首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil development in the surrounding of oligotrophic mires in the Berlin region Polygenetic soils, surrounding oligotrophic kettle hole mires in the valley and aeolian sand areas of the Berlin region, were investigated. The typical soil catena is formed by the sequence of Ombric Histosol (Niedermoor), Ombric Histosol/Albi‐gleyic Podzol (Moor‐Podsol‐Gley), Albi‐gleyic Podzol (Nasspodsol‐Gley), Gleyic Podzol (Podsol‐Gley), and Dystri‐gleyic Arenosol (Gley‐Podsol‐Braunerde) (German soil classifications in parenthesis). Field and laboratory work showed, that the investigated soils were strongly related to each other and that their development depends on the trophy of the mire and groundwater fluctuations during the Holocene. Compared with the Bh‐horizon of terrestrial soils the Gh‐horizon is nearly free of Fe and Mn, but very rich in pedogenic Al‐oxides and rich in organic matter. The genesis of the soils is explained as follows: 1. The development of different Gleyic Podzols was due to rise of groundwater. Consequently the Bh and Bs horizons of Podzols surrounding the mire were converted to Gh and Gr horizons. 2. Humic substances and Al in the Gh and Gr horizons were not re‐mobilized due to the rise of groundwater, whereas Fe and Mn were reduced and removed by groundwater. 3. At the periphery of the mire Fe was enriched in the Go horizon of the Gley‐Podzols but not Mn. 4. The fact that the mire is completely surrounded by Podzol‐Gleys, indicates, that movement of the groundwater from the central parts of mires towards the periphery is an essential pedogenetic factor.  相似文献   

2.
D. Righi  F. De Connick 《Geoderma》1977,19(4):339-359
Soils of the nearly level “Landes du Médoc” in southwestern France have a pattern of alternating bodies of hydromorphic podzols (Haplaquods) and low humic hydromorphic soils (Psammaquents). The soils are formed in a sedimentary mantle of coarse, quartzose sands with a slight microrelief consisting of low, elongated ridges and shallow, intervening troughs. The water table is at shallow depths throughout the plain, even at the surface in places. The podzols on the crests of the low ridges have distinct A2 and cemented B2 h horizons. Podzols persist down the sides of ridges but going downslope first lose the A2 horizon and then the cementation of the Bh horizon. Soils in the shallow troughs have A1 and Cg horizons without B horizons.The fine silt (2–20 μm) and clay (0–2 μm) fractions of the parent sand contain primary trioctahedral chlorite, mica, feldspars, and quartz, with the last mineral predominant. During soil development, the first three minerals undergo weathering at different rates and to different extents. Chlorite is most strongly weathered, followed in order by plagioclases and K-minerals. In the fine silt fraction, weathering seems to occur mostly by fragmentation of particles. In the clay fraction, the phyllosilicates successively form irregularly interstratified minerals with contractible but not expandable vermiculitic layers, interstratified minerals with contractible and expandable smectitic layers, and finally smectites.The extent to which the silicate minerals are weathered becomes progressively greater from the low humic hydromorphic soils to the podzols with friable Bh horizons to the podzols with cemented Bh horizons. Smectite is present only in the A2 horizons of these last podzols.The aluminum release by weathering of silicate minerals is translocated in part in the form of organo-metal complexes into the Bh horizons of the podzols. Greatest concentrations of Al are associated with coatings of monomorphic organic matter on mineral grains in the cemented Bh horizons, in which some Al has also crystallized into gibbsite. That mineral was not detected in friable B horizons of podzols nor in the low humic hydromorphic soil. Contrary to expectations, the mobile Al did not enter interlayer spaces of expanding 2:1 clay minerals.  相似文献   

