented’ pattern). Some keratin fragments were occasionally broken down into several granules at the peripheral region. In the MII oocytes (n = 24), the filament network was extended over the ooplasm and numerous keratin granules were scattered across the oocyte (designated as a ‘granular’ pattern). After 12 h of incubation with roscovitine, 66.7% of the oocytes (20/30) were at the GV stage and showed a cortical pattern of keratin. After incubation with U0126, most oocytes (83.9%, 26/31) were at the MII stage; most of them (76.9%, 20/26) showed a fragmented pattern of keratin. The increasing complexity of keratin filament network from the GV to MII stages suggests a possible role in maintaining cell integrity under physical stress after ovulation. In fact, maturation/M‐phase promoting factor is necessary for such keratin reorganization, as is meiotic nuclear progression. In addition, MAPKK is involved in keratin reorganization from a fragmented pattern to a granular pattern.  相似文献   

3.
Joining immature gamete cryopreservation and germinal vesicle transplantation (GVT) technique could greatly improve assisted reproductive technologies in animal breeding and human medicine. The present work was aimed to assess the most suitable cryopreservation protocol between slow freezing and vitrification for immature denuded bovine oocytes, able to preserve both nuclear and cytoplasmic competence after thawing. In addition, the outcome of germinal vesicle transfer procedure and gamete reconstruction was tested on the most effective cryopreservation system. Oocytes, isolated from slaughterhouse ovaries, were stored after cumulus cells removal either by slow freezing or by vitrification in open pulled straws. After thawing, oocytes were matured for 24 h in co-culture with an equal number of just isolated intact cumulus enclosed oocytes, and fixed in order to evaluate the stage of meiotic progression and cytoskeleton organization. Our results showed that after warming, vitrified oocytes reached metaphase II (MII) in a percentage significantly higher than oocytes cryopreserved by slow freezing (76.2% and 36.5% respectively, p < 0.05). Moreover, vitrification process preserved the organization of cytoskeleton elements in a higher proportion of oocytes than slow freezing procedure. Therefore vitrification has been identified as the elective method for denuded immature oocytes banking and it has been applied in the second part of the study. Our results showed that 38.3% of oocytes reconstructed from vitrified gametes reached the MII of meiotic division, with efficiency not different from oocytes reconstructed with fresh gametes. We conclude that vitrification represents a suitable method of GV stage denuded oocyte banking since both nuclear and cytoplasmic components derived from cryopreserved immature oocytes can be utilized for GVT.  相似文献   

4.
The importance of nitric oxide synthase (NOS) in bovine oocyte maturation was investigated. Oocytes were in vitro matured with the NOS inhibitor Nw- l -nitro-arginine methyl-ester (10−7, 10−5 and 10−3  m l -NAME) and metaphase II (MII) rates and embryo development and quality were assessed. The effect of l -NAME (10−7  m ) during pre-maturation and/or maturation on embryo development and quality was also assessed. l -NAME decreased MII rates (78–82%, p < 0.05) when compared with controls without l -NAME (96%). Cleavage (77–88%, p > 0.05), Day 7 blastocyst rates (34–42%, p > 0.05) and total cell numbers in blastocysts were similar for all groups (146–171 cells, p > 0.05). Day 8 blastocyst TUNEL positive cells (3–4 cells) increased with l -NAME treatment (p < 0.05). For oocytes cultured with l -NAME during pre-maturation and/or maturation, Day 8 blastocyst development (26–34%) and Day 9 hatching rates (15–22%) were similar (p > 0.05) to controls pre-matured and matured without NOS inhibition (33 and 18%, respectively), while total cell numbers (Day 9 hatched blastocysts) increased (264–324 cells, p < 0.05) when compared with the controls (191 cells). TUNEL positive cells increased when NOS was inhibited only during the maturation period (8 cells, p < 0.05) when compared with the other groups (3–4 cells). NO may be involved in meiosis progression to MII and its deficiency during maturation increases apoptosis in embryos produced in vitro . Nitric oxide synthase inhibition during pre-maturation and/or maturation affects embryo quality.  相似文献   

