首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
M. Gowda    S. Roy-Barman    B. B. Chattoo 《Plant Breeding》2006,125(6):596-599
Blast, caused by Magnaporthe grisea, is the most devastating disease of rice worldwide. In this study, the main objective was to identify and map a new gene for blast resistance, in an indica rice cultivar ‘Tadukan’ against blast fungal isolate B157, using molecular tools. F2 segregating population was derived from ‘CO39’ (susceptible) and ‘Tadukan’ (resistant), and molecular mapping of the blast resistance gene was carried out using simple sequence length polymorphism (SSLP) and amplified fragment length polymorphism (AFLP) methods. Two SSLP markers, RM206 and RM21 and three AFLP markers (AF1: E‐aca/M‐ctt; AF2: E‐aca/M‐cat and AF3: E‐acc/M‐cac2) were identified to be linked to the resistance gene. The co‐segregation analysis using SSLP markers implied that the blast resistance gene designated Pi38 resides on rice chromosome 11.  相似文献   

2.
We investigated the mode of inheritance and map location of field resistance to rice blast in the elite rice strain Chubu 111, and yield under severe blast conditions. Chubu 111 carries the complete resistance gene Pii, although field testing showed this strain to be susceptible to infection. The level of field resistance of Chubu 111 was so high that chemicals used to control blast were not required, even in an epiphytotic area. Genetic analysis of field resistance to blast in 149 F3 lines derived from a cross between Chubu 111 and the susceptible cultivar ‘Mineasahi’ suggested that field resistance is controlled by a dominant gene, designated Pi39(t), that cosegregates with the single sequence repeat marker loci RM3843 and RM5473 on chromosome 4. Comparative studies of polymorphism at RM3843 among Chubu 111 and six cultivars or lines in its pedigree suggested that the donor of the resistance gene was the Chinese cultivar ‘Haonaihuan’. Marker‐assisted selection of Pi39(t) should be useful in rice‐breeding programmes for field resistance to blast.  相似文献   

3.
IR 58025A is a very popular wild‐abortive cytoplasmic male sterile (WA‐CMS) line of rice and is extensively used for hybrid rice breeding. However, IR 58025A and many hybrids derived from it possess mild aroma (undesirable in some parts of India) and are highly susceptible to bacterial blight (BB) and blast diseases. To improve IR 58025A for BB and blast resistance, we have introgressed a major dominant gene conferring resistance against BB (i.e. Xa21) and blast (i.e. Pi54) into IR 58025B, the maintainer line of IR 58025A. An introgression line of Samba Mahsuri (i.e. SM2154) possessing Xa21 and Pi54 genes in homozygous condition and fine‐grain type was used as donor parent, and backcross breeding strategy was adopted for targeted introgression of the resistance genes. PCR‐based molecular markers tightly linked to Xa21 and Pi54 were used for selection of BB‐ and blast‐resistant lines, while closely linked markers were used for identification of backcross‐derived plants devoid of Rf4 and aroma. At BC2F5, four backcross‐derived lines possessing resistance against BB and blast, devoid of aroma, high yield, short plant stature, long‐slender grain type and with recurrent parent genome recovery ranging from 88.8% to 98.6% were selected and advanced for further evaluation. The improved versions of IR 58025B, viz. SB54‐11‐143‐9‐44‐5, SB54‐11‐143‐9‐44‐98, SB54‐11‐143‐9‐44‐111 and SB54‐11‐143‐9‐44‐171, behaved as perfect maintainers when test‐crossed with WA‐CMS lines. Agronomically superior lines of improved IR 58025B are being converted to CMS line through backcrossing for developing high‐yielding and biotic stress‐resistant rice hybrids.  相似文献   