3.
Examination by infrared spectroscopy and electron microscopy of the fine clays (<0.5 μm) dispersed at pH 3.5 from H2O2-treated soil indicates that imogolite and proto-imogolite allophanes are concentrated in podzolic B2 and B3 horizons, and make up at least 6 percent of one B2 horizon soil, which contains virtually no layer silicate clays. It is argued here that imogolite-type components are the principal source of extractable aluminium and silicon in such horizons, that they may act as cementing agents in indurated horizons, and that proto-imogolite, a soluble aluminium-silicate complex, is the predominant mobile form in which aluminium is transported to B2 and lower horizons of podzols. Comparison of the amounts of aluminium extracted by acetic acid with those extracted by EDTA indicates that extractable aluminium in Bhg, Bh, and organic-rich A2 horizons is present principally in organic complexes. It is proposed that the aluminium fulvates concentrated in these horizons are formed in situ.  相似文献   

4.
The podzolization process is studied through lipids in nine characteristic podzol horizons. Organic matter accumulates particularly with aluminium in the Bh horizon, while the hard, cemented Bs horizon below this is formed mainly by iron oxides. The low soil pH seems to have no great influence on the preservation of lipids as reflected by the absolute amounts present and the presence of bacterial lipid markers throughout the profile. Independent of soil pH, lipids accumulate in organically enriched horizons. Albeit, high molecular weight organic compounds accumulate to a relatively greater extent than lipids in these horizons. A lipid signal related to the aerial parts, i.e. leaves and flowers, of Calluna is observed only in the O horizon. This ‘n‐alkane, steroid and triterpenoids’ signal is quickly lost in the underlying Ah horizon due to (bacterial) oxidation. The other total lipid extracts obtained are dominated by root‐derived compounds. In subsoil horizons rich in organic matter, i.e. the Ahb and Bh horizons, root‐derived friedooleanan and steroid compounds dominate the total lipid signal. Degraded horizons, poor in organic matter, i.e. the E2, Bhs, Bs and B/C horizons, are dominated by C22 and C24ω‐hydroxy acids, long‐chain (> C20) n‐alkanoic acids with a strong even‐over‐odd predominance and C22 and C24n‐alkanols. Steroid and root‐derived triterpenoids with a friedooleanan structure have been removed from these horizons through degradation. Based on total organic carbon content and lipid composition, the formation of an E1 horizon has started, but is not yet complete. In the Ahb horizon, a contribution from buried vegetation to the total lipid signal is still present, although degradation and an input from roots have significantly altered the original signal. Overall, lipid data indicate that degradation (microbial oxidation) is an important process that should be taken into account, in addition to leaching, when describing podzolization processes in soils.  相似文献   

5.
The processes governing the (im)mobilization of Al, Fe and dissolved organic matter (DOM) in podzols are still subject to debate. In this study we investigated the mechanisms of (im)mobilization of Al, Fe and organic matter in the upper and lower B horizons of two podzols from the Netherlands that are in different stages of development. We equilibrated batches of soil material from each horizon with DOM solutions obtained from the Oh horizon of the corresponding soil profiles. We determined the amount of (im)mobilized Al, Fe and DOM after addition of Al and Fe at pH 4.0 and 4.5 and initial dissolved organic carbon (DOC) concentrations of 10 mg C litre?1 or 30 mg C litre?1, respectively. At the combination of pH and DOC concentrations most realistic for the field situation, organic matter was retained in all horizons, the most being retained in the lower B horizon of the well‐developed soil and the least in the upper B horizon of the younger profile. Organic matter solubility seemed to be controlled mainly by precipitation as organo‐metal complexes and/or by adsorption on freshly precipitated solid Al‐ and Fe‐phases. In the lower B horizons, at pH 4.5, solubility of Al and Fe appeared to be controlled mainly by the equilibrium with secondary solid Al‐ and Fe‐phases. In the upper B horizons, the solubility of Al was controlled by adsorption processes, while Fe still precipitated as inorganic complexes as well as organic complexes in spite of the prevailing more acidic pH. Combined with a previous study of eluvial horizons from the same profiles, the results confirm the important role of organic matter in the transport of Al and Fe to create illuvial B horizons initially and subsequently deepening and differentiating them into Bh and Bs horizons.  相似文献   