5.
Follicle blood flow, follicular-fluid and plasma hormone concentrations, and oocyte quality were studied 30 h after an ovulation-inducing hCG treatment when the pre-ovulatory follicle was 32 mm. Mares were grouped as positive (n = 16) and negative (n = 44) for hCG antibodies before the experimental hCG treatment. Percentage of the follicle wall with blood flow signals was less (p < 0.05) in the antibody positive group than in the negative group. The concentrations of follicular-fluid oestradiol and free IGF1, and plasma oestradiol were greater (p < 0.001), and follicular-fluid progesterone (p < 0.001) and plasma LH (p < 0.02) were less in the antibody-positive group than in the negative group. For recovered oocytes at 30 h (n = 37), the antibody-positive group had fewer (p < 0.001) mature (MII) oocytes than the antibody-negative group. Results were attributable to highly effective neutralization of the hCG in the antibody-positive group.  相似文献   

6.
Polo‐like kinase 1 (Plk1), a type of serine/threonine protein kinase, has been implicated in various functions in the regulation of mitotic processes. However, these kinase's roles in meiotic division are not fully understood, particularly in the meiotic maturation of porcine oocytes. In this study, the expression and spatiotemporal localization of Plk1 were initially assessed in the meiotic process of pig oocytes by utilizing Western blotting with immunofluorescent staining combined with confocal microscopy imaging technique. The results showed that Plk1 was expressed and exhibited a dynamic subcellular localization throughout the meiotic process. After germinal vesicle breakdown (GVBD), Plk1 was detected prominently around the condensed chromosomes and subsequently exhibited a similar subcellular localization to α‐tubulin throughout subsequent meiotic phases, with particular enrichment being observed near spindle poles at MI and MII. Inhibition of Plk1 via a highly selective inhibitor, GSK461364, led to the failure of first polar body extrusion in porcine oocytes, with the majority of the treated oocytes being arrested in GVBD. Further subcellular structure examination results indicated that Plk1 inhibition caused the great majority of oocytes with spindle abnormalities and chromosome misalignment during the first meiotic division. The results of this study illustrate that Plk1 is critical for the first meiotic division in porcine oocytes through its influence on spindle organization and chromosome alignment, which further affects the ensuing meiotic cell cycle progression.  相似文献   

7.
The objective of this study was to determine the effects of gonadotropins on in vitro maturation (IVM) and electrical stimulation on the parthenogenesis of canine oocytes. In experiment I, cumulus oocyte complexes were collected from ovaries at a random phase of the oestrus cycle and cultured on maturation medium treated with hCG or eCG for 48 or 72 h. There were no significant differences in the effects on the metaphase II (MII) rate between the hCG and eCG treatment groups over 48 h (5.4% vs 5.5%). The MII rate in the co-treatment group of hCG and eCG for 48 h was higher than in each hormone treated group (15.5%, p < 0.05). In experiment 2, the parthenogenetic effect on oocyte development, at various electrical field strengths (1.0, 1.5, 2.0 kV/cm DC) for 60 or 80 μs with a single DC pulse after IVM on the co-treatment of hCG and eCG, was examined. The rate of pronuclear formation (37.1%) in electrical activation at 1.5 kV/60 μs without cytochalasin B (CB) was higher than that of oocytes activated in the other groups (p < 0.05). However, we did not observe the cleavage stages. Also, CB did not influence parthenogenesis of canine oocytes. The results showed that the pronucleus formation rate, indicative of the parthenogenesis start point, could be increased by electrical stimulation. Therefore, these results can provide important data for the parthenogenesis of canine oocytes and suggest the probability of parthenogenesis in canines.  相似文献   