4.
Hybrid rice technology offers a great promise to produce 15% to 20% more yield than pure line varieties. The success of hybrid rice hinges on developing superior parental lines. To improve the blast resistance of hybrid rice parental line RP5933-1-19-2R, crosses were made with donors of two major blast resistance genes namely, Pi54 (Tetep) and Pi9 (IR71033–121-15) and the resulting F1s were confirmed for their hybridity by using Pi54MAS and NMSMPi9-1 genic markers. The confirmed F1s were intercrossed to obtain ICF1s and selected positive plants by markers were backcrossed to the recurrent parent, as well as selfed for advancing further to BC1F3 and ICF4 generations. The segregating plants were phenotyped for blast resistance at Uniform Blast Nursery. The identified complete restorers namely, RP 6619-1, RP 6616-26, RP 6619-3 and RP 6619-11 with Pi9 and Pi54 genes would serve as donors for broad spectrum blast resistance. This could ultimately lead to the development of new rice hybrids with improved resistance to blast disease, which is crucial for sustainable rice production and food security.  相似文献   

5.
S. R. Barman    M. Gowda    R. C. Venu  B. B. Chattoo 《Plant Breeding》2004,123(3):300-302
Analysis of near‐isogenic lines (NILs) indicated the presence of a novel resistance gene in the indica rice cultivar ‘Tetep’ which was highly resistant to the rice blast fungus Magnaporthe grisea.‘Tetep’ was crossed to the widely used susceptible cultivar ‘CO39’ to generate the mapping population. A Mendelian segregation ratio of 3 : 1 for resistant to susceptible F2 plants further confirmed the presence of a major dominant locus, in ‘Tetep’, conferring resistance to the blast fungal isolate B157, corresponding to the international race IC9. Simple sequence length polymorphism (SSLP) was used for molecular genetic analysis. The analysis revealed that the SSLP marker RM 246 was linked to a novel blast resistance gene designated Pi‐tp(t) in ‘Tetep’.  相似文献   

6.
Z. Wang    Y. Jia    J. N. Rutger    Y. Xia 《Plant Breeding》2007,126(1):36-42
The Pi‐ta gene in rice confers resistance to strains of the blast pathogen Magnaporthe grisea (Herbert) Borr. (anamorph Pyricularia oryza Cav.) containing the corresponding avirulence gene AVR‐Pita in a gene‐for‐gene fashion. The Pi‐ta gene is a typical nucleotide‐binding site type resistance gene. Nucleotide sequences distinguishing the resistant Pi‐ta and susceptible pi‐ta alleles were previously identified and used for developing DNA markers for a resistant Pi‐ta haplotype and three susceptible pi‐ta haplotypes. In the present study, the existence of the Pi‐ta gene in 141 rice germplasm accessions was rapidly determined using these markers, and the results were confirmed by inoculating rice germplasm with an M. grisea strain containing AVR‐Pita. The Pi‐ta gene was found in accessions from several major rice producing countries, including China, Colombia, Japan, Vietnam, the Philippines, Iran and the United States. The usefulness of DNA markers for rapid determination of the genotype of rice germplasm was thus demonstrated. The Pi‐ta gene also was found in rice cultivar known to contain the Pi‐ta2 gene, although the allelic relationship of these genes remains to be determined. The presence of the Pi‐ta gene in landrace cultivars in several different geographical locations, the Philippines and Vietnam, other indica rice cultivars in China and Colombia suggest that the Pi‐ta gene may have spontaneously originated in indica rice cultivars. These results are useful for incorporating the Pi‐ta gene into advanced breeding lines by marker‐assisted selection for rice breeding programmes worldwide.  相似文献   