6.
D.C. Bain 《Geoderma》1977,17(3):193-208
The dominant mineral in the clay fractions from the basal horizons of a podzol developed on till derived mainly from chlorite-schists in Argyllshire is oxidized, iron-rich chlorite. Towards the profile surface, the chlorite decreases in amount, becoming absent in the A2 horizon in which the dominant mineral is a complex dioctahedral interstratified phase formed from dioctahedral mica and composed of mica and vermiculite. The absence of any trioctahedral mineral in the A2 horizon together with the marked loss of iron and magnesium from the clay fraction from this horizon indicates that the chlorite, a thuringite, has been destroyed, the only detectable product being goethite. In other apparently similar soils chlorite persists throughout the profiles. As the Eredine podzol contains translocated humus in the B2 horizon, it is suggested that during podzolization, organic solutions percolated downwards from the surface, formed complexes with iron and aluminium from the chlorite structure, removing them to the B2 horizon, and thus eventually dissolved out the chlorite from the A2 horizon.  相似文献   

7.
Organo-mineral associations stabilize soil organic matter, though the mechanisms by which they do so are unclear. We used particle-size fractions < 6.3 μm of two soils to examine the importance of Fe oxides, short-range order Al silicates and the surface areas of minerals and micropores on the formation of organo-mineral associations. In the subsoil Fe oxides were most strongly statistically correlated with the mineral-bound organic carbon. We therefore assume that they are the most important substrates for the formation of organo-mineral associations. There is no indication that this is caused by physical protection of organic matter in their micropores (< 2 nm). In the Haplic Podzol, dithionite–citrate–bicarbonate-soluble short-range order Al silicates may also play a role. Fe oxide particles were calculated to offer specific surface areas of ∼ 200 m2 g−1 (goethite) and ∼ 800 m2 g−1 (ferrihydrite), corresponding to crystal diameters of only a few nm. We assume that the resulting large amount of oxide-specific reactive surface sites (conditionally charged hydroxyl groups) is responsible for their dominant role as sorbents. With maximum C loadings of 1.3 mg C per m2 Fe oxide for the Dystric Cambisol and 1.1 mg C per m2 Fe oxide + short-range order Al silicates for the Haplic Podzol the subsoils of both soils seem to have reached saturation with respect to organic matter sorption. In contrast to subsoil horizons, organo-mineral associations from topsoils contain much larger amounts of organic matter. Here a larger C loading on Fe oxides or a greater importance of other sorbents in addition to the oxides must be assumed.  相似文献   

8.
Mössbauer and ESR spectroscopy have shown that the iron extracted from the Bh horizons of an iron humus podzol and an iron podzol by EDTA at pH 9.1 is predominantly in the form of complexes * 1 The use of the word ‘complex’ in this paper in the context of polymeric iron species and organic matter is not intended to imply any single specific type of complex, such as exists in Fe(II1) EDTA, for example, but to embrace many possible modes of association including salt formation, direct coordination, Van der Waal's adsorption, and electrostatic attraction.
of polymeric Fe(III) hydroxide and oxide with organic matter (O.M.). Small amounts of monomeric Fe(III)-O.M. and Fe(III)-EDTA complexes also occur. In contrast EDTA at pH 7 extracts iron from these podzols predominantly in the form of iron-EDTA complexes. Some monomeric Fe(III)-O.M. complex also occurs in a pH 9.1 NH4 OH extract of these horizons and in a pH 9.1 EDTA extract of the B3 horizon of a peaty podzol. Dialysis experiments show that the particle dimensions of the polymeric hydroxy Fe(III)-O.M. complex, which accounts for about 66% of the Fe extracted from the iron humus podzol and about 36% of that from the iron podzol, are greater than 2.4 nm. The thermal behaviour of the Mössbauer peaks indicated that the size of the iron cores was of the order of 5 nm, thus suggesting that the complex probably consists of hydroxyiron cores surrounded by large organic molecules. Results from XRD and IR suggest that these hydroxyiron cores may have structural organizations similar to those of goethite and ferrihydrite. The relationship between these forms of iron in the extracts and those in the soil is briefly discussed.  相似文献   