8.
Incomplete cytoplasmic maturation of in vitro matured (IVM) oocytes has been known to cause microtubule and microfilament alterations, which may result in abnormal pronuclear formation and failed embryonic development. We examined the influences of maturation conditions on meiotic spindle morphology at metaphase of meiosis II (MII) in porcine oocytes. Porcine oocytes were matured under various conditions, i.e., in vitro or in vivo, with different amounts of cumulus cells, with or without hormonal supplements, and with various exposure durations to the hormones, to examine the effects on spindle morphology in MII oocytes by immunofluorescence under confocal laser microscopy. Interpolar spindle length (microm) and spindle area (microm2) were compared among these maturation conditions. The spindle length was significantly shorter in IVM oocytes compared to those matured in vivo. Oocytes collected from cumulus oocyte complexes (COCs), which were poor in cumulus cells, showed smaller spindle areas than those from cumulus-rich COCs. The spindle length and area were both significantly reduced in oocytes grown without hormonal supplements. When oocytes were grown with hormonal supplements for either 6 or 22 hours for the first half of culture, there was no difference in the spindle morphology between these oocytes. These results suggested that maturation conditions significantly influence morphogenesis of MII spindles in porcine oocytes. Oocytes matured in poor conditions were more likely to have a shorter spindle length (long axis) and smaller spindle areas.  相似文献   

9.
ERK-type MAP kinase activity is required for normal first meiotic (MI) metaphase spindle dynamics and first polar body formation at the MI/MII transition, and for MII arrest until egg activation. MEK and MAPK, however, remain active until meiosis is completed and pronuclei form, but whether MEK/MAPK activity affects MII spindle function during egg activation has been unknown. Polarized light microscopy revealed that the MII spindle rapidly (within approximately 15 min) lost birefringence upon treatment of the egg with U0126, indicating decreased organization at the molecular level upon MEK inhibition. In contrast, birefringence rapidly increased when MPF was inhibited with roscovitine, and this was similar to the increased birefringence previously shown after fertilization or parthenogenetic activation with Sr(2+). Confocal microscopy indicated that many spindles in U0126-activated eggs had failed to rotate or were dissociated from the egg cortex. Subsequently, abnormally-located midbodies were evident in U0126-induced parthenogenotes. Thus, MEK/MAPK activity is required to maintain the ordered structure of the MII spindle and for normal spindle dynamics during second polar body formation.  相似文献   

10.
Spindle movements, including spindle migration from the center to the cortex of oocytes during first meiosis and spindle rotation during second meiosis, are required for asymmetric meiotic divisions in many species. However, little is currently known in relation to the rat oocyte. To explore how spindles move and the mechanism controlling spindle movements in rat oocytes, we observed the spindle dynamics during the two meiotic divisions in the rat oocyte by confocal microscopy. Drugs that depolymerize microtubules or microfilaments were employed to further determine the roles of these two cytoskeletons in spindle movements. The results showed that peripheral spindle migration took place during first meiosis and spindle rotation took place during second meiosis in the rat oocytes. Microfilament inhibitor inhibited both spindle migration and spindle rotation, and depolymerization of microtubules inhibited spindle rotation. Severe depolymerization of microtubules inhibited spindle migration, while migration was achieved by partial but not complete depolymerization of microtubules. We thus conclude that microfilaments are important for both spindle migration and spindle rotation and that spindle microtubules are essential for spindle movements in rat oocytes.  相似文献   

11.
Decreased fertility in pigs is a common occurrence during summer months. An objective of the current experiments was to evaluate if elevated ambient temperature altered the oocyte plasma membrane including potential receptors for sperm. This would potentially contribute to reduced fertilizability. Treated gilts were exposed in vivo to 32°C for 12 h per day and 20°C for the remaining 12 h per day for 7 days; control gilts were exposed to 22°C for 12 h and 20°C for the remaining 12 h each day. Cumulus–oocyte complexes were also aspirated from ovaries obtained from gilts maintained at thermoneutral ambient temperature and matured in vitro at 38.5°C or 40°C. Relative abundance of a porcine oocyte membrane protein was examined by intensity of immunolabelling of the in vivo and in vitro matured oocytes evaluated with confocal microscopy; fertilizability of the in vitro matured oocytes was evaluated in in vitro fertilization assays. Oocytes obtained from gilts exposed to elevated ambient temperature for 7 days had reduced immunolabelling compared with oocytes from control gilts (p < 0.05). Similarly, oocytes matured in vitro for 44 h at elevated ambient temperature had reduced immunolabelling and reduced fertilizability compared with oocytes matured at 38.5°C (p < 0.01 and p < 0.05). These results suggest porcine oocyte quality is reduced by elevated ambient temperature and immunolabelling of oocytes with antibodies to specific membrane proteins may be effective to evaluate some aspects of oocyte quality.  相似文献   