7.
The rice cultivar ‘Chumroo’ is commonly cultivated in the mid- and high-altitude areas of Bhutan. This cultivar has shown durable blast resistance in that area, without evidence of breakdown, for over 20 years. Chumroo was inoculated with 22 blast isolates selected from the race differential standard set of Japan. The cultivar showed resistance to all the isolates. To identify the resistance gene(s), Chumroo was crossed with a susceptible rice cultivar, Koshihikari. The F1 plants of the cross showed resistance. Segregation analyses of 300 F3 family lines fitted the segregation ratio of 1:2:1 and indicated that a single dominant gene controls the resistance to a blast isolate Ao 92-06-2 (race 337.1). The Chumroo resistance locus (termed Pi46(t)) was mapped between two SSR markers, RM6748 and RM5473, on the terminal region of the long arm of chromosome 4, using linkage analysis with SSR markers. The nearest marker, RM5473, was linked to the putative resistance locus at a map distance of 3.2 cM. At the chromosomal region, no true resistance genes were identified, whereas two field resistance genes were present. Therefore, we designated Pi46(t) as a novel blast resistance locus.  相似文献   

8.
Sunflower lines RHA‐274, HA‐61 and RHA‐325 were studied for their resistance to race 330 of downy mildew (Plasmopara halstedii). The same inbred line, with normal (HA‐89) or sterile cytoplasm (cmsHA‐89) was used in all the crosses as susceptible parent, and, in each cross, only one genotype of the resistant parent was studied. The resistant‐to‐susceptible ratios obtained in the BC1 and F2 progenies from the crosses of the lines RHA‐274 and HA‐61 to cmsHA‐89 and HA‐89, respectively, suggested that, in each resistant line, two dominant genes are responsible for resistance to this downy mildew race. One of the genes (A) is epistatic to the other (B), and the recessive allele b in homozygosity is also epistatic to aa, with plants carrying aabb genotypes being resistant. Resistance to race 330 seemed to be controlled by two complementary genes in the sunflower inbred line RHA‐325, the dominant allele of one of them being present in cmsHA‐89. In the genotypes HA‐89 or cmsHA‐89, the existence of genes that modify the expected segregations following the crosses with resistant parents is proposed. It is concluded that, although major genes have been described as responsible for monogenic resistance to downy mildew, other types of regulation of this character, such as complementarity and epistatic relationships, do occur.  相似文献   

9.
A series of DNA markers for various agronomic traits may accelerate the success of marker-assisted selection in practical plant breeding programmes. Here, we developed DNA markers for the blast resistance gene Pi-cd. In this study, we examined the effects of the Pi-cd locus on not only blast resistance but also agronomic traits in agriculture. We developed three pyramiding lines (PLs) coupling Pi-cd with three blast resistance genes, pi21, Pi35 and Pi39. The effect of Pi-cd on blast resistance was dependent on the coupled resistance genes. Then, we evaluated the effects of Pi-cd on 13 agronomic traits. Amylose content and 1,000-grain weight showed significant differences between the PLs and current commercial varieties, which had no negative effects on agronomic trait values. Furthermore, we investigated the distribution of genotype for the Pi-cd locus among varieties of upland rice. The KT genotype specific to rice blast resistance may be predominant in the varieties. The results suggested that Pi-cd has the potential to be useful for improving blast resistance in rice breeding programmes.  相似文献   

10.
A genetic analysis of blast resistance in upland rice variety is very crucial. In this study, we performed a linkage mapping of quantitative trait loci (QTLs) for blast resistance using an advanced backcross population from a cross between Way Rarem (susceptible indica variety) and Oryzica Llanos 5 (durable resistant indica variety). A transgressive segregation was observed in the advanced backcross population of Way Rarem//Oryzica Llanos 5. A total of 16 QTLs have been identified along chromosomes 1, 3, 5, 6, 7, 8, 9, and 11 against eight blast pathogen isolates. Each QTL accounted from 11.31 to 45.11% of the variation in blast resistance. Most QTLs showed race specificity, demonstrating the small effect of such QTLs. Unexpectedly, several superior blast resistance alleles were contributed by Way Rarem, the susceptible-recurrent parent. Among eight candidate defense response genes detected in several loci, a single gene (oxalate oxidase) present on chromosome 3 was found to be associated with blast resistance in upland indica rice. Ultimately, these advanced backcross lines with resistance to blast tagged by markers might be useful for pyramiding blast resistance alleles in upland rice.  相似文献   