9.
The coastal areas of SE Norway provide suitable conditions for studying soil development with time, because unweathered land surfaces have continuously been raised above sea level by glacio‐isostatic uplift since the termination of the last ice age. We investigated Podzol development in a chronosequence of six soils on sandy beach deposits with ages ranging from 2,300 to 9,650 y at the W coast of the Oslofjord. The climate in this area is rather mild with a mean annual temperature of 6°C and an annual precipitation of 975 mm (Sandefjord). The youngest soil showed no evidence of podzolization, while slight lightening of the A horizon of the second soil (3,800 years) indicated initial leaching of organic matter (OM). In the 4,300 y–old soil also Fe and humus accumulation in the B horizon were perceptible, but only the 6,600 y–old and older soils exhibited spodic horizons. Accumulation of OM in the A horizons reached a steady state in <2,300 y, while in the B horizons OM accumulated at increasing rates. pH dropped from 6.6 (H2O)/5.9 (KCl) in the recent beach sand to 4.5 (H2O)/3.8 (KCl) within approx. 4,500 y (pHH2O)/2,500 y (pHKCl) and stayed constant thereafter, which was attributed to sesquioxide buffering. Base saturation showed an exponential decrease with time. Progressive weathering was reflected by increasing Fed and Ald contents, and proceeding podzolization by increasing amounts of pyrophophate‐ and oxalate‐soluble Fe and Al with soil age. These increases could be best described for most Fe and Al fractions by exponential models. Only the increasing amounts of Fep could be better described by a power function and those of Feo by a linear model.  相似文献   

10.
Beneath a layer of artificially deposited peat debris, an eluvial E horizon and thin iron pan (Bsm) has developed in the upper part of the Ap horizon of a brown podzolic soil (Haplorthod) near Castletownbere, Ireland. The thickness of the E horizon and the depth of the pan are directly related to the thickness of the layer of peat debris. The original soil (Haplorthod) was strongly podzolized with a significant accumulation of organic carbon, iron and aluminium in the spodic Bs. The iron pan of the upper sequum, on the other hand, is rich in iron. This iron pan seems to have developed as a result of reduction of iron in the E horizon, transport of divalent Fe2+ cations and precipitation in the Bsm as Fe2(OH)3, after the peat layer was deposited. We conclude that podzolization and iron pan development were fundamentally different processes. The study suggests a fundamental change in the iron pan-blanket peat development sequence previously postulated by palaeoenvironmentalists in Ireland.  相似文献   

11.
Data from two Podzol O and E horizons, sampled in 1-cm layers at 13 points within 2 m × 2 m plots, were used to test the hypothesis that the composition of hydrogen ions (H) and aluminium (Al) adsorbed to the solid-phase soil organic matter (SOM) determines pH and Al solubility in organic-rich acidic forest soils. Organically adsorbed Al was extracted sequentially with 0.5 m CuCl2 and organically adsorbed H was determined as the difference between total acidity titrated to pH 8.2 and Al extracted in 0.5 m CuCl2. The quotient between fractions of SOM sites binding Al and H (NAl/NH) is shown to determine the variation in pH and Al solubility. It is furthermore shown that models in which pH and Al solubility are linked via a pH-dependent solubility of an Al hydroxide and in which cation exchange between Al3+ and Ca2+, rather than cation exchange between Al3+ and H+, is the main pH-buffering process cannot be used to simulate pH or Al solubility in O and E horizons. The fraction of SOM sites adsorbing Al increased by depth in the lower O and throughout the E horizon at the same magnitude as sites adsorbing H decreased. The fraction of sites binding the cations Ca2+ + Mg2+ + K+ + Na+ remained constant. It is suggested that a net reaction between Al silicates (proton acceptors) and protonated functional groups in SOM (proton donors) is the long-term chemical process determining the composition of organically adsorbed H and Al in the lower part of the O and in the E horizon of Podzols. Thus, in the long term, pH and Al solubility are determined by the interaction between organic acidity and Al alkalinity.  相似文献   