12.
In vitro maturation of vitrified immature germinal vesicle (GV) oocytes is a promising fertility preservation option. We analyzed the ultrastructure of human GV oocytes after Cryotop vitrification (GVv) and compared it with fresh GV (GVc), fresh mature metaphase II (MIIc) and Cryotop-vitrified mature (MIIv) oocytes. By phase contrast microscopy and light microscopy, the oolemmal and cytoplasmic organization of fresh and vitrified oocytes did not show significant changes. GVv oocytes showed significant ultrastructural alterations of the microvilli in 40% of the samples; small vacuoles and occasional large/isolated vacuoles were abnormally present in the ooplasm periphery of 50% of samples. The ultrastructure of nuclei and mitochondria-vesicle (MV) complexes, as well as the distribution and characteristics of cortical granules (CGs), were comparable with those of GVc oocytes. MIIv oocytes showed an abnormal ultrastructure of microvilli in 30% of the samples and isolated large vacuoles in 70% of the samples. MV complexes were normal, but mitochondria-smooth endoplasmic reticulum aggregates appeared to be of reduced size. CGs were normally located under the oolemma but presented abnormalities in distribution and matrix electron density. In conclusion, Cryotop vitrification preserved main oocyte characteristics in the GV and MII stages, even if peculiar ultrastructural alterations appeared in both stages. This study also showed that the GV stage appears more suitable for vitrification than the MII stage, as indicated by the good ultrastructural preservation of important structures that are present only in immature oocytes, like the nucleus and migrating CGs.  相似文献   

13.
In this study, we investigated the fluctuations of concentration of intracytoplasmic free Ca(2+) during in vitro maturation of caprine primary oocytes and its role in meiotic resumption. Oocytes that were extracted from caprine ovaries were cultured and allowed to mature in vitro to determine their developmental stages including germinal vesicle (GV), germinal vesicle breakdown (GVBD), metaphase of the first meiotic division (MI) and metaphase of the second meiotic division (MII). Intracytoplasmic free Ca(2+) turnovers of caprine oocytes at these different developmental stages were measured using the calcium fluorescent probe Fura-2/AM (C(44)H(47)N(3)O(24)) to investigate the dynamics of cytosolic free Ca(2+) during in vitro maturation of oocytes and the role of Ca(2+) in inducing the initiation of meiotic resumption of oocytes. Moreover, the oocytes were cultured in Ca(2+) culture medium and Ca(2+)-free culture medium to examine the effect of extracellular Ca(2+) on the oocyte maturation. The results indicated that Ca(2+) concentrations at GV, GVBD, MI and MII stages were 78.06, 147.41, 126.97 and 97.73 nmol/l, respectively, and that 86.30% of oocytes remained at the GV stage and no oocyte developed to MII in Ca(2+)-free culture medium, and 1.1% of oocytes stayed at the GV stage and 83.5% of oocytes developed to MII in Ca(2+) culture medium. These results suggest that the occurrence of GVBD and cell cycle progression to MI and MII stages are closely related to Ca(2+), and that extracellular Ca(2+) performs a specific function for the initiation of meiotic resumption in caprine oocytes.  相似文献   

14.
The cytoskeleton plays crucial roles in the development and fertilization of germ cells and in the early embryo development. The growth, maturation and fertilization of oocytes require an active movement and a correct localization of cellular organelles. This is performed by the re-organization of microtubules and actin filaments. Therefore, the aim of the present study was to determine the changes in cytoskeleton during in vitro fertilization process using appropriate immunofluorescence techniques. While the chromatin content was found to be scattered throughout the nucleus during the oocyte maturation period, it was seen only around nucleolus following the completion of the maturation. Microtubules, during oocyte maturation, were regularly distributed throughout the ooplasm which was then localized in the subcortical region of oocytes. Similarly microfilaments were scattered throughout the ooplasm during the oocyte maturation period whereas they were seen in the subcortical region around the polar body and above the meiotic spindle throughout the late developmental stages. In conclusion, those changes occurred in microtubules and microfilaments might be closely related to the re-organization of the genetic material during the oocyte maturation and early embryo development.  相似文献   