11.
Rice blast (Magnaporthe oryzae) is the most destructive and epidemic disease of rice. Use of host resistance is the best alternative for disease management. The leaf and neck blast resistance of 182 rice breeding lines were assessed for leaf and neck blast and classified relative to a susceptible check-Masuli and resistant check-Laxmi, from greenhouse experiment in 2005 and 2006. The test plants were inoculated with 105 conidial suspension/ml of M. oryzae at 21 days old seedlings for the leaf blast, and at neck base for the neck blast. Among them, for leaf blast, 77 rice lines were resistant, 43 were moderately resistant, 39 were moderately susceptible and 23 were susceptible. While among the selected 31 rice lines evaluated for neck blast, 4 lines were resistant, 4 were moderately resistant, 16 were moderately susceptible and 7 were susceptible. Leaf and neck infection was significant and positively correlated (r = 0.30, P = 0.05). The rice lines, Barkhe 1032, Barkhe 1034, Barkhe 1035, Barkhe 1036, Barkhe 2014, Barkhe 2024, Barkhe 3019, Super 3004 were resistant to leaf blast and Barkhe 1006, Barkhe 1032, Barkhe 1035, Barkhe 3004 were resistant to neck blast. The rice lines with identification # 11, 69, 137, 168, 182 from Masuli × MT4 parentage, and Barkhe 3017 were susceptible to both leaf and neck blast. Progenies of Irradiated Pusa Basmati (IPB), Kalinga III/IR64 (KIII/IR64), and Masuli/IR64 were resistant to both leaf and neck blast. However, most progenies from Masuli/MT4 showed susceptible reaction to both leaf and neck blast. Thus, rice lines form the IPB, KIII/IR64 and Masuli/IR64 will be promising resistant sources for rice blast in breeding programme.  相似文献   

12.
R917, a japonica rice mutant with broad-spectrum of resistance to blast, was selected after treatment of the F1 seeds from the cross between Chengte 232 and Xiushui 37 with 10 krad of 60Co γ-ray. R917 was evaluated for blast resistance in multiple years and locations. It was resistant to 136 of 138 strains of Magnaporthe grisea collected from different regions in China with a resistance frequency of 98.55%, much higher than 86.13% and 10.15% of Chengte 232 and Xiushui 37. To analyze its inheritance of resistance to blast, R917 was crossed with the susceptible cultivar, Nonghu 6, and its two parents. It had a single dominant resistance gene to Chinese races ZB13, ZC15 and ZE3, nonallelic to those of Chengte 232 and Xiushui 37. When inoculated with 7 Japanese differential strains, R917 showed the same reaction pattern as Toride 1 and differed from the other differential varieties. But R917 was different from Toride 1 in its reaction to 7 Chinese strains. Allelism test indicated that the resistance genes between R917 and Toride 1 were nonallelic to Chinese races ZC15 and ZE3. R917 was a semi dwarf with strong stem, narrow and erect leaf, tight plant type and monogenic broad-spectrum resistance to blast. Several lines with desirable agronomic traits newly bred using R917 as a donor of blast resistance had the same broad-spectrum of resistance to blast as R917, indicating there was no linkage drag between the resistance gene and other important agronomic genes in R917. R917 has been used as a donor in rice breeding programs in China. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
The use of host resistance (R) genes is considered the most cost‐effective option to control the rice blast disease. The two allelic R genes Pi2 and Pi9 confer very broad‐spectrum resistance against blast isolates collected worldwide. However, the two genes have not yet been widely deployed in rice breeding programmes. Availability of specific markers for them would facilitate incorporating the two R genes into new rice lines through marker‐assisted selection. Herein, we report the development and utilization of a robust and specific marker for the Pi2 and Pi9. This marker was derived from polymorphisms within the target gene, and achieved simultaneously distinguish Pi2 and Pi9 from other alleles through high‐resolution melting of a small amplicon. With the marker, we were able to transfer the Pi2 into an elite restorer line through marker‐assisted backcrossing, successfully obtained effective resistance to blast disease, and we were also able to, respectively, incorporate the Pi2 and Pi9 with two other R genes. As the additive effect, blast resistance in these stacking lines harbouring three R genes were significantly improved.  相似文献   