12.
Long-term acidification has been shown to result in a considerable decrease in the amount of organically bound soil Al and in a gradual decrease in the solubility of Al. We examined the solubility of soil organic matter (SOM) and Al in four acid mineral soils (one Arenosol Ah, two Podzol Bh, and one Podzol Bs) as they were leached sequentially using a solution containing 0.001 m HCl and 0.01 m KCl. The acid leaching resulted in relative decreases in Al that were 2–6 times greater than for organic C. The organic C and Al dissolved by the acid leaching originated mainly in the pyrophosphate-extractable fraction of the elements. Protonation seems to be a major mechanism in stabilizing the residual SOM, as indicated by small changes in effective cation exchange capacity with the degree of acid leaching. In the samples of Podzol Bh and Arenosol Ah soils the solubility of Al (defined as log10{Al3+} + 1.5pH) in equilibrium suspensions (0.01 m KCl) was closely related to the ratio of pyrophosphate-extractable Al to pyrophosphate-extractable organic C. The Podzol Bs sample probably contained a small amount of a surface-reactive Al(OH)3 phase, which rapidly became depleted by the acid leaching.  相似文献   

13.
129Xe nuclear magnetic resonance (NMR) spectroscopy of adsorbed xenon was applied for the characterisation of soil meso- and microporosity. Model systems (Ca-montmorillonite, quartz sand) and three soil types (Luvisol Alh, Bt and Cv horizons; Gleysol Go horizon; Podzol Bvs horizon) were studied. For Ca-montmorillonite, the average intercrystallite pore size has been evaluated. In natural soils, 129Xe resonance parameters were shown to be affected by different factors: pore heterogeneity, influence of organic functional groups, possible presence of paramagnetic compounds, occurrence of xenon exchange between inter- and intraparticle void spaces. The effect of those factors on the pattern of 129Xe NMR spectra was tested. In the three soils studied, no micropores within the mineral phase available for xenon adsorption were found. The most probable reason is that such pores are occupied by small molecules of the soil organic matter (SOM). Variable extent of accessibility of mesopores within the mineral phase of the various soils was revealed. It was highest in the Podzol. Here, xenon exchange between different adsorption zones (i.e., pores of differing size, e.g., internal and external void spaces) was slow on an NMR time scale that allowed to detect separate signals, each characterising xenon behaviour in the respective adsorption zone. The pore system of the soil organic matter was shown to be not accessible for xenon, as it is accepted for N2 and other nonpolar adsorbates. Based on analysis of the spectra, a model for the possible mutual location of organic matter and iron compounds in natural soils was suggested. According to this model, a certain part of organic matter species can form the layers above iron species, thus masking them and preventing 129Xe NMR spectra from significant low-field shifts and signal broadening.  相似文献   

14.
The macromorphology, micromorphology and chemical nature of illuvial material in podzol B horizons and subsoils can be explained by contributions from two different migrating species: (a) a positively-charged mixed Al2O3-Fe2O3-SiO2-H2O sol incorporating minor amounts of adsorbed organic matter and silicate clay, and (b) negatively charged organic sols and solutions, carrying minor amounts of Al, Fe and clay. These species can also be generated within B horizons of high root activity. An alternative theory, that requires allophane to be formed in situ in the B horizon by microbial decomposition of precipitated organic complexes, fails to predict the observed distribution of allophane.  相似文献   

15.
Chemical and mineralogical properties of ochreous brown earths have been studied with particular reference to: (1) the distribution within the profiles of Fe and Al compounds; (2) the occurrence of smectite-like clay minerals in surface horizons. Ochreous brown earths studied belong to a developmental sequence of forest soils, from acid brown earths to ferric podzols, developed on sandy or loamy-sandy acid parent materials. In such a soil sequence, both selective chemical and mineralogical data show clearly that podzolization is already active in ochreous brown earths, whereas such an incipient podzolization is quite undetectable by direct morphological observations. The distribution patterns of amorphous Fe and Al hydrous oxides and organic associations, clearly show the intergrade character of ochreous brown earths, when compared with the vertical distribution of Fe and Al forms in acid brown earths and podzolized soils. The Fe/Al ratio of both an NH4-oxalate extract and an NaOH/Na-tetraborate extract buffered at pH 9.7, measured in the A1B diagnostic horizon of ochreous brown earths, is a particularly appropriate and useful genetic criterion for the detection of incipient podzolization. Moreover, the presence of expansible clay minerals (degradation smectites) in the clay-sized fraction of the surface horizons of ochreous brown earths (A1 and A1B) can be considered as supplementary evidence of incipient podzolization.  相似文献   