15.
16.
The impact of TCM‐199 supplemented with different proteins and heterologous hormones on the in vitro maturation (IVM) rate of bitch oocytes was evaluated by nuclear staining under fluorescence microscopy. Oocytes were recovered by slicing of ovaries from bitches presented at various stages of oestrous cycle to ovariohysterectomy. The basic culture medium was TCM‐199 supplemented with 25 mM Hepes/l, with 10% heat‐inactivated oestrous cow serum (ECS), 50 μg/ml gentamicin, 2.2 mg/ml sodium bicarbonate and 22‐μg/ml pyruvic acid, 1.0‐μg/ml oestradiol (E 8875; Sigma), 0.5‐μg/ml follicle‐stimulating hormone (FSH) (Folltropin‐V; Vetrepharm Inc., Ontario, Canada) and 0.03 IU/ml human gonadotropin (hCG) (Profasi HP; Serono, Aubonne, Switzerland). Oocytes were distributed randomly between basic culture medium (control) and the corresponding experimental treatment. Hormone treatments were: oocytes cultured in; (1) medium without FSH, (2) control medium supplemented with 20 μg/ml oestradiol, or (3) medium supplemented with 1 μg/ml human somatotropin (hST; Humatrope, Lilly, Saint Cloud, France). The second experiment consisted of oocytes cultured in medium supplemented with 0.4% (w/v) bovine serum albumin (BSA, fraction V; Gibco Grand Island, NY, USA) instead of ECS, or oocytes cultured in medium with 10% inactivated oestrous bitch serum (EBS) instead of ECS. Oocytes were cultured in 100 μl droplets (up to 25 oocytes per drop) under mineral oil at 37°C in a 100% humidified atmosphere containing 5% CO2 in air. After 72 h of IVM, the highest rates (p < 0.05) of meiotic resumption were achieved with the 0.4% BSA supplementation. A positive influence on the metaphase II (MII) acquisition rate was observed with hST supplement. Oocytes cultured with 10% EBS supplementation did not develop to the MII stage. The results in this study show that the protein and hormone supplements to TCM‐199 culture medium tested did not promote the final steps of IVM of bitch oocytes.  相似文献   

17.
We investigated the frequencies of cytoskeletal anomalies in metaphase-II (M-II) and incompetent [arrested at an immature metaphase (IM) stage] porcine and bovine oocytes during in vitro maturation (IVM) in relation with ageing by immunostaining and confocal microscopy. In porcine oocytes, meiotic arrest at the IM stage was associated with abnormalities of cortical actin but not with abnormal spindles. Prolongation of IVM culture to 52 h did not affect microfilament and spindle abnormalities, but reduced the microfilament-rich area overlaying the spindle. Meiotic arrest of bovine oocytes at the IM stage was associated with degenerations of microfilaments, and the frequencies of abnormal spindles were also higher than those of M-II oocytes. Ageing of bovine oocytes (IVM for 30 h) did not affect cortical microfilaments but increased the frequency of spindle alterations in both M-II and IM bovine oocytes. These results suggest that, in both species, altered ability of oocytes to polymerize F-actin might be a possible reason for the failure of polar body extrusion during IVM. Also, there seem to be differences between the two species in the sensitivity of oocytes to suffer ageing-related spindle damages.  相似文献   