14.
Genetic analysis of common wheat cultivar PBW343 confirmed temperature-sensitive leaf rust resistance and adult plant stripe rust resistance. At low temperatures, PBW343 was resistant to P. triticina (Ptr) pathotype (pt.) 121R63-1, and at high temperature it was resistant to Ptr pt. 121R127. The low temperature resistance to pt. 121R63-1 was attributed to interaction between dominant and recessive genes. The dominant gene involved in low-temperature resistance to pt. 121R63-1 also conferred resistance to pt. 45R35. The high-temperature resistance to Ptr pt. 121R127 was governed by a different single partially dominant gene. Agra Local (a commonly used susceptible check) and IWP94 (a leaf rust differential used in India) are also resistant to pt. 121R127 at high temperatures. An allelism test indicated that PBW343 and IWP94 possessed a common gene for high temperature resistance to this pathotype. The adult plant stripe rust resistance against P. striiformis (Pst) was possibly conferred by one gene in addition to Yr27.  相似文献   

15.
Rice blast, caused by the fungus Magnaporthe oryzae, is the most devastating fungal disease of rice. Mowanggu, a local japonica cultivar in Yunnan Province, China, confers broad-spectrum resistance to this pathogen. To identify the resistance gene(s) in Mowanggu, we obtained an F2 population and 280 F8 recombinant inbred lines (RILs) from a cross between Mowanggu and CO39, a highly susceptible indica cultivar. A linkage map with 145 simple sequence repeat (SSR) and single feature polymorphism markers over 12 chromosomes was constructed using the 280 RILs. The resistance evaluation of the F2 and F8 populations in both the growth chamber and in a natural rice blast nursery showed that a single dominant gene controls blast resistance in Mowanggu. Moreover, nine quantitative trait loci, which were responsible for different partial resistance components, were mapped on chromosomes 2, 3, 6, 8, 9, and 12, making contributions to the phenotypic variation ranging from 3.03 to 6.18 %. The dominant resistance gene, designated Pi49, was mapped on chromosome 11 with genetic distance of 1.01 and 1.89 cM from SSR markers K10 and K134, respectively. The physical distance between K10 and K134 is about 181 kb in the Nipponbare genome. The Pi49 gene accounted for the major phenotypic variation of disease severity in the growth chamber (where plants were inoculated with single blast isolates) and also accounted for most of the phenotypic variance of disease severity, lesion number, diseased leaf area, and lesion size in the blast nursery. Our study not only identified tightly linked markers for introgression of Pi49 into elite rice cultivars via marker-aided selection but also provides a starting point for map-based cloning of the new resistance gene.  相似文献   

16.
分子标记辅助培育水稻抗白叶枯病和稻瘟病三基因聚合系   总被引:6,自引:2,他引:4  
水稻的白叶枯病和稻瘟病是水稻的两大主要病害, 通过分子标记辅助选择与传统的杂交、自交相结合的方法, 将抗稻瘟病的Pi9(t)基因和抗白叶枯病的Xa21及Xa23基因聚合到同一株系中, 经多代大田或/和温室接菌鉴定、室内标记选择和田间农艺性状的筛选, 获得了4个三基因聚合且农艺性状优良的株系L17~L20。用不同国家和地区的20个稻瘟病小种、中国流行的7个白叶枯病菌系C1~C7以及安徽省流行的白叶枯病菌系进行大田或/和温室抗病性鉴定, 结果显示, 株系L17~L20对20个稻瘟病小种均表现出抗性, 抗性水平与Pi9(t)基因的供体亲本75-1-127相当, 抗谱相同; 对白叶枯病的抗性和抗谱与Xa23基因相似, 不论在苗期还是在成株期均抗白叶枯病。与Xa21、Xa23基因的供体亲本M12和CBB23相比, 成株期的抗性水平有所增强。利用多重PCR技术, 在同一PCR反应中可同时选择Pi9(t)和Xa21基因, 提高了PCR选择效率。  相似文献   