16.
Minerals with large specific surface areas promote the stabilization of soil organic matter (SOM). We analysed three acidic soils (dystric, skeletic Leptic Cambisol; dystric, laxic Leptic Cambisol; skeletic Leptic Entic Podzol) under Norway spruce (Picea abies) forest with different mineral compositions to determine the effects of soil type on carbon (C) stabilization in soil. The relationship between the amount and chemical composition of soil organic matter (SOM), clay content, oxalate‐extractable Fe and Al (Feo; Alo), and dithionite‐extractable Fe (Fed) before and after treatment with 10% hydrofluoric acid (HF) in topsoil and subsoil horizons was analysed. Radiocarbon age, 13C CPMAS NMR spectra, lignin phenol content and neutral sugar content in the soils before and after HF‐treatment were determined and compared for bulk soil samples and particle size separates. Changes in the chemical composition of SOM after HF‐treatment were small for the A‐horizons. In contrast, for B‐horizons, HF‐soluble (mineral‐associated) and HF‐resistant (non‐mineral‐associated) SOM showed systematic differences in functional C groups. The non‐mineral associated SOM in the B‐horizons was significantly depleted in microbially‐derived sugars, and the contribution of O/N‐alkyl C to total organic C was less after HF‐treatment. The radiocarbon age of the mineral‐associated SOM was younger than that of the HF‐resistant SOM in subsoil horizons with small amounts of oxalate‐extractable Al and Fe. However, in horizons with large amounts of oxalate‐extractable Al and Fe the HF‐soluble SOM was considerably older than the HF‐resistant SOM. In acid subsoils a specific fraction of the organic C pool (O/N‐alkyl C; microbially‐derived sugars) is preferentially stabilized by association with Fe and Al minerals. Stabilization of SOM with the mineral matrix in soils with large amounts of oxalate‐extractable Alo and Feo results in a particularly stable and relatively old C pool, which is potentially stable for thousands of years.  相似文献   

17.
Retention and release of dissolved organic matter in Podzol B horizons   总被引:1,自引:0,他引:1  
The main objectives were to study the effects of pH on the retention and release of organic matter in acid soil, and to determine the main differences in results obtained from batch experiments and experiments in columns. We took soil material from the B horizons of a Podzol at Skånes Värsjö (southern Sweden). In batch experiments, soil was equilibrated with solutions varying in pH and concentration of dissolved organic C. In Bh samples, the release of dissolved C gradually increased with increase in pH. In the Bs1 material there was a minimum at pH 4.1, and in the Bs2 soil the minimum occurred at pH 4.6. The ability to retain added dissolved C increased in the order Bh < Bs1 < Bs2. The column experiment was run for 160 days under unsaturated flow conditions. Columns were packed with Bh, Bh + Bs1 or Bh + Bs1 + Bs2 samples to calculate mass balances for each horizon. Solutions either without any dissolved organic C or ones containing 49 mg C dm?3 with pH of 4.0 or 3.6 were used to leach columns. The pH of input solutions only little affected the concentration of dissolved C in the effluent. Relative proportions of hydrophobic substances decreased with increasing column length and decreasing pH. For input solutions containing dissolved C, near steady state was achieved for both the Bs1 and Bs2 horizons with approximately 25% dissolved organic matter retention. Thus, no maximum sorption capacity for dissolved C could be defined for these horizons. This behaviour could not have been predicted by batch data, showing that column experiments provide useful additional information on interactions between organic compounds and solid soil material.  相似文献   