18.
The overall aim of the present study was to evaluate in vitro development ability of oocytes recovered from 56 Holstein Frisian heifers with low [group 1 (G1): <13 mg /dl], moderate [group 2 (G2): 13–16 mg /dl] and high [group 3 (G3): >16 mg /dl] plasma urea nitrogen (PUN) concentrations, to determine whether PUN concentrations affect the competence of oocytes to progress to blastocysts after in vitro fertilization. In vitro oocyte and embryo development was assessed by blastocyst rates, embryo total cell numbers and apoptosis. Blood samples for the determination of PUN were collected 24 h prior to collection of the ovaries at the slaughter. A total of 112 ovaries were collected at a local abattoir and oocytes (n = 697) were aspirated, in vitro matured and fertilized. On day 8, blastocysts were assigned to the terminal dUTP nick end labelling assay. Cleavage rates were significantly higher (p < 0.001) for groups 1 and 2 than for group 3 (i.e. 72.5% and 72.2% vs 61.7%, respectively). The proportion of fertilized oocytes that developed into blastocysts was higher (p < 0.05) for group 1 than for group 3 (34.0% vs 23.0%, respectively). Day 8 blastocysts showed higher total cell counts (p < 0.05) for group 1 than for group 3 (123.7 vs 76.3), and a higher (p < 0.05) total apoptotic cell rate was found in group 3 (25.9 and 19.0 vs 43.2 for G1, G2 and G3, respectively). In conclusion, the ability of oocytes from heifers with increased levels of PUN to develop to the blastocyst stage was significantly reduced when standard routines for in vitro maturation, fertilization and culture were followed. These detrimental effects can be mediated in part through direct effect of urea and/or by the metabolic products on the process of follicle-enclosed oocyte nuclear and cytoplasmic development.  相似文献   

19.
Mammalian oocyte maturation and early embryo development processes are Ca2+-dependent. In this study, we used confocal microscopy to investigate the distribution pattern of Ca2+ and its dynamic changes in the processes of bovine oocytes maturation, in vitro fertilization (IVF), parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) embryo development. During the germinal vesicle (GV) and GV breakdown stage, Ca2+ was distributed in the cortical ooplasm and throughout the oocytes from the MI to MII stage. In IVF embryos, Ca2+ was distributed in the cortical ooplasm before the formation of the pronucleus. In 4-8 cell embryos and morulas, Ca2+ was present throughout the blastomere. In PA embryos, Ca2+ was distributed throughout the blastomere at 48 h, similar to in the 4-cell and 8-cell phase and the morula. At 6 h after activation, there was almost no distribution of Ca2+ in the SCNT embryos. However, Ca2+ was distributed in the donor nucleus at 10 h and it was distributed throughout the blastomere in the 2-8 cell embryos. In this study, Ca2+ showed significant fluctuations with regularity of IVF and SCNT groups, but PA did not. Systematic investigation of the Ca2+ location and distribution changes during oocyte maturation and early embryo development processes should facilitate a better understanding of the mechanisms involved in oocyte maturation, reconstructed embryo activation and development, ultimately improving the reconstructed embryo development rate.  相似文献   

20.
The developmental ability and the nucleus and microtubule dynamics of nuclear transplanted goat embryos derived from in vitro matured oocytes were studied while controlling cell-cycle coordination of donor embryonic nuclei and recipient cytoplasts. Three groups of transfers were studied: G0/G1 (after the fibroblast cells grew to 100% confluence) and G2/M (nocodazole treated) phase fibroblasts transferred to MII cytoplasts (G0/G1-->MII and G2/M-->MII group, respectively), and G0/G1 phase fibroblasts transferred to preactivated cytoplasts, mostly at S-phase, (G0/G1-->Pre group) by electrical fusion. The results showed that fusion and developmental ability did not differ between G0/G1-->MII and G0/G1-->Pre groups. However the developmental rate of embryos in the G0/G1-->MII group was significantly higher than that of the G2/M-->MII group. Most fibroblast nuclei (G0/G1 and G2/M) transferred into MII oocytes underwent premature chromosome condensation (PCC). Normal spindle were only detected in the G0/G1-->MII group. In contract, fibroblast nuclei in pre-activated oocytes rarely underwent PCC, but formed a swollen nuclear structure. The data suggest that in vitro matured goat oocytes can support the development of somatic fibroblasts after nuclear transfer, G0/G1 -->MII and G0/G1-->S nuclear transfer might be effective ways for improving the developmental competence of the reconstituted embryos, and that G2/M-->MII nuclear transfer by electrical fusion (even in Ca2+-free fusion medium) induces abnormal chromosome ploidy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号