17.
Summary A set of 21 monosomics of Novosadska Rana-1 was used to locate the rust resistance genes of Lüqiyu, a stripe rust resistant line developed by BAU and Yantar, a leaf rust resistant wheat introduced from Bulgaria. The resistance of the former to p. striiformis race C25 was conditioned by a dominant gene located on chromosome 2B, whereas that of the latter to P. recondita race CL3 was controlled by two complementary dominant genes located on chromosomes 5A and 1D, respectively. The relationship of the stripe rust resistance gene in Lüqiyu to Yr5, Yr7 or Yr Suwon' all located on chromosome 2B is unknown. The two complementary leaf rust resistance factors in Yantar appear to be new.  相似文献   

18.
Breeding for reniform nematode (Rotylenchulus reniformis) resistance is hindered by the lack of resistance in upland cotton (Gossypium hirsutum) cultivars. Resistance has been frequently identified in accessions from the Gossypium arboreum germplasm collection with accession PI 529740 rated as highly resistant. Accession PI 529740 was crossed with the susceptible Garboreum accession PI 529729 to develop an F2 population for genetic characterization. The population showed quantitative variation suggesting multiple genes conferred the resistant phenotype. Thirteen of the 216 F2 plants showed resistance similar to the resistant parent and these data supported a two recessive gene model. Sixty plants were classified as resistant or moderately resistant, indicating a single recessive gene conferred the moderately resistant phenotype. The classification of 24 F2:3 families for nematode resistance generally supported the classification of the corresponding F2 plants; however, most families were highly variable for infection with no families rated as resistant. This information will aid in the introgression of resistance into upland cotton as larger populations will be required to successfully recover resistance conferred by multiple recessive genes.  相似文献   

19.
A total of 324 Japanese rice accessions, including landrace, improved, and weedy types were used to 1) investigate genetic variations in blast resistance to standard differential isolates, and 2) across the genome using polymorphism data on 64 SSR markers. From the polymorphism data, the accessions were classified into two clusters. Accessions from irrigated lowland areas were included mainly in cluster I, and upland and Indica types were mainly in cluster II. The accessions were classified into three resistance subgroups, A2, B1 and B2, based on the reaction patterns to blast isolates. The accessions in A2 were postulated to have at least two resistance genes Pish and Pik-s, whereas those in B1 had various combinations of the resistance genes Pish, Pia, Pii, Pi3, Pi5(t), and Pik alleles. The B2 accessions were resistant to almost all isolates, and many accessions of cluster II were included, and had Pish, Pia, Pii, Pi3, Pi5(t), certain Pik, Piz and Pita alleles, and unknown genes. The frequencies of accessions of B1 originating in Hokkaido, and those of B2 originating in the Kanto and Tohoku regions were remarkably higher than in the other regions.  相似文献   

20.
D. Rubiales  A. Moral  A. Martín 《Euphytica》2001,122(2):369-372
Septoria leaf blotch and common bunt are important diseases of wheat to which Hordeum vulgare is resistant. Addition lines of H. vulgare in wheat were utilized to determine which H. vulgare chromosomes carry resistance genes. Resistance to septoria leaf blotch was conferred by gene(s) present all over the barley genome, but more strongly by those located on chromosomes 7 and 4. Almost complete resistance to common bunt was conferred by gene(s) present in chromosomes 6 and a slight but significant level of resistance was conferred by chromosome 7. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号