18.
Dissolved organic matter (DOM) is often considered the most labile portion of organic matter in soil and to be negligible with respect to the accumulation of soil C. In this short review, we present recent evidence that this view is invalid. The stability of DOM from forest floor horizons, peats, and topsoils against microbial degradation increases with advanced decomposition of the parent organic matter (OM). Aromatic compounds, deriving from lignin, likely are the most stable components of DOM while plant‐derived carbohydrates seem easily degradable. Carbohydrates and N‐rich compounds of microbial origin produced during the degradation of DOM can be relatively stable. Such components contribute much to DOM in the mineral subsoil. Sorption of DOM to soil minerals and (co‐)precipitation with Al (and probably also with Fe), especially of the inherently stable aromatic moieties, result in distinct stabilization. In laboratory incubation experiments, the mean residence time of DOM from the Oa horizon of a Haplic Podzol increased from <30 y in solution to >90 y after sorption to a subsoil. We combined DOM fluxes and mineralization rate constants for DOM sorbed to minerals and a subsoil horizon, and (co‐)precipitated with Al to estimate the potential contribution of DOM to total C in the mineral soil of a Haplic Podzol in Germany. The contribution of roots to DOM was not considered because of lack of data. The DOM‐derived soil C ranges from 20 to 55 Mg ha–1 in the mineral soil, which represents 19%–50% of the total soil C. The variation of the estimate reflects the variation in mineralization rate constants obtained for sorbed and (co‐)precipitated DOM. Nevertheless, the estimates indicate that DOM contributes significantly to the accumulation of stable OM in soil. A more precise estimation of DOM‐derived C in soils requires mineralization rate constants for DOM sorbed to all relevant minerals or (co‐)precipitated with Fe. Additionally, we need information on the contribution of sorption to distinct minerals as well as of (co‐)precipitation with Al and Fe to DOM retention.  相似文献   

19.
In thin sections of a cemented Bs horizon, allophane is present as isotropic, or weakly anisotropic, transparent, yellow, commonly fluorescent gel deposits, which line or fill voids, cement sand and silt, and form pseudomorphs of root structures. Atomic ratios of Si: Al range from 1: 2.2 to 1: 3.7 in pale deposits, but drop to 1: 8.8 in regions of organic staining. Fe: Al atomic ratios in transparent deposits range from near zero to 0.4. The local uniformity of the gels indicates that the allophane, with associated iron oxides, is deposited from solution, and is not formed in situ from a precipitated organic complex, or by weathering of minerals in situ. Mineralogical evidence indicates that the origin of the allophane is related to intense acidic weathering of plagioclase and biotites in the Eg and Bhg horizons. A fibrous morphology indicative of imogolite is seen under the scanning electron microscope only in critical point dried specimens. It is proposed that the cracked coatings characteristic of cemented Bs horizons can be interpreted as allophanic deposits, associated with varying amounts of clay and iron oxide, and impregnated with varying amounts of fulvic acids. Such deposits cannot be taken as evidence for the migration of Al and Fe as organic complexes.  相似文献   

20.
Abstract. The aluminium (Al), iron (Fe) and Dissolved Organic Carbon (DOC) contents of the soil solution were monitored in two upland grassland and afforested podzol soils in Mid-Wales. Al organo-metallic complexes predominated in the O horizon leachates of the grassland soil, whereas inorganic monomeric Al forms dominated in the lower mineral horizons. Dissolved organic matter determines the chemistry, solubility, and transport of Al and Fe in the O horizon, and these are under strong biological control. The distributions of organic-Al, Fe and DOC within the soil profile were consistent with traditional podzolization theory. Observed increases in the molar ratios of Al:DOC in solution in the lower soil horizons may be responsible for the small solubility of Al organo-metallic complexes in those horizons. Afforestation increased the concentrations of organic-Al and Fe in the soil solution as compared with the concentrations observed for the grassland soil. Clearcutting further significantly mobilized Al and Fe from the upper soil horizon, primarily by increasing the DOC concentration in the soil water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号